forked from chaiyujin/glow-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_rgbnir.py
47 lines (41 loc) · 1.45 KB
/
train_rgbnir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
"""Train script.
Usage:
train.py <hparams> <dataset> <dataset_root>
"""
import os
import vision
from docopt import docopt
from torchvision import transforms
from glow.builder import build
from glow.trainer import Trainer
from glow.config import JsonConfig
if __name__ == "__main__":
args = docopt(__doc__)
hparams = args["<hparams>"]
dataset = args["<dataset>"]
dataset_root = args["<dataset_root>"]
assert dataset in vision.Datasets, (
"`{}` is not supported, use `{}`".format(dataset, vision.Datasets.keys()))
assert os.path.exists(dataset_root), (
"Failed to find root dir `{}` of dataset.".format(dataset_root))
assert os.path.exists(hparams), (
"Failed to find hparams josn `{}`".format(hparams))
hparams = JsonConfig(hparams)
dataset = vision.Datasets[dataset]
# set transform of dataset
print("-------dataset name: ", dataset)
if dataset == "rgb2nir" :
print("----------use rgb2nir preprocess ")
transform = transforms.Compose([
transforms.Resize(hparams.Data.resize),
transforms.ToTensor()])
else:
transform = transforms.Compose([
transforms.Resize(hparams.Data.resize),
transforms.ToTensor()])
# build graph and dataset
built = build(hparams, True)
dataset = dataset(dataset_root, transform=transform)
# begin to train
trainer = Trainer(**built, dataset=dataset, hparams=hparams)
trainer.train()