forked from chaiyujin/glow-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_modules.py
155 lines (133 loc) · 4.71 KB
/
test_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""
Test the modules
"""
import cv2
import torch
import tensorflow as tf
import numpy as np
from glow import thops
from glow import modules
from glow import models
def is_equal(a, b, eps=1e-5):
if a.shape != b.shape:
return False
max_delta = np.max(np.abs(a - b))
return max_delta < eps
def test_multidim_sum():
x = np.random.rand(2, 3, 4, 4)
th_x = torch.Tensor(x)
tf_x = tf.constant(x)
test_axis_list = [[1], [1, 2], [0, 2, 3], [0, 1, 2, 3]]
with tf.Session():
print("[Test] multidim sum, compared with tensorflow")
for axis in test_axis_list:
for keep in [False, True]:
# tf
tf_y = tf.reduce_sum(tf_x, axis=axis, keepdims=keep)
tf_y = tf_y.eval()
# th
th_y = thops.sum(th_x, dim=axis, keepdim=keep).numpy()
if is_equal(th_y, tf_y):
print(" Pass: dim={}, keepdim={}", axis, keep)
else:
raise ValueError("sum with dim={} error".format(axis))
def test_multidim_mean():
x = np.random.rand(2, 3, 4, 4)
th_x = torch.Tensor(x)
tf_x = tf.constant(x)
test_axis_list = [[1], [1, 2], [0, 2, 3], [0, 1, 2, 3]]
with tf.Session():
print("[Test] multidim mean, compared with tensorflow")
for axis in test_axis_list:
for keep in [False, True]:
# tf
tf_y = tf.reduce_mean(tf_x, axis=axis, keepdims=keep)
tf_y = tf_y.eval()
# th
th_y = thops.mean(th_x, dim=axis, keepdim=keep).numpy()
if is_equal(th_y, tf_y):
print(" Pass: dim={}, keepdim={}", axis, keep)
else:
raise ValueError("mean with dim={} error".format(axis))
def test_actnorm():
print("[Test]: actnorm")
actnorm = modules.ActNorm2d(12)
x = torch.Tensor(np.random.rand(2, 12, 64, 64))
actnorm.initialize_parameters(x)
y, det = actnorm(x, 0)
x_, _ = actnorm(y, None, True)
print("actnorm (forward,reverse) delta", float(torch.max(torch.abs(x_-x))))
print(" det", float(det))
def test_conv1x1():
print("[Test]: invconv1x1")
conv = modules.InvertibleConv1x1(96)
x = torch.Tensor(np.random.rand(2, 96, 16, 16))
y, det = conv(x, 0)
x_, _ = conv(y, None, True)
print("conv1x1 (forward,reverse) delta", float(torch.max(torch.abs(x_-x))))
print(" det", float(det))
def test_gaussian():
# mean = torch.zeros((4, 32, 16, 16))
# logs = torch.ones((4, 32, 16, 16))
# x = torch.Tensor(np.random.rand(4, 32, 16, 16))
# lh = modules.GaussianDiag.likelihood(mean, logs, x)
# logp = modules.GaussianDiag.logp(mean, logs, x)
pass
def test_flow_step():
print("[Test]: flow step")
step = models.FlowStep(32, 256, flow_coupling="affine")
x = torch.Tensor(np.random.rand(2, 32, 16, 16))
y, det = step(x, 0, False)
x_, det0 = step(y, det, True)
print("flowstep (forward,reverse)delta", float(torch.max(torch.abs(x_-x))))
print(" det", det, det0)
def test_squeeze():
print("[Test]: SqueezeLayer")
layer = modules.SqueezeLayer(2)
img = cv2.imread("pictures/tsuki.jpeg")
img = cv2.resize(img, (256, 256))
img = img.transpose((2, 0, 1))
x = torch.Tensor([img])
y, _ = layer(x, 0, False)
x_, _ = layer(y, 0, True)
z = y[0].numpy().transpose((1, 2, 0))
cv2.imshow("0_3", z[:, :, 0: 3].astype(np.uint8))
cv2.imshow("3_6", z[:, :, 3: 6].astype(np.uint8))
cv2.imshow("6_9", z[:, :, 6: 9].astype(np.uint8))
cv2.imshow("9_12", z[:, :, 9: 12].astype(np.uint8))
cv2.imshow("x_", x_[0].numpy().transpose((1, 2, 0)).astype(np.uint8))
cv2.imshow("x", x[0].numpy().transpose((1, 2, 0)).astype(np.uint8))
cv2.waitKey()
def test_flow_net():
print("[Test]: flow net")
net = models.FlowNet((64, 64, 3), 256, 16, 3)
x = torch.Tensor(np.random.rand(4, 3, 64, 64))
y, det = net(x)
x_ = net(y, reverse=True)
print("z", y.size())
print("x_", x_.size())
print(det)
def test_glow():
print("[Test]: Glow")
from glow.config import JsonConfig
glow = models.Glow(JsonConfig("hparams_celeba.json"))
img = cv2.imread("tsuki.jpeg")
img = cv2.resize(img, (64, 64))
img = (img / 255.0).astype(np.float32)
img = img[:, :, ::-1].transpose(2, 0, 1)
x = torch.Tensor([img]*8)
y_onehot = torch.zeros((8, 40))
z, det, y_logits = glow(x=x, y_onehot=y_onehot)
print(z.size())
print(det)
print(models.Glow.loss_generative(det))
if __name__ == "__main__":
test_multidim_sum()
test_multidim_mean()
test_actnorm()
test_conv1x1()
test_gaussian()
test_flow_step()
test_squeeze()
test_flow_net()
test_glow()