forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathestimator.py
340 lines (305 loc) · 14.5 KB
/
estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright 2020 DeepMind Technologies Limited.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Defines the high-level Fisher estimator class."""
import collections
from typing import Any, Callable, Mapping, Optional, Sequence, Union, TypeVar
import jax
import jax.numpy as jnp
import jax.random as jnr
import numpy as np
from kfac_ferminet_alpha import curvature_blocks
from kfac_ferminet_alpha import tracer
from kfac_ferminet_alpha import utils
_CurvatureBlock = curvature_blocks.CurvatureBlock
TagMapping = Mapping[str, curvature_blocks.CurvatureBlockCtor]
BlockVector = Sequence[jnp.ndarray]
_StructureT = TypeVar("_StructureT")
_OptionalStateT = TypeVar("_OptionalStateT", bound=Optional[Mapping[str, Any]])
@utils.Stateful.infer_class_state
class CurvatureEstimator(utils.Stateful):
"""Curvature estimator class supporting various curvature approximations."""
blocks: "collections.OrderedDict[str, _CurvatureBlock]"
damping: Optional[jnp.ndarray]
def __init__(self,
tagged_func: Callable[[Any], jnp.ndarray],
func_args: Sequence[Any],
l2_reg: Union[float, jnp.ndarray],
estimation_mode: str = "fisher_gradients",
params_index: int = 0,
layer_tag_to_block_cls: Optional[TagMapping] = None):
"""Create a FisherEstimator object.
Args:
tagged_func: The function which evaluates the model, in which layer and
loss tags has already been registered.
func_args: Arguments to trace the function for layer and loss tags.
l2_reg: Scalar. The L2 regularization coefficient, which represents
the following regularization function: `coefficient/2 ||theta||^2`.
estimation_mode: The type of curvature estimator to use. One of: *
'fisher_gradients' - the basic estimation approach from the original
K-FAC paper. (Default) * 'fisher_curvature_prop' - method which
estimates the Fisher using self-products of random 1/-1 vectors times
"half-factors" of the
Fisher, as described here: https://arxiv.org/abs/1206.6464 *
'fisher_exact' - is the obvious generalization of Curvature
Propagation to compute the exact Fisher (modulo any additional
diagonal or Kronecker approximations) by looping over one-hot
vectors for each coordinate of the output instead of using 1/-1
vectors. It is more expensive to compute than the other three
options by a factor equal to the output dimension, roughly
speaking. * 'fisher_empirical' - computes the 'empirical' Fisher
information matrix (which uses the data's distribution for the
targets, as opposed to the true Fisher which uses the model's
distribution) and requires that each registered loss have
specified targets. * 'ggn_curvature_prop' - Analogous to
fisher_curvature_prop, but estimates the Generalized
Gauss-Newton matrix (GGN). * 'ggn_exact'- Analogous to
fisher_exact, but estimates the Generalized Gauss-Newton matrix
(GGN).
params_index: The index of the arguments accepted by `func` which
correspond to parameters.
layer_tag_to_block_cls: An optional dict mapping tags to specific classes
of block approximations, which to override the default ones.
"""
if estimation_mode not in ("fisher_gradients", "fisher_empirical",
"fisher_exact", "fisher_curvature_prop",
"ggn_exact", "ggn_curvature_prop"):
raise ValueError(f"Unrecognised estimation_mode={estimation_mode}.")
super().__init__()
self.tagged_func = tagged_func
self.l2_reg = l2_reg
self.estimation_mode = estimation_mode
self.params_index = params_index
self.vjp = tracer.trace_estimator_vjp(self.tagged_func)
# Figure out the mapping from layer
self.layer_tag_to_block_cls = curvature_blocks.copy_default_tag_to_block()
if layer_tag_to_block_cls is None:
layer_tag_to_block_cls = dict()
layer_tag_to_block_cls = dict(**layer_tag_to_block_cls)
self.layer_tag_to_block_cls.update(layer_tag_to_block_cls)
# Create the blocks
self._in_tree = jax.tree_structure(func_args)
self._jaxpr = jax.make_jaxpr(self.tagged_func)(*func_args).jaxpr
self._layer_tags, self._loss_tags = tracer.extract_tags(self._jaxpr)
self.blocks = collections.OrderedDict()
counters = dict()
for eqn in self._layer_tags:
cls = self.layer_tag_to_block_cls[eqn.primitive.name]
c = counters.get(cls.__name__, 0)
self.blocks[cls.__name__ + "_" + str(c)] = cls(eqn)
counters[cls.__name__] = c + 1
@property
def diagonal_weight(self) -> jnp.ndarray:
return self.l2_reg + self.damping
def vectors_to_blocks(
self,
parameter_structured_vector: Any,
) -> Sequence[BlockVector]:
"""Splits the parameters to values for the corresponding blocks."""
in_vars = jax.tree_unflatten(self._in_tree, self._jaxpr.invars)
params_vars = in_vars[self.params_index]
params_vars_flat = jax.tree_flatten(params_vars)[0]
params_values_flat = jax.tree_flatten(parameter_structured_vector)[0]
assert len(params_vars_flat) == len(params_values_flat)
params_dict = dict(zip(params_vars_flat, params_values_flat))
per_block_vectors = []
for eqn in self._layer_tags:
if eqn.primitive.name == "generic_tag":
block_vars = eqn.invars
else:
block_vars = eqn.primitive.split_all_inputs(eqn.invars)[2] # pytype: disable=attribute-error # trace-all-classes
per_block_vectors.append(tuple(params_dict.pop(v) for v in block_vars))
if params_dict:
raise ValueError(f"From the parameters the following structure is not "
f"assigned to any block: {params_dict}. Most likely "
f"this part of the parameters is not part of the graph "
f"reaching the losses.")
return tuple(per_block_vectors)
def blocks_to_vectors(self, per_block_vectors: Sequence[BlockVector]) -> Any:
"""Reverses the function self.vectors_to_blocks."""
in_vars = jax.tree_unflatten(self._in_tree, self._jaxpr.invars)
params_vars = in_vars[self.params_index]
assigned_dict = dict()
for eqn, block_values in zip(self._layer_tags, per_block_vectors):
if eqn.primitive.name == "generic_tag":
block_params = eqn.invars
else:
block_params = eqn.primitive.split_all_inputs(eqn.invars)[2] # pytype: disable=attribute-error # trace-all-classes
assigned_dict.update(zip(block_params, block_values))
params_vars_flat, params_tree = jax.tree_flatten(params_vars)
params_values_flat = [assigned_dict[v] for v in params_vars_flat]
assert len(params_vars_flat) == len(params_values_flat)
return jax.tree_unflatten(params_tree, params_values_flat)
def init(
self,
rng: jnp.ndarray,
init_damping: Optional[jnp.ndarray],
) -> Mapping[str, Any]:
"""Returns an initialized variables for the curvature approximations and the inverses.."""
return dict(
blocks=collections.OrderedDict(
(name, block.init(block_rng)) #
for (name, block), block_rng #
in zip(self.blocks.items(), jnr.split(rng, len(self.blocks)))),
damping=init_damping)
@property
def mat_type(self) -> str:
return self.estimation_mode.split("_")[0]
def vec_block_apply(
self,
func: Callable[[_CurvatureBlock, BlockVector], BlockVector],
parameter_structured_vector: Any,
) -> Any:
"""Executes func for each approximation block on vectors."""
per_block_vectors = self.vectors_to_blocks(parameter_structured_vector)
assert len(per_block_vectors) == len(self.blocks)
results = jax.tree_map(func, tuple(self.blocks.values()),
per_block_vectors)
parameter_structured_result = self.blocks_to_vectors(results)
utils.check_structure_shapes_and_dtype(parameter_structured_vector,
parameter_structured_result)
return parameter_structured_result
def multiply_inverse(self, parameter_structured_vector: Any) -> Any:
"""Multiplies the vectors by the corresponding (damped) inverses of the blocks.
Args:
parameter_structured_vector: Structure equivalent to the parameters of the
model.
Returns:
A structured identical to `vectors` containing the product.
"""
return self.multiply_matpower(parameter_structured_vector, -1)
def multiply(self, parameter_structured_vector: Any) -> Any:
"""Multiplies the vectors by the corresponding (damped) blocks.
Args:
parameter_structured_vector: A vector in the same structure as the
parameters of the model.
Returns:
A structured identical to `vectors` containing the product.
"""
return self.multiply_matpower(parameter_structured_vector, 1)
def multiply_matpower(
self,
parameter_structured_vector: _StructureT,
exp: int,
) -> _StructureT:
"""Multiplies the vectors by the corresponding matrix powers of the blocks.
Args:
parameter_structured_vector: A vector in the same structure as the
parameters of the model.
exp: A float representing the power to raise the blocks by before
multiplying it by the vector.
Returns:
A structured identical to `vectors` containing the product.
"""
def func(block: _CurvatureBlock, vec: BlockVector) -> BlockVector:
return block.multiply_matpower(vec, exp, self.diagonal_weight)
return self.vec_block_apply(func, parameter_structured_vector)
def update_curvature_matrix_estimate(
self,
ema_old: Union[float, jnp.ndarray],
ema_new: Union[float, jnp.ndarray],
batch_size: int,
rng: jnp.ndarray,
func_args: Sequence[Any],
pmap_axis_name: str,
) -> None:
"""Updates the curvature estimate."""
# Compute the losses and the VJP function from the function inputs
losses, losses_vjp = self.vjp(func_args)
# Helper function that updates the blocks given a vjp vector
def _update_blocks(vjp_vec_, ema_old_, ema_new_):
blocks_info_ = losses_vjp(vjp_vec_)
for block_, block_info_ in zip(self.blocks.values(), blocks_info_):
block_.update_curvature_matrix_estimate(
info=block_info_,
batch_size=batch_size,
ema_old=ema_old_,
ema_new=ema_new_,
pmap_axis_name=pmap_axis_name)
if self.estimation_mode == "fisher_gradients":
keys = jnr.split(rng, len(losses)) if len(losses) > 1 else [rng]
vjp_vec = tuple(
loss.grad_of_evaluate_on_sample(key, coefficient_mode="sqrt")
for loss, key in zip(losses, keys))
_update_blocks(vjp_vec, ema_old, ema_new)
elif self.estimation_mode in ("fisher_curvature_prop",
"ggn_curvature_prop"):
keys = jnr.split(rng, len(losses)) if len(losses) > 1 else [rng]
vjp_vec = []
for loss, key in zip(losses, keys):
if self.estimation_mode == "fisher_curvature_prop":
random_b = jnr.bernoulli(key, shape=loss.fisher_factor_inner_shape())
vjp_vec.append(loss.multiply_fisher_factor(random_b * 2.0 - 1.0))
else:
random_b = jnr.bernoulli(key, shape=loss.ggn_factor_inner_shape())
vjp_vec.append(loss.multiply_ggn_factor(random_b * 2.0 - 1.0))
_update_blocks(tuple(vjp_vec), ema_old, ema_new)
elif self.estimation_mode in ("fisher_exact", "ggn_exact"):
# We use the following trick to simulate summation. The equation is:
# estimate = ema_old * estimate + ema_new * (sum_i estimate_index_i)
# weight = ema_old * weight + ema_new
# Instead we update the estimate n times with the following updates:
# for k = 1
# estimate_k = ema_old * estimate + (ema_new/n) * (n*estimate_index_k)
# weight_k = ema_old * weight + (ema_new/n)
# for k > 1:
# estimate_k = 1.0 * estimate_k-1 + (ema_new/n) * (n*estimate_index_k)
# weight_k = 1.0 * weight_k-1 + (ema_new/n)
# Which is mathematically equivalent to the original version.
zero_tangents = jax.tree_map(jnp.zeros_like,
list(loss.inputs for loss in losses))
if self.estimation_mode == "fisher_exact":
num_indices = [
(l, int(np.prod(l.fisher_factor_inner_shape[1:]))) for l in losses
]
else:
num_indices = [
(l, int(np.prod(l.ggn_factor_inner_shape()))) for l in losses
]
total_num_indices = sum(n for _, n in num_indices)
for i, (loss, loss_num_indices) in enumerate(num_indices):
for index in range(loss_num_indices):
vjp_vec = zero_tangents.copy()
if self.estimation_mode == "fisher_exact":
vjp_vec[i] = loss.multiply_fisher_factor_replicated_one_hot([index])
else:
vjp_vec[i] = loss.multiply_ggn_factor_replicated_one_hot([index])
if isinstance(vjp_vec[i], jnp.ndarray):
# In the special case of only one parameter, it still needs to be a
# tuple for the tangents.
vjp_vec[i] = (vjp_vec[i],)
vjp_vec[i] = jax.tree_map(lambda x: x * total_num_indices, vjp_vec[i])
_update_blocks(tuple(vjp_vec), ema_old, ema_new / total_num_indices)
ema_old = 1.0
elif self.estimation_mode == "fisher_empirical":
raise NotImplementedError()
else:
raise ValueError(f"Unrecognised estimation_mode={self.estimation_mode}")
def update_curvature_estimate_inverse(
self,
pmap_axis_name: str,
state: _OptionalStateT,
) -> _OptionalStateT:
if state is not None:
old_state = self.get_state()
self.set_state(state)
for block in self.blocks.values():
block.update_curvature_inverse_estimate(self.diagonal_weight,
pmap_axis_name)
if state is None:
return None
else:
state = self.pop_state()
self.set_state(old_state)
return state