-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathtrain_finetune.py
167 lines (132 loc) · 6.01 KB
/
train_finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import os
from typing import Tuple
import gym
import numpy as np
import tqdm
from absl import app, flags
from ml_collections import config_flags
from tensorboardX import SummaryWriter
import wrappers
from dataset_utils import (Batch, D4RLDataset, ReplayBuffer,
split_into_trajectories)
from evaluation import evaluate
from learner import Learner
FLAGS = flags.FLAGS
flags.DEFINE_string('env_name', 'halfcheetah-expert-v2', 'Environment name.')
flags.DEFINE_string('save_dir', './tmp/', 'Tensorboard logging dir.')
flags.DEFINE_integer('seed', 42, 'Random seed.')
flags.DEFINE_integer('eval_episodes', 100,
'Number of episodes used for evaluation.')
flags.DEFINE_integer('log_interval', 1000, 'Logging interval.')
flags.DEFINE_integer('eval_interval', 100000, 'Eval interval.')
flags.DEFINE_integer('batch_size', 256, 'Mini batch size.')
flags.DEFINE_integer('max_steps', int(1e6), 'Number of training steps.')
flags.DEFINE_integer('num_pretraining_steps', int(1e6),
'Number of pretraining steps.')
flags.DEFINE_integer('replay_buffer_size', 2000000,
'Replay buffer size (=max_steps if unspecified).')
flags.DEFINE_integer('init_dataset_size', None,
'Offline data size (uses all data if unspecified).')
flags.DEFINE_boolean('tqdm', True, 'Use tqdm progress bar.')
config_flags.DEFINE_config_file(
'config',
'configs/antmaze_finetune_config.py',
'File path to the training hyperparameter configuration.',
lock_config=False)
def normalize(dataset):
trajs = split_into_trajectories(dataset.observations, dataset.actions,
dataset.rewards, dataset.masks,
dataset.dones_float,
dataset.next_observations)
def compute_returns(traj):
episode_return = 0
for _, _, rew, _, _, _ in traj:
episode_return += rew
return episode_return
trajs.sort(key=compute_returns)
dataset.rewards /= compute_returns(trajs[-1]) - compute_returns(trajs[0])
dataset.rewards *= 1000.0
def make_env_and_dataset(env_name: str,
seed: int) -> Tuple[gym.Env, D4RLDataset]:
env = gym.make(env_name)
env = wrappers.EpisodeMonitor(env)
env = wrappers.SinglePrecision(env)
env.seed(seed)
env.action_space.seed(seed)
env.observation_space.seed(seed)
dataset = D4RLDataset(env)
if 'antmaze' in FLAGS.env_name:
# dataset.rewards -= 1.0
pass # normalized in the batch instead
# See /~https://github.com/aviralkumar2907/CQL/blob/master/d4rl/examples/cql_antmaze_new.py#L22
# but I found no difference between (x - 0.5) * 4 and x - 1.0
elif ('halfcheetah' in FLAGS.env_name or 'walker2d' in FLAGS.env_name
or 'hopper' in FLAGS.env_name):
normalize(dataset)
return env, dataset
def main(_):
summary_writer = SummaryWriter(os.path.join(FLAGS.save_dir, 'tb',
str(FLAGS.seed)),
write_to_disk=True)
os.makedirs(FLAGS.save_dir, exist_ok=True)
env, dataset = make_env_and_dataset(FLAGS.env_name, FLAGS.seed)
action_dim = env.action_space.shape[0]
replay_buffer = ReplayBuffer(env.observation_space, action_dim,
FLAGS.replay_buffer_size or FLAGS.max_steps)
replay_buffer.initialize_with_dataset(dataset, FLAGS.init_dataset_size)
kwargs = dict(FLAGS.config)
agent = Learner(FLAGS.seed,
env.observation_space.sample()[np.newaxis],
env.action_space.sample()[np.newaxis], **kwargs)
eval_returns = []
observation, done = env.reset(), False
# Use negative indices for pretraining steps.
for i in tqdm.tqdm(range(1 - FLAGS.num_pretraining_steps,
FLAGS.max_steps + 1),
smoothing=0.1,
disable=not FLAGS.tqdm):
if i >= 1:
action = agent.sample_actions(observation, )
action = np.clip(action, -1, 1)
next_observation, reward, done, info = env.step(action)
if not done or 'TimeLimit.truncated' in info:
mask = 1.0
else:
mask = 0.0
replay_buffer.insert(observation, action, reward, mask,
float(done), next_observation)
observation = next_observation
if done:
observation, done = env.reset(), False
for k, v in info['episode'].items():
summary_writer.add_scalar(f'training/{k}', v,
info['total']['timesteps'])
else:
info = {}
info['total'] = {'timesteps': i}
batch = replay_buffer.sample(FLAGS.batch_size)
if 'antmaze' in FLAGS.env_name:
batch = Batch(observations=batch.observations,
actions=batch.actions,
rewards=batch.rewards - 1,
masks=batch.masks,
next_observations=batch.next_observations)
update_info = agent.update(batch)
if i % FLAGS.log_interval == 0:
for k, v in update_info.items():
if v.ndim == 0:
summary_writer.add_scalar(f'training/{k}', v, i)
else:
summary_writer.add_histogram(f'training/{k}', v, i)
summary_writer.flush()
if i % FLAGS.eval_interval == 0:
eval_stats = evaluate(agent, env, FLAGS.eval_episodes)
for k, v in eval_stats.items():
summary_writer.add_scalar(f'evaluation/average_{k}s', v, i)
summary_writer.flush()
eval_returns.append((i, eval_stats['return']))
np.savetxt(os.path.join(FLAGS.save_dir, f'{FLAGS.seed}.txt'),
eval_returns,
fmt=['%d', '%.1f'])
if __name__ == '__main__':
app.run(main)