forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgym_atari.py
217 lines (175 loc) · 7.49 KB
/
gym_atari.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""dm_env environment wrapper around Gym Atari configured to be like Xitari.
Gym Atari is built on the Arcade Learning Environment (ALE), whereas Xitari is
an old fork of the ALE.
"""
# pylint: disable=g-bad-import-order
from typing import Optional, Tuple
import atari_py # pylint: disable=unused-import for gym to load Atari games.
import dm_env
from dm_env import specs
import gym
import numpy as np
from tandem_dqn import atari_data
_GYM_ID_SUFFIX = '-xitari-v1'
_SA_SUFFIX = '-sa'
def _game_id(game, sticky_actions):
return game + (_SA_SUFFIX if sticky_actions else '') + _GYM_ID_SUFFIX
def _register_atari_environments():
"""Registers Atari environments in Gym to be as similar to Xitari as possible.
Main difference from PongNoFrameSkip-v4, etc. is max_episode_steps is unset
and only the usual 57 Atari games are registered.
Additionally, sticky-actions variants of the environments are registered
with an '-sa' suffix.
"""
for sticky_actions in [False, True]:
for game in atari_data.ATARI_GAMES:
repeat_action_probability = 0.25 if sticky_actions else 0.0
gym.envs.registration.register(
id=_game_id(game, sticky_actions),
entry_point='gym.envs.atari:AtariEnv',
kwargs={ # Explicitly set all known arguments.
'game': game,
'mode': None, # Not necessarily the same as 0.
'difficulty': None, # Not necessarily the same as 0.
'obs_type': 'image',
'frameskip': 1, # Get every frame.
'repeat_action_probability': repeat_action_probability,
'full_action_space': False,
},
max_episode_steps=None, # No time limit, handled in run loop.
nondeterministic=False, # Xitari is deterministic.
)
_register_atari_environments()
class GymAtari(dm_env.Environment):
"""Gym Atari with a `dm_env.Environment` interface."""
def __init__(self, game, sticky_actions, seed):
self._gym_env = gym.make(_game_id(game, sticky_actions))
self._gym_env.seed(seed)
self._start_of_episode = True
def reset(self) -> dm_env.TimeStep:
"""Resets the environment and starts a new episode."""
observation = self._gym_env.reset()
lives = np.int32(self._gym_env.ale.lives())
timestep = dm_env.restart((observation, lives))
self._start_of_episode = False
return timestep
def step(self, action: np.int32) -> dm_env.TimeStep:
"""Updates the environment given an action and returns a timestep."""
# If the previous timestep was LAST then we call reset() on the Gym
# environment, otherwise step(). Although Gym environments allow you to step
# through episode boundaries (similar to dm_env) they emit a warning.
if self._start_of_episode:
step_type = dm_env.StepType.FIRST
observation = self._gym_env.reset()
discount = None
reward = None
done = False
else:
observation, reward, done, info = self._gym_env.step(action)
if done:
assert 'TimeLimit.truncated' not in info, 'Should never truncate.'
step_type = dm_env.StepType.LAST
discount = 0.
else:
step_type = dm_env.StepType.MID
discount = 1.
lives = np.int32(self._gym_env.ale.lives())
timestep = dm_env.TimeStep(
step_type=step_type,
observation=(observation, lives),
reward=reward,
discount=discount,
)
self._start_of_episode = done
return timestep
def observation_spec(self) -> Tuple[specs.Array, specs.Array]:
space = self._gym_env.observation_space
return (specs.Array(shape=space.shape, dtype=space.dtype, name='rgb'),
specs.Array(shape=(), dtype=np.int32, name='lives'))
def action_spec(self) -> specs.DiscreteArray:
space = self._gym_env.action_space
return specs.DiscreteArray(
num_values=space.n, dtype=np.int32, name='action')
def close(self):
self._gym_env.close()
class RandomNoopsEnvironmentWrapper(dm_env.Environment):
"""Adds a random number of noop actions at the beginning of each episode."""
def __init__(self,
environment: dm_env.Environment,
max_noop_steps: int,
min_noop_steps: int = 0,
noop_action: int = 0,
seed: Optional[int] = None):
"""Initializes the random noops environment wrapper."""
self._environment = environment
if max_noop_steps < min_noop_steps:
raise ValueError('max_noop_steps must be greater or equal min_noop_steps')
self._min_noop_steps = min_noop_steps
self._max_noop_steps = max_noop_steps
self._noop_action = noop_action
self._rng = np.random.RandomState(seed)
def reset(self):
"""Begins new episode.
This method resets the wrapped environment and applies a random number
of noop actions before returning the last resulting observation
as the first episode timestep. Intermediate timesteps emitted by the inner
environment (including all rewards and discounts) are discarded.
Returns:
First episode timestep corresponding to the timestep after a random number
of noop actions are applied to the inner environment.
Raises:
RuntimeError: if an episode end occurs while the inner environment
is being stepped through with the noop action.
"""
return self._apply_random_noops(initial_timestep=self._environment.reset())
def step(self, action):
"""Steps environment given action.
If beginning a new episode then random noops are applied as in `reset()`.
Args:
action: action to pass to environment conforming to action spec.
Returns:
`Timestep` from the inner environment unless beginning a new episode, in
which case this is the timestep after a random number of noop actions
are applied to the inner environment.
"""
timestep = self._environment.step(action)
if timestep.first():
return self._apply_random_noops(initial_timestep=timestep)
else:
return timestep
def _apply_random_noops(self, initial_timestep):
assert initial_timestep.first()
num_steps = self._rng.randint(self._min_noop_steps,
self._max_noop_steps + 1)
timestep = initial_timestep
for _ in range(num_steps):
timestep = self._environment.step(self._noop_action)
if timestep.last():
raise RuntimeError('Episode ended while applying %s noop actions.' %
num_steps)
# We make sure to return a FIRST timestep, i.e. discard rewards & discounts.
return dm_env.restart(timestep.observation)
## All methods except for reset and step redirect to the underlying env.
def observation_spec(self):
return self._environment.observation_spec()
def action_spec(self):
return self._environment.action_spec()
def reward_spec(self):
return self._environment.reward_spec()
def discount_spec(self):
return self._environment.discount_spec()
def close(self):
return self._environment.close()