-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathharmonic_oscillator.m
101 lines (87 loc) · 2.9 KB
/
harmonic_oscillator.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
function harmonic_oscillator(A, beta, w, dt, delta)
%% calculates the simple harmonic oscillator
%
% Jeremy Penn
% 27/11/17
%
% Inputs: o A - Amplitude
% o beta - Damping coefficient
% o w - Angular frequency
% o dt - Time interval [s]
% o delta - Phase difference [rad]
%
clc;
%% delta
if nargin == 4
d = 0;
else
d = delta;
end
%% determine the dampening
if w^2 > beta^2
w1 = sqrt(w^2 - beta^2);
if beta == 0
% no damping oscillator
fprintf('The motion is not damped \n')
t = linspace(0,dt);
x = zeros(length(t),1);
v = zeros(length(t),1);
for i = 1 : length(t)
x(i) = A*exp(-beta*t(i))*cos(w1*t(i) - d);
v(i) = -A*exp(-beta*t(i)) * ( beta*cos(w1*t(i) - d) + w1*sin(w1*t(i) - d) );
end
else
% underdamped oscillator
fprintf('The motion is underdamped\n')
t = linspace(0,dt);
x = zeros(length(t),1);
v = zeros(length(t),1);
for i = 1 : length(t)
x(i) = A*exp(-beta*t(i))*cos(w1*t(i) - d);
v(i) = -A*exp(-beta*t(i)) * ( beta*cos(w1*t(i) - d) + w1*sin(w1*t(i) - d) );
end
end
elseif w^2 < beta^2
w1 = sqrt(beta^2 - w^2);
% overdamped oscillator
fprintf('The motion is overdamped\n')
t = linspace(0,dt);
x = zeros(length(t),1);
v = zeros(length(t),1);
for i = 1 : length(t)
x(i) = A*exp(-beta*t(i))*cos(w1*t(i) - d);
v(i) = -A*exp(-beta*t(i)) * ( beta*cos(w1*t(i) - d) + w1*sin(w1*t(i) - d) );
end
elseif w^2 == beta^2
% crtically damped oscillator
B = input('The motion is crtically damped. Please input amplitude B: \n');
t = linspace(0,dt);
x = zeros(length(t),1);
v = zeros(length(t),1);
for i = 1 : length(t)
x(i) = (A + B*t(i))*exp(-beta*t(i));
v(i) = (B - A*beta - B * t(i) * beta)*exp(-beta*t(i));
end
end
%% output the phase diagram & print valuable information
period = 2*pi/w;
fprintf('\n\n--------------------------------------\n\n')
fprintf('Oscillator properties:\n')
fprintf('\t tau = %.2f [s]\n',period)
fprintf('\t A = %.2f \n',A)
fprintf('\t f = %.2f [Hz]\n', 1/period)
fprintf('\n\n--------------------------------------\n\n')
figure(1)
subplot(2,1,1)
plot(x,v)
title('Phase diagram')
xlabel('x (m)')
ylabel('v (m/s)')
subplot(2,1,2)
ax2 = gca;
plot(t,x)
title('Position vs Time')
ax2.XAxisLocation = 'origin';
xlabel('Time (s)')
ylabel('Position (m)')
end