forked from haasn/FSRCNN-TensorFlow
-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathmain.py
44 lines (34 loc) · 1.66 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from model import Model
import numpy as np
import tensorflow.compat.v1 as tf
import pprint
import os
flags = tf.app.flags
flags.DEFINE_string("arch", "FSRCNN", "Model name [FSRCNN]")
flags.DEFINE_boolean("fast", False, "Use the fast model (FSRCNN-s) [False]")
flags.DEFINE_integer("epoch", 10, "Number of epochs [10]")
flags.DEFINE_integer("batch_size", 32, "The size of batch images [32]")
flags.DEFINE_float("learning_rate", 1e-4, "The learning rate of the adam optimizer [1e-4]")
flags.DEFINE_integer("scale", 2, "The size of scale factor for preprocessing input image [2]")
flags.DEFINE_integer("radius", 1, "Max radius of the deconvolution input tensor [1]")
flags.DEFINE_string("checkpoint_dir", "checkpoint", "Name of checkpoint directory [checkpoint]")
flags.DEFINE_string("output_dir", "result", "Name of test output directory [result]")
flags.DEFINE_string("data_dir", "Train", "Name of data directory to train on [FastTrain]")
flags.DEFINE_boolean("train", True, "True for training, false for testing [True]")
flags.DEFINE_boolean("distort", False, "Distort some images with JPEG compression artifacts after downscaling [False]")
flags.DEFINE_boolean("params", False, "Save weight and bias parameters [False]")
FLAGS = flags.FLAGS
pp = pprint.PrettyPrinter()
def main(_):
pp.pprint(flags.FLAGS.__flags)
if FLAGS.fast:
FLAGS.checkpoint_dir = 'fast_{}'.format(FLAGS.checkpoint_dir)
if not os.path.exists(FLAGS.checkpoint_dir):
os.makedirs(FLAGS.checkpoint_dir)
if not os.path.exists(FLAGS.output_dir):
os.makedirs(FLAGS.output_dir)
with tf.Session() as sess:
model = Model(sess, config=FLAGS)
model.run()
if __name__ == '__main__':
tf.app.run()