-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathswm_linear.py
228 lines (171 loc) · 5.49 KB
/
swm_linear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
""" swm_linear.py
2D shallow water model with Coriolis force (f-plane).
Script Taken from:
/~https://github.com/dionhaefner/shallow-water/blob/master/shallow_water_simple.py
"""
import autoroot
import jax
import jax.numpy as jnp
from jaxtyping import (
Array,
Float,
)
import matplotlib.pyplot as plt
import numpy as np
from finitevolx import (
MaskGrid,
center_avg_2D,
difference,
)
jax.config.update("jax_enable_x64", True)
# set parameters
n_x = 100
dx = 20e3
n_y = 101
dy = 20e3
gravity = 9.81
depth = 100.0
coriolis_param = 2e-4
dt = 0.5 * min(dx, dy) / np.sqrt(gravity * depth)
phase_speed = np.sqrt(gravity * depth)
rossby_radius = np.sqrt(gravity * depth) / coriolis_param
# plot parameters
plot_range = 0.5
plot_every = 2
max_quivers = 21
# grid setup
x, y = (np.arange(n_x) * dx, np.arange(n_y) * dy)
X, Y = np.meshgrid(x, y, indexing="ij")
# initial conditions
h0 = depth + 1.0 * np.exp(
-((X - x[n_x // 2]) ** 2) / rossby_radius**2
- (Y - y[n_y - 2]) ** 2 / rossby_radius**2
)
# mask
mask = jnp.ones_like(X)
mask = mask.at[-1].set(0.0)
mask = mask.at[:, 0].set(0.0)
mask = mask.at[:, -1].set(0.0)
masks = MaskGrid.init_mask(mask, "center")
u0 = np.zeros_like(masks.face_u.values)
v0 = np.zeros_like(masks.face_v.values)
print(u0.shape, v0.shape, h0.shape)
def prepare_plot():
fig, ax = plt.subplots(1, 1, figsize=(8, 6))
cs = update_plot(0, h0, u0, v0, ax)
plt.colorbar(cs, label="$\\eta$ (m)")
return fig, ax
def update_plot(t, h, u, v, ax):
eta = h - depth
quiver_stride = (slice(1, -1, n_x // max_quivers), slice(1, -1, n_y // max_quivers))
ax.clear()
cs = ax.pcolormesh(
x[1:-1] / 1e3,
y[1:-1] / 1e3,
eta[1:-1, 1:-1].T,
vmin=-plot_range,
vmax=plot_range,
cmap="RdBu_r",
)
if np.any((u[quiver_stride] != 0) | (v[quiver_stride] != 0)):
ax.quiver(
x[quiver_stride[0]] / 1e3,
y[quiver_stride[1]] / 1e3,
u[quiver_stride].T,
v[quiver_stride].T,
clip_on=False,
)
ax.set_aspect("equal")
ax.set_xlabel("$x$ (km)")
ax.set_ylabel("$y$ (km)")
ax.set_xlim(x[1] / 1e3, x[-2] / 1e3)
ax.set_ylim(y[1] / 1e3, y[-2] / 1e3)
ax.set_title(
"t=%5.2f days, R=%5.1f km, c=%5.1f m/s "
% (t / 86400, rossby_radius / 1e3, phase_speed)
)
plt.pause(0.1)
return cs
def enforce_boundaries(u, variable: str = "h"):
if variable == "h":
pass
elif variable == "u":
u = u.at[-2].set(0.0)
elif variable == "v":
u = u.at[:, -2].set(0.0)
else:
msg = "Unrecognized variable"
raise ValueError(msg)
return u
def iterate_shallow_water():
# allocate arrays
u, v, h = jnp.empty_like(u0), jnp.empty_like(v0), jnp.empty_like(h0)
# initial conditions
h: Float[Array, "Nx Ny"] = h.at[:].set(h0)
u: Float[Array, "Nx+1 Ny"] = u.at[:].set(u0)
v: Float[Array, "Nx Ny+1"] = v.at[:].set(v0)
# apply masks
h *= masks.center.values
u *= masks.face_u.values
v *= masks.face_v.values
def equation_of_motion(h, u, v):
# ================================
# update zonal velocity, u
# ================================
v_avg: Float[Array, "Nx-1 Ny"] = center_avg_2D(v)
dh_dx: Float[Array, "Nx-1 Ny"] = difference(
h, step_size=dx, axis=0, derivative=1
)
u_rhs: Float[Array, "Nx-1 Ny"] = coriolis_param * v_avg - gravity * dh_dx
# apply masks
u_rhs *= masks.face_u.values[1:-1]
# time step u
u: Float[Array, "Nx+1 Ny"] = u.at[1:-1].add(dt * u_rhs)
u = enforce_boundaries(u, "u")
# =================================
# update meridional velocity, v
# =================================
u_avg: Float[Array, "Nx Ny-1"] = center_avg_2D(u)
dh_dy: Float[Array, "Nx Ny-1"] = difference(
h, step_size=dy, axis=1, derivative=1
)
v_rhs: Float[Array, "Nx Ny-1"] = -coriolis_param * u_avg - gravity * dh_dy
# apply masks
v_rhs *= masks.face_v.values[:, 1:-1]
# time step v
v: Float[Array, "Nx Ny+1"] = v.at[:, 1:-1].add(dt * v_rhs)
v = enforce_boundaries(v, "v")
# =================================
# update height, h
# =================================
du_dx: Float[Array, "Nx Ny"] = difference(u, step_size=dx, axis=0, derivative=1)
dv_dy: Float[Array, "Nx Ny"] = difference(v, step_size=dy, axis=1, derivative=1)
h_rhs: Float[Array, "Nx Ny"] = -depth * (du_dx + dv_dy)
# apply masks
h_rhs *= masks.center.values
# time step h
h: Float[Array, "Nx Ny"] = h.at[:].add(dt * h_rhs)
h = enforce_boundaries(h, "h")
return h, u, v
eom_fn = jax.jit(equation_of_motion)
# time step equations
while True:
h, u, v = eom_fn(h, u, v)
yield h, u, v
if __name__ == "__main__":
fig, ax = prepare_plot()
# create model generator
model = iterate_shallow_water()
# iterate through steps
for iteration, (h, u, v) in enumerate(model):
if iteration % plot_every == 0:
t = iteration * dt
# move face variables to center
# u,v --> h
u_on_h = center_avg_2D(u)
v_on_h = center_avg_2D(v)
# update plot
update_plot(t, h, u_on_h, v_on_h, ax)
# stop if user closes plot window
if not plt.fignum_exists(fig.number):
break