-
Notifications
You must be signed in to change notification settings - Fork 1.3k
/
Copy pathgenerate.py
93 lines (81 loc) · 4.06 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import time
import torch
import argparse
import requests
from PIL import Image
from ipex_llm.transformers import AutoModelForCausalLM
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for THUDM/glm-4v-9b model')
parser.add_argument('--repo-id-or-model-path', type=str,
help='The Hugging Face or ModelScope repo id for the glm-4v model to be downloaded'
', or the path to the checkpoint folder')
parser.add_argument('--image-url-or-path', type=str,
default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
help='The URL or path to the image to infer')
parser.add_argument('--prompt', type=str, default="What is in the image?",
help='Prompt to infer')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
parser.add_argument('--modelscope', action="store_true", default=False,
help="Use models from modelscope")
args = parser.parse_args()
if args.modelscope:
from modelscope import AutoTokenizer
model_hub = 'modelscope'
else:
from transformers import AutoTokenizer
model_hub = 'huggingface'
model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \
("ZhipuAI/glm-4v-9b" if args.modelscope else "THUDM/glm-4v-9b")
image_path = args.image_url_or_path
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
# When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
# This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
model = AutoModelForCausalLM.from_pretrained(model_path,
load_in_4bit=True,
optimize_model=True,
trust_remote_code=True,
use_cache=True,
model_hub=model_hub)
model = model.half().to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
query = args.prompt
if os.path.exists(image_path):
image = Image.open(image_path)
else:
image = Image.open(requests.get(image_path, stream=True).raw)
# here the prompt tuning refers to https://huggingface.co/THUDM/glm-4v-9b/blob/main/README.md
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True) # chat mode
inputs = inputs.to('xpu')
# Generate predicted tokens
with torch.inference_mode():
gen_kwargs = {"max_length": args.n_predict, "do_sample": True, "top_k": 1}
st = time.time()
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
end = time.time()
print(f'Inference time: {end-st} s')
output_str = tokenizer.decode(outputs[0])
print('-'*20, 'Output', '-'*20)
print(output_str)