-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
562 lines (510 loc) · 21.5 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
import numpy as np
import argparse
import sys
from src import mashf90
import os
script_dir = os.path.dirname(os.path.abspath(__file__))
input_dir = script_dir + '/input'
class CustomArgumentParser(argparse.ArgumentParser):
""" Allow commented lines in input file """
def convert_arg_line_to_args(self, line):
if line.strip().startswith('#'):
return []
return line.split()
""" Unit conversions to atomic units """
cmm1 = 4.556335e-6
fs = 41.34136e0
kB = 3.166829e-6
eV = 1./27.2113961
""" Define global variables """
Vconst = 0.; nf_site = 0; ns = 0
w_low = 0.; c_low = 0.; w_intra = 0.; c_intra = 0.
def read_args():
""" Run file with 'mash.py +input.in' """
parser = CustomArgumentParser(fromfile_prefix_chars=["@","+"])
# General
parser.add_argument("-model", type=str, default="spinboson", help="Model system",
choices=["spinboson","fmo3","fmo7","fmo8","tully1","tully2","lh2","lhc2"])
parser.add_argument("-basis", type=str, default="site", help="Diabatic basis for certain model systems",
choices=["exc","site","adia","dia"])
parser.add_argument("-units", type=str, default="au",help="""Choose unit system.
cmm1: input in cmm1, output in fs.
fs: input in fs, output in fs. """,
choices=["au","cmm1","fs"])
parser.add_argument("-obstyp", type=str, default="pop", help="Observable types",
choices=["pop","nuc"])
parser.add_argument("-init", type=int,help="Initial state (in Python indexing)")
parser.add_argument("-initbasis",type=str,default='dia',choices=["dia","adia","site","exc"],help='Basis for initial state')
parser.add_argument("-nucsamp",type=str,default='cl',
help="Nuclear sampling. classical/cl=classical, wigner/wig=thermal wigner, GS=ground state Wigner, clzero=classical T=0, WP=wavepacket",
choices=['classical','cl','wigner','wig','GS','clzero','WP'])
parser.add_argument("-elsamp",type=str,default='focused',choices=["focused","theta"],help='Choice of initial distribution')
parser.add_argument("-beta",type=float,default=1.,help="Reciprocal temperature [in a.u.]")
parser.add_argument("-T",type=float,default=0,help="Temperature [in kelvin]")
# Debugging
parser.add_argument("-debug",action="store_true",help='Run one debug trajectory and plot energy conservation etc.')
parser.add_argument("-seed",type=float,default=None,help="If set, initialize random seed.")
# Convergence
parser.add_argument("-dt",default=41,type=float,help="Time step")
parser.add_argument("-nt","-TS",type=int,help="Number of time steps")
parser.add_argument("-ntraj","-traj",type=int,help="Number of trajectories")
parser.add_argument("-nf",type=int,default=1,help="Number of bath modes.")
parser.add_argument("-npar","-n",default=1,type=int,help="Number of parallel processors")
# Spin-boson model
parser.add_argument("-Delta",type=float,default=1.,help="Diabatic coupling")
parser.add_argument("-epsilon","-eps",type=float,default=0.,help="(Half) energy bias")
parser.add_argument("-lamda",type=float,default=0,help="System-bath reorganization energy.")
parser.add_argument("-omegac",type=float,default=0.,help="Cutoff frequency.")
# Frenkel-exciton models
parser.add_argument("-disorder",type=str,default='none',choices=["none","fmo","lhc2"],help='Choice of static disorder')
parser.add_argument("-bath",type=str,default='debye',choices=["debye","coursegrain","B777"],help='Choice of low-frequency bath for fmo and lhc2')
parser.add_argument("-wmax",type=float,default=None,help="Max omega in discreziation")
parser.add_argument("-polaron",type=str,choices=["vpt","langfirsov"],help='Type of polaron transformation to remove high-frequency modes')
# Tully model
parser.add_argument("-WPenergy",type=float,default=0.,help="Wavepacket energy")
parser.add_argument("-gamma",type=float,default=0.,help="Wavepacket width parameter")
parser.add_argument("-pinit",type=float,default=0.,help="Initial momentum")
args = parser.parse_args()
""" ======= Convert input arguments to atomic units ======="""
if args.units=="cmm1":
args.epsilon = args.epsilon * cmm1
args.Delta = args.Delta * cmm1
args.lamda = args.lamda * cmm1
args.omegac = args.omegac * cmm1
args.dt = args.dt * fs
if args.units=='fs':
args.dt = args.dt * fs
if args.T:
args.beta = 1./(kB*args.T)
if not args.seed is None:
np.random.seed(args.seed)
return args
"""======== Initialize system ========="""
def setup_model(args):
global Vconst, nf_site, w_low, c_low, w_intra, c_intra, ns
model = args.model
epsilon = args.epsilon
Delta = args.Delta
nf = args.nf
omega = np.zeros(nf,dtype=np.float64)
if model=='spinboson':
ns = 2
Vconst = np.array([[epsilon,Delta],[Delta,-epsilon]])
Vlin = np.zeros((nf,ns,ns),dtype=np.float64)
fac = np.sqrt(0.5*args.lamda/nf)
c = np.zeros(nf)
for i in range(nf):
omega[i] = args.omegac*np.tan(0.5*np.pi*(i+0.5)/nf)
c[i] = fac*omega[i]
Vlin[i,0,0] = c[i]
Vlin[i,1,1] = -c[i]
elif model=='fmo3':
ns = 3
Vlin = np.zeros((nf,ns,ns),dtype=np.float64)
omega = np.zeros(nf,dtype=np.float64)
Vconst = np.diag([12410.,12530,12210])
Vconst[0,1] = -87.7
Vconst[0,2] = 5.5
Vconst[1,2] = 30.8
Vconst = Vconst + Vconst.T - np.diag(np.diag(Vconst))
Vconst -= np.eye(ns)*np.trace(Vconst)/ns
Vconst = Vconst*cmm1
nf_site = nf//ns
fac = np.sqrt(2*args.lamda/nf_site)
c = np.zeros(nf_site)
for i in range(nf_site):
omega[i] = args.omegac*np.tan(0.5*np.pi*(i+0.5)/nf_site)
c[i] = fac*omega[i]
for i in range(ns):
omega[i*nf_site:(i+1)*nf_site] = omega[:nf_site]
Vlin[i*nf_site:(i+1)*nf_site,i,i] = c
elif model=='fmo7':
ns = 7
omega = np.zeros(nf,dtype=np.float64)
Vconst = np.diag([12410.,12530,12210,12320,12480,12630,12440])
Vconst[0,1] = -87.7
Vconst[0,2] = 5.5
Vconst[0,3] = - 5.9
Vconst[0,4] = 6.7
Vconst[0,5] = -13.7
Vconst[0,6] = - 9.9
Vconst[1,2] = 30.8
Vconst[1,3] = 8.2
Vconst[1,4] = 0.7
Vconst[1,5] = 11.8
Vconst[1,6] = 4.3
Vconst[2,3] = -53.5
Vconst[2,4] = - 2.2
Vconst[2,5] = -9.6
Vconst[2,6] = 6.0
Vconst[3,4] = -70.7
Vconst[3,5] = -17.0
Vconst[3,6] = -63.3
Vconst[4,5] = 81.1
Vconst[4,6] = - 1.3
Vconst[5,6] = 39.7
Vconst = Vconst + Vconst.T - np.diag(np.diag(Vconst))
Vconst -= np.eye(ns)*np.min(np.diag(Vconst))
Vconst = Vconst*cmm1
elif model=="fmo8":
ns = 8
""" Vconst from Schmidt am Busch, Müh, Madjet and Renger JPCL 2, 93 (2011) """
Vconst = np.loadtxt(input_dir+'/FMO-HS.dat') * cmm1
omega = np.zeros(nf,dtype=np.float64)
elif model=='lh2':
ns = 24
""" Ordering as follows:
--------B850--------- ---B800----
1A 1B 2A 2B ... 8A 8B 1 2 3 ... 8
"""
""" Load system Hamiltonian: Tretiak, Middleton, Chernyak, Mukamel JPCB 104, 9540 (2000) """
Vconst = np.loadtxt(input_dir+'/LH2-HS.dat') * cmm1
""" Load discrete bath: Rätsep, Cai, Reimers, Freiberg JCP 134, 024506 (2011) """
specden = np.loadtxt(input_dir+'/LH2-specden.dat')
w_intra = specden[:,0] * cmm1
S_HR = specden[:,1]/1000.
c_intra = np.sqrt(2.*w_intra**3*S_HR)
Jw = np.pi/2. * c_intra**2/w_intra
lamda_intra = np.sum(Jw/w_intra)/np.pi
print('lambda (intra): ', lamda_intra/cmm1)
""" Ohmic part: J(w) = eta*w*exp(-w/wc)"""
xi = 0.4
eta = 2*np.pi*xi
omegac = 200.*cmm1
nf_site = args.nf
w_low = np.zeros(nf_site)
c_low = np.zeros(nf_site)
fac = np.sqrt(2*eta*omegac/(nf_site*np.pi))
for i in range(nf_site):
w_low[i] = -omegac*np.log((i+0.5)/nf_site)
c_low[i] = fac*w_low[i]
Jw_Ohm = np.pi/2.*c_low**2/w_low
lamda_Ohm = np.sum(Jw_Ohm/w_low)/np.pi
print('lambda (Ohmic): ', lamda_Ohm/cmm1)
elif model=='lhc2':
ns = 14
""" Load system Hamiltonian: couplings from Müh, Madjet and Renger JPCB 114, 13517 (2010).
Site energies from Müh and Renger Biochim. Biophys. Acta 1817, 1446 (2012). """
Vconst = np.loadtxt(input_dir+'/LHCII-HS.dat') * cmm1
E,U = np.linalg.eigh(Vconst)
print(U[args.init,:]**2)
""" Load discrete bath: Renger, Madjet, Knorr and Müh J. Plant Physiol. 168, 1497 (2011) """
specden = np.loadtxt(input_dir+'/LHCII-specden.dat')
w_intra = specden[:,0] * cmm1
S_HR = specden[:,1]
c_intra = np.sqrt(2.*w_intra**3*S_HR)
""" Low-frequency bath: Renger et al. J. Plant Physiol. 168, 1497 (2011) """
S0 = 0.5
w1 = 0.56 * cmm1
w2 = 1.94 * cmm1
s1 = 0.8
s2 = 0.5
def Jw_term(w,wi,si):
return si/(2*np.math.factorial(7)*wi**4)*w**3*np.exp(-np.sqrt(w/wi))
def Jw_l(w):
return S0/(s1+s2)*(Jw_term(w,w1,s1) + Jw_term(w,w2,s2))
maxw = args.wmax * cmm1
nf_site = nf
w_low = maxw * np.arange(1,nf+1)/nf
Jw_disc = Jw_l(w_low)
dw = w_low[1]-w_low[0]
g_Ohm = np.sqrt(Jw_disc*dw)
c_low = g_Ohm * np.sqrt(2*w_low**3)
lamda = 0.5*np.sum(c_low**2/w_low**2)
print(lamda/cmm1)
lamda_intra = 0.5*np.sum(c_intra**2/w_intra**2)
print(lamda_intra/cmm1)
if 'fmo' in model:
if args.bath=='debye':
nf_site = nf//ns
fac = np.sqrt(2*args.lamda/nf_site)
c = np.zeros(nf_site)
for i in range(nf_site):
omega[i] = args.omegac*np.tan(0.5*np.pi*(i+0.5)/nf_site)
c[i] = fac*omega[i]
Vlin = np.zeros((nf,ns,ns))
for i in range(ns):
omega[i*nf_site:(i+1)*nf_site] = omega[:nf_site]
Vlin[i*nf_site:(i+1)*nf_site,i,i] = c
elif args.bath=='coursegrain':
""" Course-grained Huang-Rhys factors for low-frequency modes.
Based on raw data from Klinger, Lindorfer, Müh and Renger JCP 153, 215103 (2020) """
specden = np.loadtxt(input_dir+'/FMO-specden_coursegrain.dat')
w_low = specden[:,0] * cmm1
S_HR = specden[:,1]
c_low = np.sqrt(2.*w_low**3*S_HR)
nf_site = len(w_low)
elif args.bath=='B777':
""" Adolphs and Renger, Biophys J. 91, 2778 (2006) """
S0 = 0.5
w1 = 0.56 * cmm1
w2 = 1.94 * cmm1
s1 = 0.8
s2 = 0.5
def Jw_term(w,wi,si):
return si/(2*np.math.factorial(7)*wi**4)*w**3*np.exp(-np.sqrt(w/wi))
def Jw_l(w):
return S0/(s1+s2)*(Jw_term(w,w1,s1) + Jw_term(w,w2,s2))
maxw = args.wmax * cmm1
nf_site = nf
w_low = maxw * np.arange(1,nf+1)/nf
Jw_disc = Jw_l(w_low)
dw = w_low[1]-w_low[0]
g_Ohm = np.sqrt(Jw_disc*dw)
c_low = g_Ohm * np.sqrt(2*w_low**3)
if model=='fmo8':
""" Load experimental spectral density for high-frequency modes:
Wendling et al. JPCB 2000, 104, 5825 for Prostechochloris aestuarii """
specden = np.loadtxt(input_dir+'/FMO-specden.dat')
w_intra = specden[:,0] * cmm1
S_HR = specden[:,1]
c_intra = np.sqrt(2.*w_intra**3*S_HR)
lamda = 0.5*np.sum(c_low**2/w_low**2)
print(lamda/cmm1)
lamda_intra = 0.5*np.sum(c_intra**2/w_intra**2)
print(lamda_intra/cmm1)
if model in ['fmo8','lh2','lhc2']:
w,c,Vconst_renorm = polaron_transform(w_low,w_intra,c_low,c_intra,Vconst,args)
""" Total vibronic part of Hamiltonian """
nf_site = len(w)
nf = ns*nf_site
omega = np.zeros(nf)
kappa = np.zeros((nf_site,ns))
for i in range(ns):
omega[i*nf_site:(i+1)*nf_site] = w
kappa[:,i] = c.copy()
""" ======= Initialize mass ======= """
mass = np.ones(nf)
""" ====== Initialize fortran potential ===== """
if 'tully' in model:
nf = 1
ns = 2
mass = np.ones(1)*2000.
mashf90.init_tully(model[-1],mass)
elif model in ['fmo3','fmo7','fmo8','lh2','lhc2']:
if args.polaron is None:
mashf90.init_frexc(mass,omega,Vconst,kappa,nf,nf_site,ns)
else:
mashf90.init_frexc(mass,omega,Vconst_renorm,kappa,nf,nf_site,ns)
elif model in ['spinboson']:
mashf90.init_linvib(mass,omega,Vconst,Vlin,nf,ns)
else:
sys.exit('Model not recognized!')
return mass,omega,nf,ns
def polaron_transform(w_Ohm,w_intra,c_Ohm,c_intra,Vconst,args):
""" Calculate renormalized Vconst from selected set of modes through the polaron transformation """
w = np.concatenate([w_Ohm,w_intra])
c = np.concatenate([c_Ohm,c_intra])
if args.polaron is None:
return w,c,Vconst
""" Select intra part for PT """
toPT = np.ones(len(w),dtype=bool)
toPT[:len(w_Ohm)] = False
""" Only transform modes with w > kT """
toPT[w < 1./args.beta] = False
w_high = w[toPT]
c_high = c[toPT]
w = w[~toPT]
c = c[~toPT]
nf_high = len(w_high)
g = c_high / np.sqrt(2*w_high**3)
nBE = 1./(np.exp(args.beta*w_high)-1)
coth = 2*nBE + 1
if args.polaron=='langfirsov':
# Scale all off-diagonal potential by the same band narrowing factor
# based on a full Lang-Firsov polaron transformation of the high-
# frequency intramolecular modes
S_HR = g**2
f = np.exp(-np.sum(S_HR*coth))
Hel = Vconst.copy()
Hel[~np.eye(ns,dtype=bool)] *= f
print('f',f)
elif args.polaron=='vpt':
""" Variational polaron transformation (site-dependent) """
f = np.zeros((ns,nf_high))
for n in range(ns):
f[n,:] = g.copy()
niter = 20
bandnarrow = np.zeros((ns,ns))
for iter in range(niter):
oldf = f.copy()
Hel = np.zeros((ns,ns))
for n in range(ns):
Hel[n,n] = Vconst[n,n] - np.sum(w_high * (2*g*f[n]-f[n]**2))
for m in range(n+1,ns):
bandnarrow[n,m] = np.exp(-0.5*np.sum((f[n,:]**2+f[m,:]**2)*coth))
Hel[n,m] = Vconst[n,m] * bandnarrow[n,m]
Hel[m,n] = Vconst[m,n] * bandnarrow[n,m]
eps,U = np.linalg.eigh(Hel)
Pk = np.exp(-args.beta*eps)
Pk /= np.sum(Pk)
for n in range(ns):
tmp = 0
for m in range(ns):
if m!=n:
um = np.sum(U[n,:]*U[m,:]*Pk)/np.sum(U[n,:]**2*Pk)
tmp += um*Hel[n,m]
f[n,:] = w_high * g / (w_high - coth*tmp)
change = np.linalg.norm(f-oldf)/np.linalg.norm(oldf)
print(iter,change)
if change < 1e-6:
break
if iter==niter-1:
print('Convergence not reached')
sys.exit()
print('Resulting band narrow factors:')
avg = 0
min = 1
for n in range(ns):
for m in range(n+1,ns):
avg += bandnarrow[n,m]
min = np.min([min,bandnarrow[n,m]])
avg /= ns*(ns-1)/2
print('bandnarrow avg',avg)
print('bandnarrow min',min)
else:
sys.exit('args.polaron='+str(args.polaron)+' is not a valid option')
return w,c,Hel
""" Debugging section to check energy conservation, plot adiabatic populations etc. """
def debug(args,mass,omega,nf,ns):
np.random.seed(0)
beta = args.beta
dt = args.dt
nt = args.nt
"""Initialize phase-space variables"""
q0,p0,qe0,pe0 = sample(args,mass,omega,nf,ns)
import matplotlib.pyplot as plt
""" Energy conservation """
q,p,qe,pe,at,Et,ierr=mashf90.runtrj(q0[:,0], p0[:,0], qe0[:,0], pe0[:,0], dt, nt, nf, ns)
t = dt*np.arange(nt+1)
Eref = nf/beta
plt.plot(t,Et/Eref,'o',alpha=0.5)
plt.close()
""" Adiabatic populations """
plt.figure()
qa = np.zeros_like(qe)
pa = np.zeros_like(pe)
popa = np.zeros_like(qe)
Va = np.zeros((nt+1,ns))
for it in range(nt+1):
qa[it],pa[it] = mashf90.dia2ad(q[it],qe[it],pe[it])
popa[it] = qa[it]**2 + pa[it]**2
Va[it],U = mashf90.get_vad(q[it],ns)
for n in range(ns):
label=str(n)
plt.plot(t,popa[:,n],'-',color='C%i'%n,alpha=0.5,label=label)
popat = [popa[it,at[it]-1] for it in range(nt+1)]
plt.plot(t,popat,'k:',alpha=0.5,label='Active')
plt.legend()
plt.close()
plt.figure()
V0 = np.sum(mass*omega**2*q**2/2.,1)
for n in range(ns):
plt.plot(t,Va[:,n]-V0,label='V'+str(n))
plt.legend()
plt.show()
def sample(args,mass,omega,nf,ns):
""" Sample npar sets of initial phase-space variables.
qe and pe are real and imaginary parts of c in the diabatic representation """
npar = args.npar
beta = args.beta
q = np.empty((nf,npar),order="F")
p = np.empty((nf,npar),order="F")
qe = np.empty((ns,npar),order="F")
pe = np.empty((ns,npar),order="F")
if args.disorder!='none':
Vconst_dis = np.copy(Vconst)
if args.disorder=='fmo':
E_sig = np.ones(ns) * 100 * cmm1
elif args.disorder=='lhc2':
E_sig = np.ones(ns) * 120 * cmm1
newE = np.random.normal(np.diag(Vconst), E_sig)
np.fill_diagonal(Vconst_dis, newE)
if args.model in ['fmo8','lh2','lhc2']:
w,c,Vconst_dis = polaron_transform(w_low,w_intra,c_low,c_intra,Vconst_dis,args)
kappa = np.zeros((nf_site,ns))
for n in range(ns):
omega[n*nf_site:(n+1)*nf_site] = w
kappa[:,n] = c.copy()
mashf90.init_frexc(mass,omega,Vconst_dis,kappa,nf,nf_site,ns)
for j in range(npar):
""" Nuclear sampling """
qmin = 0
if args.nucsamp in ['classical','cl']:
""" Classical """
q[:,j] = np.random.normal(qmin,1./np.sqrt(beta*mass*omega**2),nf)
p[:,j] = np.random.normal(0,np.sqrt(mass/beta),nf)
elif args.nucsamp in ['wigner','wig']:
""" Wigner """
qsig = np.sqrt(1./(2*mass*omega*np.tanh(beta*omega/2)))
psig = np.sqrt(mass*omega/(2*np.tanh(beta*omega/2)))
q[:,j] = np.random.normal(qmin,qsig,nf)
p[:,j] = np.random.normal(0,psig,nf)
elif args.nucsamp=='GS':
""" Ground state Wigner """
qsig = np.sqrt(1./(2*mass*omega))
psig = np.sqrt(mass*omega/2.)
q[:,j] = np.random.normal(qmin,qsig,nf)
p[:,j] = np.random.normal(0,psig,nf)
elif args.nucsamp=='clzero':
""" Ground state classical """
qsig = 0.
psig = 0.
q[:,j] = np.random.normal(qmin,qsig,nf)
p[:,j] = np.random.normal(0,psig,nf)
elif args.nucsamp=='WP':
""" Wave packet (for Tully models) """
if args.gamma>0:
qsig = 1./np.sqrt(2.*args.gamma)
psig = np.sqrt(args.gamma/2.)
else:
qsig = psig = 0
qmean = -15.
if args.WPenergy:
pmean = np.sqrt(2.*mass*args.WPenergy)
else:
pmean = args.pinit
q[:,j] = np.random.normal(qmean,qsig,nf)
p[:,j] = np.random.normal(pmean,psig,nf)
""" Electronic sampling """
if args.elsamp in ['theta']:
""" Theta sampling: sample from region where Theta_init(c) = 1 """
while 1:
normals = np.random.randn(2*ns)
normals = normals/np.linalg.norm(normals)
qej=normals[:ns]
pej=normals[ns:]
pop = qej**2+pej**2
l=0
for k in range(ns):
if pop[k]>pop[l]: l=k # Find index of state with largest population
if l==args.init:
qe[:,j] = qej; pe[:,j] = pej
break
elif args.elsamp=='focused':
""" Focussed sampling: sample from points where Phi_n = \delta_{n,init} """
""" If there are multiple indices in initlist, set initial state to linear combination of them """
Hn = np.sum(1./np.arange(1,ns+1))
alpha = (ns-1.)/(Hn-1.)
Pn = np.ones(ns)*(alpha-1.)/(alpha*ns)
Pn[args.init] = 1./ns + (ns-1.)/(alpha*ns)
phi = np.random.uniform(0,2*np.pi,ns)
qe[:,j] = np.cos(phi)*np.sqrt(Pn)
pe[:,j] = np.sin(phi)*np.sqrt(Pn)
""" Perform basis transformation (if requested) """
if args.initbasis=='adia':
""" Convert from adia to dia """
vad,U = mashf90.get_vad(q[:,j],ns)
qe[:,j] = np.dot(U,qe[:,j])
pe[:,j] = np.dot(U,pe[:,j])
elif args.initbasis=='exc':
""" Convert from exc to dia: transform given by q=0 """
vad,U = mashf90.get_vad(0.*q[:,j],ns)
qe[:,j] = np.dot(U,qe[:,j])
pe[:,j] = np.dot(U,pe[:,j])
return q,p,qe,pe
def savedata(B,t,args,name):
tout=t/fs if args.units in ['cmm1','fs'] else t
out = np.column_stack([tout,B])
if name is None: name=args.obstyp
np.savetxt('%s.out'%name,out)