-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtpfplotter.py
536 lines (457 loc) · 22 KB
/
tpfplotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
from __future__ import print_function
import __future__
import os
import sys
import time
import warnings
import numpy as np
import argparse
from lightkurve import search_targetpixelfile
from lightkurve import search_tesscut
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from matplotlib.colorbar import Colorbar
from matplotlib import patches
import matplotlib.gridspec as gridspec
# from bokeh.io import export_png
# from bokeh.io.export import get_screenshot_as_png
from astropy.stats import sigma_clip
from astropy.coordinates import SkyCoord, Angle
import astropy.units as u
from astropy.visualization import SqrtStretch,LinearStretch
import astropy.visualization as stretching
from astropy.visualization.mpl_normalize import ImageNormalize
from astropy.table import Table, Column, MaskedColumn
from astropy.io import ascii
from astroquery.mast import Catalogs
from astroquery.simbad import Simbad
Simbad.add_votable_fields('pmra', 'pmdec')
from astroquery.gaia import Gaia
import warnings
warnings.filterwarnings('ignore')
# from matplotlib import rc
# rc('font',**{'family':'sans-serif','sans-serif':['Tahoma'],'size':16})
# rc('text', usetex=False)
def cli():
"""command line inputs
Get parameters from command line
Returns
-------
Arguments passed by command line
"""
parser = argparse.ArgumentParser()
parser.add_argument("tic", help="TIC number")
parser.add_argument("-L", "--LIST", help="Only fit the LC", action="store_true")
parser.add_argument("-S", "--SAVEGAIA", help="Save Gaia sources", action="store_true")
parser.add_argument("-C", "--COORD", help="Use coordinates", default=False)
parser.add_argument("-n", "--name", help="Target name to be plotted in title", default=False)
parser.add_argument("-D2", "--DR2", help="Use Gaia DR2 catalog instead of DR3", action="store_true")
parser.add_argument("-PM", "--PM", help="Add proper motion direction arrows in the plot", action="store_true")
parser.add_argument("--maglim", default=5., help="Maximum magnitude contrast respect to TIC",type=float)
parser.add_argument("--sector", default=None, help="Select Sector if more than one")
parser.add_argument("--gid", default=None, help="Gaia ID")
parser.add_argument("--gmag", default=None, help="Gaia mag")
parser.add_argument("--sradius", default=10., type=float, help="Search radius (in arcsec) for the get_gaia_data function")
parser.add_argument("--legend", default='best', help="Legend location")
args = parser.parse_args()
return args
def add_gaia_figure_elements(tpf, magnitude_limit=18,targ_mag=10.,gaia_id=None):
"""Make the Gaia Figure Elements"""
# Get the positions of the Gaia sources
c1 = SkyCoord(tpf.ra, tpf.dec, frame='icrs', unit='deg')
# Use pixel scale for query size
pix_scale = 4.0 # arcseconds / pixel for Kepler, default
if tpf.mission == 'TESS':
pix_scale = 21.0
# We are querying with a diameter as the radius, overfilling by 2x.
from astroquery.vizier import Vizier
Vizier.ROW_LIMIT = -1
if args.DR2:
gaia_cat, catID = "I/345/gaia2", "DR2"
print('\t --> Using Gaia DR2 as requested by user...')
else:
gaia_cat, catID = "I/355/gaiadr3", "DR3"
result = Vizier.query_region(c1, catalog=[gaia_cat],
radius=Angle(np.max(tpf.shape[1:]) * pix_scale, "arcsec"))
no_targets_found_message = ValueError('Either no sources were found in the query region '
'or Vizier is unavailable')
too_few_found_message = ValueError('No sources found brighter than {:0.1f}'.format(magnitude_limit))
if result is None:
raise no_targets_found_message
elif len(result) == 0:
raise too_few_found_message
result = result[gaia_cat].to_pandas()
result = result[result.Gmag < magnitude_limit]
if len(result) == 0:
raise no_targets_found_message
year = ((tpf.time[0].jd - 2457206.375) * u.day).to(u.year)
pmra = ((np.nan_to_num(np.asarray(result.pmRA)) * u.milliarcsecond/u.year) * year).to(u.degree).value
pmdec = ((np.nan_to_num(np.asarray(result.pmDE)) * u.milliarcsecond/u.year) * year).to(u.degree).value
result.RA_ICRS += pmra
result.DE_ICRS += pmdec
radecs = np.vstack([result['RA_ICRS'], result['DE_ICRS']]).T
coords = tpf.wcs.all_world2pix(radecs, 0.5) ## TODO, is origin supposed to be zero or one?
# Get positions to plot arrows for proper motion
this = np.where(np.array(result['Source']) == int(gaia_id))[0]
factor = np.sqrt((21*1e3)**2/(np.asarray(result.pmRA)[this]**2 + np.asarray(result.pmDE)[this]**2))
scaled_pmra = result.pmRA*1e-3*factor/3600
scaled_pmde = result.pmDE*1e-3*factor/3600
endpoint = np.vstack([result['RA_ICRS']+scaled_pmra, result['DE_ICRS']+scaled_pmde ]).T
coords_endpoint = tpf.wcs.all_world2pix(endpoint, 0.5)
# Gently size the points by their Gaia magnitude
sizes = 128.0 / 2**(result['Gmag']/targ_mag)#64.0 / 2**(result['Gmag']/5.0)
one_over_parallax = 1.0 / (result['Plx']/1000.)
r = (coords[:, 0]+tpf.column,coords[:, 1]+tpf.row,result['Gmag'],coords_endpoint[:, 0]+tpf.column, coords_endpoint[:, 1]+tpf.row)
return r,result
# Plot orientation
def plot_orientation(tpf):
"""
Plot the orientation arrows
Returns
-------
tpf read from lightkurve
"""
mean_tpf = np.mean(tpf.flux,axis=0)
nx,ny = np.shape(mean_tpf)
x0,y0 = tpf.column+int(0.2*nx)+0.5,tpf.row+int(0.2*ny)+0.5
# East
tmp = tpf.get_coordinates()
ra00, dec00 = tmp[0][0][0][0], tmp[1][0][0][0]
ra10,dec10 = tmp[0][0][0][-1], tmp[1][0][0][-1]
# Each degree of RA is not a full degree on the sky if not
# at equator; need cos(dec) factor to compensate
cosdec = np.cos(np.deg2rad(0.5*(dec10+dec00)))
# Reverse the order of RA arguments here relative to dec
# args to account for handedness of RA/Dec vs. x/y coords:
theta = np.arctan((dec10-dec00)/(cosdec*(ra00-ra10)))
if (ra10-ra00) < 0.0: theta += np.pi
#theta = -22.*np.pi/180.
# If angle is small, arrows can be a bit closer to corner:
if (abs(np.rad2deg(theta)) < 30):
x0 -= 0.08*nx
y0 -= 0.08*ny
x1, y1 = 1.*np.cos(theta), 1.*np.sin(theta)
plt.arrow(x0,y0,x1,y1,head_width=0.2,color='white')
plt.text(x0+1.6*x1,y0+1.6*y1,'E',color='white',ha='center',va='center')
# North
theta = theta +90.*np.pi/180.
x1, y1 = 1.*np.cos(theta), 1.*np.sin(theta)
plt.arrow(x0,y0,x1,y1,head_width=0.2,color='white')
plt.text(x0+1.6*x1,y0+1.6*y1,'N',color='white',ha='center',va='center')
def get_gaia_data(ra, dec, search_radius=10.):
"""
Get Gaia parameters
Returns
-------
RA, DEC
"""
# Get the positions of the Gaia sources
c1 = SkyCoord(ra, dec, frame='icrs', unit='deg')
# We are querying with a diameter as the radius, overfilling by 2x.
from astroquery.vizier import Vizier
Vizier.ROW_LIMIT = -1
if args.DR2:
gaia_cat, catID = "I/345/gaia2", "DR2"
print('\t --> Using Gaia DR2 as requested by user...')
else:
gaia_cat, catID = "I/355/gaiadr3", "DR3"
result = Vizier.query_region(c1, catalog=[gaia_cat],
radius=Angle(search_radius, "arcsec"))
try:
result = result[gaia_cat]
except:
print('Not in Gaia '+catID+'. If you know the Gaia ID and Gmag, try the options --gid and --gmag.')
print('Exiting without finishing...')
sys.exit()
no_targets_found_message = ValueError('Either no sources were found in the query region '
'or Vizier is unavailable')
too_few_found_message = ValueError('No sources found closer than 1 arcsec to TPF coordinates')
if result is None:
raise no_targets_found_message
elif len(result) == 0:
raise too_few_found_message
if len(result)>1:
dist = np.sqrt((result['RA_ICRS']-ra)**2 + (result['DE_ICRS']-dec)**2)
idx = np.where(dist == np.min(dist))[0][0]
return result[idx]['Source'], result[idx]['Gmag']
else:
return result[0]['Source'], result[0]['Gmag']
def get_dr2_id_from_tic(tic):
'''
Get Gaia parameters
Returns
-----------------------
GaiaID, Gaia_mag
'''
# Get the Gaia sources
result = Catalogs.query_object('TIC'+tic, radius=.005, catalog="TIC")
IDs = result['ID'].data.data
k = np.where(IDs == tic)[0][0]
GAIAs = result['GAIA'].data.data
Gaiamags = result['GAIAmag'].data.data
GAIA_k = GAIAs[k]
Gaiamag_k = Gaiamags[k]
if GAIA_k == '':
GAIA_k = np.nan
sys.exit('ERROR: No Gaia DR2 ID found for this TIC number. If you have the Gaia DR3 ID try using the --gid option')
return GAIA_k, Gaiamag_k
def dr3_from_dr2(dr2ID):
query_dr3fromdr2 = "select dr3_source_id from gaiadr3.dr2_neighbourhood where dr2_source_id = "+dr2ID
job = Gaia.launch_job(query=query_dr3fromdr2)
dr3_ids = job.results['dr3_source_id'].value.data
if len(dr3_ids) == 1:
myid = dr3_ids[0]
else:
print("\t WARNING! There are more than one DR3 ids for this DR2 ID, assuming the first one...")
myid = dr3_ids[0]
return myid
def get_gaia_data_from_simbad(dr2ID):
# simb = Simbad.query_object('Gaia DR2 '+dr2ID)
# simbid = Simbad.query_objectids('Gaia DR2 '+dr2ID)
# if simbid == None:
# print("ERROR: TIC not found in Simbad as Gaia DR2 "+str(dr2ID))
# ids = np.array(simbid['ID'].data).astype(str)
# myid = [id for id in ids if 'DR3' in id]
# if len(myid) == 0:
# myid = [id for id in ids if 'DR2' in id]
# myid = myid[0].split(' ')[2]
myid = dr3_from_dr2(dr2ID)
query2 = "SELECT \
TOP 1 \
source_id, ra, dec, pmra, pmdec, parallax, phot_g_mean_mag\
FROM gaiadr3.gaia_source\
WHERE source_id = "+str(myid)+" \
"
job = Gaia.launch_job_async(query2)
gmag = job.get_results()['phot_g_mean_mag'].data[0]
return myid,gmag
def get_coord(tic):
"""
Get TIC corrdinates
Returns
-------
TIC number
"""
try:
catalog_data = Catalogs.query_object(objectname="TIC"+tic, catalog="TIC")
ra = catalog_data[0]["ra"]
dec = catalog_data[0]["dec"]
# print(catalog_data.keys())
# print(catalog_data[0]["GAIA"])
return ra, dec
except:
print("ERROR: TIC not found in Simbad")
# ======================================
# MAIN
# ======================================
if __name__ == "__main__":
args = cli()
# print("\n")
print("======================")
print(" tpfplotter ")
print("======================\n")
if args.LIST:
print("* Using file "+args.tic+" as the list of requested targets *")
import pandas as pd
tab = pd.read_table(args.tic,sep=' ')
tab_colnames = tab.columns.values
tics = tab['tic'].values # Even if no TIC name is provided, please use this column name in the file
Ntargets = len(tics)
args.sector = np.array([None for i in range(Ntargets)])
args.name = np.array([False for i in range(Ntargets)])
args.maglim = np.zeros(Ntargets) + args.maglim
if 'ra' in tab_colnames:
print("\t\t --> RA and DEC columns found in file, using COORDS to search for target.")
ras = tab['ra'].values
decs = tab['dec'].values
args.COORD = True
if 'sector' in tab_colnames:
print("\t\t --> SECTOR column found in file, using requested sectors for each target")
args.sector = tab['sector'].values
if 'maglim' in tab_colnames:
print("\t\t --> MAGLIM column found in file, using costum (requested) maglim for each target")
args.maglim = tab['sector'].values
if 'names' in tab_colnames:
print("\t\t --> NAME column found in file, using costum (requested) name in plot for each target")
args.name = tab['name'].values
print("\n")
else:
tics = np.array([args.tic])
args.sector = np.atleast_1d(args.sector)
args.maglim = np.atleast_1d(args.maglim)
args.name = np.atleast_1d(args.name)
if args.COORD:
coords = args.COORD
ras, decs = np.atleast_1d(np.array([coords.split(',')[0]])), np.atleast_1d(np.array([coords.split(',')[1]]))
for tt,tic in enumerate(tics):
tic = str(tic)
if args.COORD is not False:
ra,dec = ras[tt], decs[tt]
print('* Working on '+tic+' (ra = '+ra+', '+'dec = '+dec+') ...')
else:
ra,dec = get_coord(tic)
print('* Working on TIC'+tic+' (ra = '+str(ra)+', '+'dec = '+str(dec)+') ...')
if args.gid != None:
gaia_id, mag = args.gid, float(args.gmag)
else:
if args.COORD is not False:
gaia_id, mag = get_gaia_data(ra, dec, search_radius=args.sradius)
else:
# dr2ID,_ = get_dr2_id_from_tic(tic)
gaia_id, mag = get_dr2_id_from_tic(tic)
gaia_id = dr3_from_dr2(gaia_id)
# gaia_id, mag = get_gaia_data_from_simbad(dr2ID)
if np.isnan(mag):
gaia_id, mag = get_gaia_data(ra, dec, search_radius=args.sradius)
# By coordinates -----------------------------------------------------------------
if args.COORD is not False:
#
if args.sector != None:
tpf = search_tesscut(ra+" "+dec, sector=int(args.sector[tt])).download(cutout_size=(12,12)) #
else:
tpf = search_tesscut(ra+" "+dec).download(cutout_size=(12,12)) #
pipeline = "False"
print('\t --> Using TESScut to get the TPF')
# By TIC name --------------------------------------------------------------------
else:
# If the target is in the CTL (short-cadance targets)...
try:
if args.sector[tt] != None:
tpf = search_targetpixelfile("TIC "+tic, sector=int(args.sector[tt]), mission='TESS').download()
a = tpf.flux # To check it has the flux array
pipeline = "True"
else:
tpf = search_targetpixelfile("TIC "+tic, mission='TESS').download()
a = tpf.flux # To check it has the flux array
pipeline = "True"
print("\t --> Target found in the CTL!")
# ... otherwise if it still has a TIC number:
except:
if args.sector[tt] != None:
tpf = search_tesscut("TIC "+tic, sector=int(args.sector[tt])).download(cutout_size=(12,12))
else:
tpf = search_tesscut("TIC "+tic).download(cutout_size=(12,12))
print("\t --> Target not in CTL. The FFI cut out was succesfully downloaded")
pipeline = "False"
fig = plt.figure(figsize=(6.93, 5.5))
gs = gridspec.GridSpec(1,3, height_ratios=[1], width_ratios=[1,0.05,0.01])
gs.update(left=0.05, right=0.95, bottom=0.12, top=0.95, wspace=0.01, hspace=0.03)
ax1 = plt.subplot(gs[0,0])
# TPF plot
mean_tpf = np.mean(tpf.flux,axis=0)
nx,ny = np.shape(mean_tpf)
norm = ImageNormalize(stretch=stretching.LogStretch())
division = int(np.log10(np.nanmax(np.nanmean(tpf.flux.value ,axis=0)))) #* u.s/u.electron
image = np.nanmean(tpf.flux,axis=0)/10**division
splot = plt.imshow(image.value,norm=norm, \
extent=[tpf.column+0.5,tpf.column+ny+0.5,tpf.row+0.5,tpf.row+nx+0.5],origin='lower', zorder=0)
# Pipeline aperture
if pipeline == "True": #
aperture_mask = tpf.pipeline_mask
aperture = tpf._parse_aperture_mask(aperture_mask)
maskcolor = 'tomato'
print("\t --> Using pipeline aperture...")
else:
aperture_mask = tpf.create_threshold_mask(threshold=10,reference_pixel='center')
aperture = tpf._parse_aperture_mask(aperture_mask)
maskcolor = 'lightgray'
print("\t --> Using threshold aperture...")
for i in range(aperture.shape[0]):
for j in range(aperture.shape[1]):
if aperture_mask[i, j]:
ax1.add_patch(patches.Rectangle((j+tpf.column+0.5, i+tpf.row+0.5),
1, 1, color=maskcolor, fill=True,alpha=0.4))
ax1.add_patch(patches.Rectangle((j+tpf.column+0.5, i+tpf.row+0.5),
1, 1, color=maskcolor, fill=False,alpha=1,lw=2))
# Gaia sources
r, res = add_gaia_figure_elements(tpf,magnitude_limit=mag+float(args.maglim[tt]),targ_mag=mag, gaia_id=gaia_id)
# plt.figure(2)
# plt.scatter(res.RA_ICRS,res.DE_ICRS)
# for r,d,s in zip(res.RA_ICRS,res.DE_ICRS,res['Source']): plt.text(r,d,s)
# plt.plot(tpf.ra,tpf.dec,'s',c='none',markeredgecolor='red')
# plt.show()
x,y,gaiamags, xpm, ypm = r
x, y, gaiamags, xarrow, yarrow = np.array(x)+0.5, np.array(y)+0.5, np.array(gaiamags), np.array(xpm)+0.5, np.array(ypm)+0.5
size = 128.0 / 2**((gaiamags-mag))
plt.scatter(x+0.5,y+0.5,s=size,c='red',alpha=0.6, edgecolor=None,zorder = 10)
if args.PM:
for i in range(len(x)):
plt.arrow(x[i]+0.5,y[i]+0.5, xpm[i]-x[i], (ypm[i]-y[i]), head_width=0.1, head_length=0.15, overhang=0.2,color='gray',alpha=0.8)
# Gaia source for the target
this = np.where(np.array(res['Source']) == int(gaia_id))[0]
plt.scatter(x[this]+0.5,y[this]+0.5,marker='x',c='white',s=32,zorder = 11)
# Legend
add = 0
if int(args.maglim[tt]) % 2 != 0:
add = 1
maxmag = int(args.maglim[tt]) + add
legend_mags = np.linspace(-2,maxmag,int((maxmag+2)/2+1))
fake_sizes = mag + legend_mags #np.array([mag-2,mag,mag+2,mag+5, mag+8])
for f in fake_sizes:
size = 128.0 / 2**((f-mag))
plt.scatter(0,0,s=size,c='red',alpha=0.6, edgecolor=None,
zorder = 10,label = r'$\Delta m=$ '+str(int(f-mag)))
ax1.legend(fancybox=True, framealpha=0.7, loc=args.legend,fontsize=14)
# Source labels
dist = np.sqrt((x-x[this])**2+(y-y[this])**2)
dsort = np.argsort(dist)
corners = np.array([np.abs(x[this]-(tpf.column+nx)), np.abs(x[this]-tpf.column),
np.abs(y[this]-(tpf.row+ny)), np.abs(y[this]-tpf.row)])
mindist = np.min(corners)
xmin = tpf.column + 0.05*nx
xmax = tpf.column + 0.95*nx
ymin = tpf.row + 0.05*ny
ymax = tpf.row + 0.95*ny
for d,elem in enumerate(dsort):
if ( (x[elem]+0.5 < xmax) & (x[elem]+0.5 > xmin) & (y[elem]+0.5 < ymax) & (y[elem]+0.5 > ymin) ):
plt.text(x[elem]+0.1+0.5,y[elem]+0.1+0.5,str(d+1),color='white', zorder=100,fontsize=14)
# Orientation arrows
plot_orientation(tpf)
# Labels and titles
# Reverse x limits so that image plots as seen on the sky:
plt.xlim(tpf.column+ny+0.5,tpf.column+0.5)
plt.ylim(tpf.row+0.5,tpf.row+nx+0.5)
plt.xlabel('Pixel Column Number', fontsize=16, zorder=200)
plt.ylabel('Pixel Row Number', fontsize=16, zorder=200)
if args.COORD is not False: #
plt.title('Coordinates '+tic+' - Sector '+str(tpf.sector), fontsize=16, zorder=200)# + ' - Camera '+str(tpf.camera)) #
elif bool(args.name[tt]) is not False:
plt.title(args.name[tt] +' - Sector '+str(tpf.sector), fontsize=16, zorder=200)
else: #
plt.title('TIC '+tic+' - Sector '+str(tpf.sector), fontsize=16, zorder=200)# + ' - Camera '+str(tpf.camera))
# Colorbar
cbax = plt.subplot(gs[0,1]) # Place it where it should be.
pos1 = cbax.get_position() # get the original position
pos2 = [pos1.x0 - 0.05, pos1.y0 , pos1.width, pos1.height]
cbax.set_position(pos2) # set a new position
cbar_ticks = np.linspace(np.min(image), np.max(image), 8, endpoint=True)
cb = Colorbar(ax = cbax, mappable = splot, orientation = 'vertical',
ticklocation = 'right')
plt.xticks(fontsize=14)
#cbax.set_yticklabels(["{:4.2f}".format(i) for i in cbar_ticks])
exponent = r'$\times 10^'+str(division)+'$'
cb.set_label(r'Flux '+exponent+r' (e$^-$/s)', labelpad=10, fontsize=16)
plt.savefig('TPF_Gaia_TIC'+tic+'_S'+str(tpf.sector)+'.pdf')
plt.close()
print('\t --> TPF plot written in file: '+'TPF_Gaia_TIC'+tic+'_S'+str(tpf.sector)+'.pdf')
# Save Gaia sources info
if args.SAVEGAIA:
dist = np.sqrt((x-x[this])**2+(y-y[this])**2)
GaiaID = np.array(res['Source'])
srt = np.argsort(dist)
x, y, gaiamags, dist, GaiaID = x[srt], y[srt], gaiamags[srt], dist[srt], GaiaID[srt]
IDs = np.arange(len(x))+1
inside = np.zeros(len(x))
for i in range(aperture.shape[0]):
for j in range(aperture.shape[1]):
if aperture_mask[i, j]:
xtpf, ytpf = j+tpf.column, i+tpf.row
_inside = np.where((x > xtpf) & (x < xtpf+1) &
(y > ytpf) & (y < ytpf+1))[0]
inside[_inside] = 1
data = Table([IDs, GaiaID, x, y, dist, dist*21., gaiamags, inside.astype('int')],
names=['# ID','GaiaID','x', 'y','Dist_pix','Dist_arcsec','Gmag', 'InAper'])
ascii.write(data, 'Gaia_TIC'+tic+'_S'+str(tpf.sector)+'.dat',overwrite=True)
print('\t --> Gaia close sources saved in file: '+'Gaia_TIC'+tic+'_S'+str(tpf.sector)+'.dat')
print("\t --> Done!\n")