Skip to content
This repository has been archived by the owner on Dec 18, 2024. It is now read-only.

Latest commit

 

History

History
103 lines (67 loc) · 4 KB

README.md

File metadata and controls

103 lines (67 loc) · 4 KB

PROJECT NOT UNDER ACTIVE MANAGEMENT

This project will no longer be maintained by Intel.
Intel has ceased development and contributions including, but not limited to, maintenance, bug fixes, new releases, or updates, to this project.
Intel no longer accepts patches to this project.
If you have an ongoing need to use this project, are interested in independently developing it, or would like to maintain patches for the open source software community, please create your own fork of this project.

Vision Transformers for Dense Prediction

This repository contains code and models for our paper:

Vision Transformers for Dense Prediction
René Ranftl, Alexey Bochkovskiy, Vladlen Koltun

Changelog

  • [March 2021] Initial release of inference code and models

Setup

  1. Download the model weights and place them in the weights folder:

Monodepth:

Segmentation:

  1. Set up dependencies:

    pip install -r requirements.txt

    The code was tested with Python 3.7, PyTorch 1.8.0, OpenCV 4.5.1, and timm 0.4.5

Usage

  1. Place one or more input images in the folder input.

  2. Run a monocular depth estimation model:

    python run_monodepth.py

    Or run a semantic segmentation model:

    python run_segmentation.py
  3. The results are written to the folder output_monodepth and output_semseg, respectively.

Use the flag -t to switch between different models. Possible options are dpt_hybrid (default) and dpt_large.

Additional models:

Run with

python run_monodepth -t [dpt_hybrid_kitti|dpt_hybrid_nyu] 

Evaluation

Hints on how to evaluate monodepth models can be found here: /~https://github.com/intel-isl/DPT/blob/main/EVALUATION.md

Citation

Please cite our papers if you use this code or any of the models.

@article{Ranftl2021,
	author    = {Ren\'{e} Ranftl and Alexey Bochkovskiy and Vladlen Koltun},
	title     = {Vision Transformers for Dense Prediction},
	journal   = {ArXiv preprint},
	year      = {2021},
}
@article{Ranftl2020,
	author    = {Ren\'{e} Ranftl and Katrin Lasinger and David Hafner and Konrad Schindler and Vladlen Koltun},
	title     = {Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer},
	journal   = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
	year      = {2020},
}

Acknowledgements

Our work builds on and uses code from timm and PyTorch-Encoding. We'd like to thank the authors for making these libraries available.

License

MIT License