-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnGramLM.py
121 lines (92 loc) · 3.74 KB
/
nGramLM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# ****
# This program expects the text corpus to be present in the same directory, named as "corpus.txt"
#
# It outputs the n-Gram language model in an output file named as "n_GramLM.txt"
#
# This generates a simple Language model without any back-off strategy
#
# Results in the output file are in logBase10 format as used conventionally in a Language model, while the STDOUT shows probabilities
#
# Enter the value of 'n' when prompted
#
# ****
import re
import collections
import math
def nGram(s,n):
# This function returns the list of all nGrams in text sentence s given as input.
# n represents the ngram length
tokens = [token for token in s.split(" ") if token != ""]
sequences = [tokens[i:] for i in range(n)]
ngrams = zip(*sequences)
return [" ".join(ngram) for ngram in ngrams]
def calLM(s,k):
if k > 1:
# make a resursive call for (n-1) gram LM
lastCounts = calLM(s,k-1)
# split corpus text on each sentence
s = s.split('eos')
kGrams = []
# for each sentence in corpus, extract the nGrams using function nGram(s,k) and add to kGrams list
for i in s:
if re.search('[a-z]',i):
# if sentence is not empty, add 'bos' 'eos' symbol to the begin and end of each sentence
s1 = 'bos '+ i + ' eos'
temp = nGram(s1,k)
kGrams += temp
# 1-gram
if(k ==1):
# get the counts for each 1-gram
lastCounts = collections.Counter(kGrams)
nCounts= lastCounts
totCounts = 0
# get the total word count from the corpus
for key in nCounts:
totCounts += nCounts[key]
print(k,"-gram (total count = ", totCounts , ")\n")
res.write(repr(k) + "-gram\n")
print ( "Prob.", "\t", "Counts" , "\t", "1-gram")
print ("---------------------------------------------------------")
# calculate probabilities for each 1-gram and to n_GramLM.txt
for key in nCounts:
prob = (nCounts[key] / totCounts)
print ("", round(prob,2), "\t", nCounts[key], "\t", key)
res.write(repr(math.log10(prob)) + "\t" + repr(key) + "\n")
# (n > 1) gram
else:
# get the counts for each n-gram
nCounts = (collections.Counter(kGrams))
print("\n\n",k , "-grams\n")
res.write("\n\n" + repr(k) + "-grams\n")
print ( "Prob.", "\t", "Count" , "\t", k, "-gram")
print ("---------------------------------------------------------")
# calculate n-gram probabilities
for key in nCounts:
# get the n-1 gram from n gram using a reverse split
k1 = key.rsplit(' ', 1)
k1 = k1[0]
# n-gram prob = n-gram count / (n-1)-gram count
prob = (nCounts[key] / lastCounts[k1])
print ("", round(prob,2), "\t", nCounts[key], "\t", key)
res.write(repr(math.log10(prob)) + "\t" + repr(key) + "\n")
# return the n-gram counts to higher grams (i.e. (n+1)-gram ) for reuse
return nCounts
# Read the input corpus into s
file = open("corpus.txt", "r")
s = file.read()
file.close()
# res holds the cursor into the output LM file
res = open("n_GramLM.txt", "w+")
# preprocessing the corpus, replacing the '.' in each sentence end with 'eos' which represents end of sentence
s = s.lower()
s = re.sub(r'[\.]', ' eos', s)
s= s.replace('\n', '')
s = re.sub(r'[^a-zA-Z0-9\s]', ' ', s)
# Take the value of n in n-gram from user
k = input("Enter the value of n: \n")
k = (int)(k)
nCounts = collections.Counter([])
# call the main LM function, which converts the text corpus to Language Model
# s: corpus text, k: value of n in n-gram
a = calLM(s,k)
res.close()