-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathdataset.py
196 lines (165 loc) · 5.73 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import pdb
import torch
import cv2
import numpy as np
from pycocotools.coco import COCO
from torchvision import transforms
def get_mot_loader(dataset, test, data_dir="data", workers=4, size=(800, 1440)):
if dataset == "mot17":
direc = "mot"
if test:
name = "test"
annotation = "test.json"
else:
name = "train"
annotation = "val_half.json"
elif dataset == "mot20":
direc = "MOT20"
if test:
name = "test"
annotation = "test.json"
else:
name = "train"
annotation = "val_half.json"
elif dataset == "dance":
direc = "dancetrack"
if test:
name = "test"
annotation = "test.json"
else:
annotation = "val.json"
name = "val"
elif dataset == "BEE23":
direc = "BEE23"
if test:
name = "test"
annotation = "test.json"
else:
annotation = "val.json"
name = "val"
elif dataset == "gmot":
direc = "gmot"
if test:
name = "test"
annotation = "test.json"
else:
annotation = "val.json"
name = "val"
else:
raise RuntimeError("Specify path here.")
valdataset = MOTDataset(
data_dir=os.path.join(data_dir, direc),
json_file=annotation,
img_size=size,
name=name,
preproc=ValTransform(
rgb_means=(0.485, 0.456, 0.406),
std=(0.229, 0.224, 0.225),
)
)
sampler = torch.utils.data.SequentialSampler(valdataset)
dataloader_kwargs = {
"num_workers": workers,
"pin_memory": True,
"sampler": sampler,
}
dataloader_kwargs["batch_size"] = 1
val_loader = torch.utils.data.DataLoader(valdataset, **dataloader_kwargs)
return val_loader
class MOTDataset(torch.utils.data.Dataset):
def __init__(
self,
data_dir,
json_file="train_half.json",
name="train",
img_size=(608, 1088),
preproc=None,
):
self.input_dim = img_size
self.data_dir = data_dir
self.json_file = json_file
self.coco = COCO(os.path.join(self.data_dir, "annotations", self.json_file))
self.ids = self.coco.getImgIds()
self.class_ids = sorted(self.coco.getCatIds())
cats = self.coco.loadCats(self.coco.getCatIds())
self._classes = tuple([c["name"] for c in cats])
self.annotations = self._load_coco_annotations()
self.name = name
self.img_size = img_size
self.preproc = preproc
def __len__(self):
return len(self.ids)
def _load_coco_annotations(self):
return [self.load_anno_from_ids(_ids) for _ids in self.ids]
def load_anno_from_ids(self, id_):
im_ann = self.coco.loadImgs(id_)[0]
width = im_ann["width"]
height = im_ann["height"]
frame_id = im_ann["frame_id"]
video_id = im_ann["video_id"]
anno_ids = self.coco.getAnnIds(imgIds=[int(id_)], iscrowd=False)
annotations = self.coco.loadAnns(anno_ids)
objs = []
for obj in annotations:
x1 = obj["bbox"][0]
y1 = obj["bbox"][1]
x2 = x1 + obj["bbox"][2]
y2 = y1 + obj["bbox"][3]
if obj["area"] > 0 and x2 >= x1 and y2 >= y1:
obj["clean_bbox"] = [x1, y1, x2, y2]
objs.append(obj)
num_objs = len(objs)
res = np.zeros((num_objs, 6))
for ix, obj in enumerate(objs):
cls = self.class_ids.index(obj["category_id"])
res[ix, 0:4] = obj["clean_bbox"]
res[ix, 4] = cls
res[ix, 5] = obj["track_id"]
file_name = im_ann["file_name"] if "file_name" in im_ann else "{:012}".format(id_) + ".jpg"
img_info = (height, width, frame_id, video_id, file_name)
del im_ann, annotations
return (res, img_info, file_name)
def load_anno(self, index):
return self.annotations[index][0]
def pull_item(self, index):
id_ = self.ids[index]
res, img_info, file_name = self.annotations[index]
img_file = os.path.join(self.data_dir, self.name, file_name)
img = cv2.imread(img_file)
assert img is not None
return img, res.copy(), img_info, np.array([id_])
def __getitem__(self, index):
img, target, img_info, img_id = self.pull_item(index)
tensor, target = self.preproc(img, target, self.input_dim)
return (tensor, img), target, img_info, img_id
class ValTransform:
def __init__(self, rgb_means=None, std=None, swap=(2, 0, 1)):
self.means = rgb_means
self.swap = swap
self.std = std
def __call__(self, img, res, input_size):
img, _ = preproc(img, input_size, self.means, self.std, self.swap)
return img, np.zeros((1, 5))
def preproc(image, input_size, mean, std, swap=(2, 0, 1)):
if len(image.shape) == 3:
padded_img = np.ones((input_size[0], input_size[1], 3)) * 114.0
else:
padded_img = np.ones(input_size) * 114.0
img = np.array(image)
r = min(input_size[0] / img.shape[0], input_size[1] / img.shape[1])
resized_img = cv2.resize(
img,
(int(img.shape[1] * r), int(img.shape[0] * r)),
interpolation=cv2.INTER_LINEAR,
).astype(np.float32)
padded_img[: int(img.shape[0] * r), : int(img.shape[1] * r)] = resized_img
padded_img = padded_img[:, :, ::-1]
padded_img /= 255.0
if mean is not None:
padded_img -= mean
if std is not None:
padded_img /= std
padded_img = padded_img.transpose(swap)
padded_img = np.ascontiguousarray(padded_img, dtype=np.float32)
return padded_img, r