-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathtftrt_resnet_example.py
116 lines (97 loc) · 3.18 KB
/
tftrt_resnet_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import keras
from keras.applications.resnet50 import ResNet50
from keras import backend as K
import copy
import os
import time
import tensorflow as tf
from tensorflow.contrib import tensorrt as tftrt
import numpy as np
class FrozenGraph(object):
def __init__(self, model, shape):
shape = (None, shape[0], shape[1], shape[2])
x_name = 'image_tensor_x'
with K.get_session() as sess:
x_tensor = tf.placeholder(tf.float32, shape, x_name)
K.set_learning_phase(0)
y_tensor = model(x_tensor)
y_name = y_tensor.name[:-2]
graph = sess.graph.as_graph_def()
graph0 = tf.graph_util.convert_variables_to_constants(sess, graph, [y_name])
graph1 = tf.graph_util.remove_training_nodes(graph0)
self.x_name = [x_name]
self.y_name = [y_name]
self.frozen = graph1
class TfEngine(object):
def __init__(self, graph):
g = tf.Graph()
with g.as_default():
x_op, y_op = tf.import_graph_def(
graph_def=graph.frozen, return_elements=graph.x_name + graph.y_name)
self.x_tensor = x_op.outputs[0]
self.y_tensor = y_op.outputs[0]
config = tf.ConfigProto(gpu_options=
tf.GPUOptions(per_process_gpu_memory_fraction=0.5,
allow_growth=True))
self.sess = tf.Session(graph=g, config=config)
def infer(self, x):
y = self.sess.run(self.y_tensor,
feed_dict={self.x_tensor: x})
return y
class TftrtEngine(TfEngine):
def __init__(self, graph, batch_size, precision):
tftrt_graph = tftrt.create_inference_graph(
graph.frozen,
outputs=graph.y_name,
max_batch_size=batch_size,
max_workspace_size_bytes=1 << 30,
precision_mode=precision,
minimum_segment_size=2)
opt_graph = copy.deepcopy(graph)
opt_graph.frozen = tftrt_graph
super(TftrtEngine, self).__init__(opt_graph)
self.batch_size = batch_size
def infer(self, x):
num_tests = x.shape[0]
y = np.empty((num_tests, self.y_tensor.shape[1]), np.float32)
batch_size = self.batch_size
for i in range(0, num_tests, batch_size):
x_part = x[i : i + batch_size]
y_part = self.sess.run(self.y_tensor,
feed_dict={self.x_tensor: x_part})
y[i : i + batch_size] = y_part
return y
def verify(result, ans):
num_tests = ans.shape[0]
error = 0
for i in range(0, num_tests):
a = np.argmax(ans[i])
r = np.argmax(result[i])
if (a != r) : error += 1
if (error == 0) : print('PASSED')
else : print('FAILURE')
def main():
model = ResNet50(weights='imagenet')
batch_size = 128
img_shape = (224, 224, 3)
x_test = np.random.random_sample((batch_size,
img_shape[0], img_shape[1], img_shape[2]))
t0 = time.time()
y_keras = model.predict(x_test)
t1 = time.time()
print('Keras time', t1 - t0)
frozen_graph = FrozenGraph(model, img_shape)
tf_engine = TfEngine(frozen_graph)
t0 = time.time()
y_tf = tf_engine.infer(x_test)
t1 = time.time()
print('Tensorflow time', t1 - t0)
verify(y_tf, y_keras)
tftrt_engine = TftrtEngine(frozen_graph, batch_size, 'FP32')
t0 = time.time()
y_tftrt = tftrt_engine.infer(x_test)
t1 = time.time()
print('TFTRT time', t1 - t0)
verify(y_tftrt, y_keras)
if __name__ == "__main__":
main()