forked from y0z/motpe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_nas.py
executable file
·55 lines (50 loc) · 1.89 KB
/
main_nas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import argparse
import ConfigSpace as CS
import matplotlib.pyplot as plt
import motpe
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--benchmark_name', default='WFG4', type=str)
parser.add_argument('--num_objectives', default=2, type=int)
parser.add_argument('--num_variables', default=9, type=int)
parser.add_argument('--k', default=1, type=int)
parser.add_argument('--num_max_evals', default=250, type=int)
parser.add_argument('--num_initial_samples', default=98, type=int)
parser.add_argument('--init_method', default='lhs', type=str)
parser.add_argument('--num_candidates', default=24, type=int)
parser.add_argument('--gamma', default=0.15, type=float)
parser.add_argument('--seed', default=128, type=int)
args = parser.parse_args()
seed = args.seed
num_initial_samples = args.num_initial_samples
num_max_evals = args.num_max_evals
num_objectives = args.num_objectives
num_variables = args.num_variables
k = args.k
num_candidates = args.num_candidates
init_method = args.init_method
gamma = args.gamma
f = motpe.CnnFromCfg("nas-motpe", seed)
cs = f.make_cs(CS.ConfigurationSpace(seed=seed))
problem = motpe.Problem(f, cs)
solver = motpe.MOTPE(seed=seed)
history = solver.solve(
problem,
{'num_initial_samples': num_initial_samples,
'num_max_evals': num_max_evals,
'init_method': 'random',
'num_candidates': num_candidates,
'gamma': gamma})
if num_objectives == 2:
fig = plt.figure(figsize=(8, 6))
f1s = [fs['f1'] for fs in history['f']]
f2s = [fs['f2'] for fs in history['f']]
plt.scatter(f1s, f2s)
plt.title("NAS")
plt.xlabel('f1')
plt.ylabel('f2')
plt.grid()
plt.show()
else:
print(history)
history.to_json("./models/records_history.json")