forked from caogang/wgan-gp
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgan_toy.py
309 lines (248 loc) · 9.06 KB
/
gan_toy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
import os, sys
sys.path.append(os.getcwd())
import random
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import sklearn.datasets
import tflib as lib
import tflib.plot
import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
torch.manual_seed(1)
MODE = 'wgan-gp' # wgan or wgan-gp
DATASET = '8gaussians' # 8gaussians, 25gaussians, swissroll
DIM = 512 # Model dimensionality
FIXED_GENERATOR = False # whether to hold the generator fixed at real data plus
# Gaussian noise, as in the plots in the paper
LAMBDA = .1 # Smaller lambda seems to help for toy tasks specifically
CRITIC_ITERS = 5 # How many critic iterations per generator iteration
BATCH_SIZE = 256 # Batch size
ITERS = 100000 # how many generator iterations to train for
use_cuda = True
# ==================Definition Start======================
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
main = nn.Sequential(
nn.Linear(2, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, 2),
)
self.main = main
def forward(self, noise, real_data):
if FIXED_GENERATOR:
return noise + real_data
else:
output = self.main(noise)
return output
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
main = nn.Sequential(
nn.Linear(2, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, DIM),
nn.ReLU(True),
nn.Linear(DIM, 1),
)
self.main = main
def forward(self, inputs):
output = self.main(inputs)
return output.view(-1)
# custom weights initialization called on netG and netD
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Linear') != -1:
m.weight.data.normal_(0.0, 0.02)
m.bias.data.fill_(0)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
frame_index = [0]
def generate_image(true_dist):
"""
Generates and saves a plot of the true distribution, the generator, and the
critic.
"""
N_POINTS = 128
RANGE = 3
points = np.zeros((N_POINTS, N_POINTS, 2), dtype='float32')
points[:, :, 0] = np.linspace(-RANGE, RANGE, N_POINTS)[:, None]
points[:, :, 1] = np.linspace(-RANGE, RANGE, N_POINTS)[None, :]
points = points.reshape((-1, 2))
points_v = autograd.Variable(torch.Tensor(points), volatile=True)
if use_cuda:
points_v = points_v.cuda()
disc_map = netD(points_v).cpu().data.numpy()
noise = torch.randn(BATCH_SIZE, 2)
if use_cuda:
noise = noise.cuda()
noisev = autograd.Variable(noise, volatile=True)
true_dist_v = autograd.Variable(torch.Tensor(true_dist).cuda() if use_cuda else torch.Tensor(true_dist))
samples = netG(noisev, true_dist_v).cpu().data.numpy()
plt.clf()
x = y = np.linspace(-RANGE, RANGE, N_POINTS)
plt.contour(x, y, disc_map.reshape((len(x), len(y))).transpose())
plt.scatter(true_dist[:, 0], true_dist[:, 1], c='orange', marker='+')
if not FIXED_GENERATOR:
plt.scatter(samples[:, 0], samples[:, 1], c='green', marker='+')
plt.savefig('tmp/' + DATASET + '/' + 'frame' + str(frame_index[0]) + '.jpg')
frame_index[0] += 1
# Dataset iterator
def inf_train_gen():
if DATASET == '25gaussians':
dataset = []
for i in xrange(100000 / 25):
for x in xrange(-2, 3):
for y in xrange(-2, 3):
point = np.random.randn(2) * 0.05
point[0] += 2 * x
point[1] += 2 * y
dataset.append(point)
dataset = np.array(dataset, dtype='float32')
np.random.shuffle(dataset)
dataset /= 2.828 # stdev
while True:
for i in xrange(len(dataset) / BATCH_SIZE):
yield dataset[i * BATCH_SIZE:(i + 1) * BATCH_SIZE]
elif DATASET == 'swissroll':
while True:
data = sklearn.datasets.make_swiss_roll(
n_samples=BATCH_SIZE,
noise=0.25
)[0]
data = data.astype('float32')[:, [0, 2]]
data /= 7.5 # stdev plus a little
yield data
elif DATASET == '8gaussians':
scale = 2.
centers = [
(1, 0),
(-1, 0),
(0, 1),
(0, -1),
(1. / np.sqrt(2), 1. / np.sqrt(2)),
(1. / np.sqrt(2), -1. / np.sqrt(2)),
(-1. / np.sqrt(2), 1. / np.sqrt(2)),
(-1. / np.sqrt(2), -1. / np.sqrt(2))
]
centers = [(scale * x, scale * y) for x, y in centers]
while True:
dataset = []
for i in xrange(BATCH_SIZE):
point = np.random.randn(2) * .02
center = random.choice(centers)
point[0] += center[0]
point[1] += center[1]
dataset.append(point)
dataset = np.array(dataset, dtype='float32')
dataset /= 1.414 # stdev
yield dataset
def calc_gradient_penalty(netD, real_data, fake_data):
alpha = torch.rand(BATCH_SIZE, 1)
alpha = alpha.expand(real_data.size())
alpha = alpha.cuda() if use_cuda else alpha
interpolates = alpha * real_data + ((1 - alpha) * fake_data)
if use_cuda:
interpolates = interpolates.cuda()
interpolates = autograd.Variable(interpolates, requires_grad=True)
disc_interpolates = netD(interpolates)
gradients = autograd.grad(outputs=disc_interpolates, inputs=interpolates,
grad_outputs=torch.ones(disc_interpolates.size()).cuda() if use_cuda else torch.ones(
disc_interpolates.size()),
create_graph=True, retain_graph=True, only_inputs=True)[0]
gradient_penalty = ((gradients.norm(2, dim=1) - 1) ** 2).mean() * LAMBDA
return gradient_penalty
# ==================Definition End======================
netG = Generator()
netD = Discriminator()
netD.apply(weights_init)
netG.apply(weights_init)
print netG
print netD
if use_cuda:
netD = netD.cuda()
netG = netG.cuda()
optimizerD = optim.Adam(netD.parameters(), lr=1e-4, betas=(0.5, 0.9))
optimizerG = optim.Adam(netG.parameters(), lr=1e-4, betas=(0.5, 0.9))
one = torch.FloatTensor([1])
mone = one * -1
if use_cuda:
one = one.cuda()
mone = mone.cuda()
data = inf_train_gen()
for iteration in xrange(ITERS):
############################
# (1) Update D network
###########################
for p in netD.parameters(): # reset requires_grad
p.requires_grad = True # they are set to False below in netG update
for iter_d in xrange(CRITIC_ITERS):
_data = data.next()
real_data = torch.Tensor(_data)
if use_cuda:
real_data = real_data.cuda()
real_data_v = autograd.Variable(real_data)
netD.zero_grad()
# train with real
D_real = netD(real_data_v)
D_real = D_real.mean()
D_real.backward(mone)
# train with fake
noise = torch.randn(BATCH_SIZE, 2)
if use_cuda:
noise = noise.cuda()
noisev = autograd.Variable(noise, volatile=True) # totally freeze netG
fake = autograd.Variable(netG(noisev, real_data_v).data)
inputv = fake
D_fake = netD(inputv)
D_fake = D_fake.mean()
D_fake.backward(one)
# train with gradient penalty
gradient_penalty = calc_gradient_penalty(netD, real_data_v.data, fake.data)
gradient_penalty.backward()
D_cost = D_fake - D_real + gradient_penalty
Wasserstein_D = D_real - D_fake
optimizerD.step()
if not FIXED_GENERATOR:
############################
# (2) Update G network
###########################
for p in netD.parameters():
p.requires_grad = False # to avoid computation
netG.zero_grad()
_data = data.next()
real_data = torch.Tensor(_data)
if use_cuda:
real_data = real_data.cuda()
real_data_v = autograd.Variable(real_data)
noise = torch.randn(BATCH_SIZE, 2)
if use_cuda:
noise = noise.cuda()
noisev = autograd.Variable(noise)
fake = netG(noisev, real_data_v)
G = netD(fake)
G = G.mean()
G.backward(mone)
G_cost = -G
optimizerG.step()
# Write logs and save samples
lib.plot.plot('tmp/' + DATASET + '/' + 'disc cost', D_cost.cpu().data.numpy())
lib.plot.plot('tmp/' + DATASET + '/' + 'wasserstein distance', Wasserstein_D.cpu().data.numpy())
if not FIXED_GENERATOR:
lib.plot.plot('tmp/' + DATASET + '/' + 'gen cost', G_cost.cpu().data.numpy())
if iteration % 100 == 99:
lib.plot.flush()
generate_image(_data)
lib.plot.tick()