-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathuserInput.py
71 lines (57 loc) · 1.98 KB
/
userInput.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
import cv2
import time
import os
import win32api
from utils.getScreen import grab_screen
from utils.getInput import key_input
from utils.templateMatch import temp_match
file_name = "C:/Users/joshu/Desktop/Projects/Python/osu-ai/data/training_data.npy"
file_name2 = "C:/Users/joshu/Desktop/Projects/Python/osu-ai/data/target_data.npy"
def get_data():
if os.path.isfile(file_name):
print('File exists, loading previous data!')
image_data = list(np.load(file_name, allow_pickle=True))
targets = list(np.load(file_name2, allow_pickle=True))
else:
print('File does not exist, starting fresh!')
image_data = []
targets = []
return image_data, targets
def save_data(image_data, targets):
np.save(file_name, image_data)
np.save(file_name2, targets)
image_data, targets = get_data()
while True:
keys = key_input()
print("waiting press B to start")
if keys == "B":
print("Starting")
break
count = 0
while True:
count +=1
last_time = time.time()
image = grab_screen(region=(100, 100, 899, 699))
# grabs position directly from screen
pos = win32api.GetCursorPos()
targets.append((pos[0], pos[1]))
#print(temp_match(image))
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
image = cv2.resize(image, (80,60), interpolation = cv2.INTER_AREA)
# Canny filter - may implement at another time, currently negatively impacts accuracy of model
#image = cv2.Canny(image, threshold1=19, threshold2=20)
# Debug line to show image
#cv2.imshow("AI Peak", image)
#cv2.waitKey(1)
# Convert to numpy arrbay
image = np.array(image)
image_data.append(image)
keys = key_input()
# key presses to be included in the model at another time
if keys == "H":
break
# needed to calculate how fast the program is working
print('loop took {} seconds'.format(time.time()-last_time))
#print(pos[0], pos[1])
save_data(image_data, targets)