-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathr.basin.py
842 lines (718 loc) · 39.2 KB
/
r.basin.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
#!/usr/bin/env python
############################################################################
#
# MODULE: r.basin
# AUTHOR(S): Margherita Di Leo, Massimo Di Stefano
# modifications for parallel safety by Helmut Kudrnovsky
# PURPOSE: Morphometric characterization of river basins
# COPYRIGHT: (C) 2010-2014 by Margherita Di Leo & Massimo Di Stefano
# dileomargherita@gmail.com
#
# This program is free software under the GNU General Public
# License (>=v3.0) and comes with ABSOLUTELY NO WARRANTY.
# See the file COPYING that comes with GRASS
# for details.
#
# TODO: does r.stream.snap's snap depend on the raster resolution? hardcoded 30 below
#
#############################################################################
#%module
#% description: Morphometric characterization of river basins
#% keyword: raster
#% keyword: hydrology
#% keyword: watershed
#% overwrite: yes
#%end
#%option G_OPT_R_ELEV
#% key: map
#% description: Name of elevation raster map
#% required: yes
#%end
#%option
#% key: prefix
#% type: string
#% key_desc: prefix
#% description: output prefix (must start with a letter)
#% required: yes
#%end
#%option G_OPT_M_COORDS
#% description: coordinates of the outlet (east,north)
#% required : yes
#%end
#%option G_OPT_M_DIR
#% key: dir
#% description: Directory where the output will be found
#% required : yes
#%end
#%option
#% key: threshold
#% type: double
#% key_desc: threshold
#% description: threshold
#% required : no
#%end
#%flag
#% key: a
#% description: Use default threshold (1km^2)
#%END
#%flag
#% key: c
#% description: No maps output
#%END
import sys
import os
import grass.script as grass
import math
from numpy import zeros
import csv
if not os.environ.has_key("GISBASE"):
grass.message( "You must be in GRASS GIS to run this program." )
sys.exit(1)
# check requirements
def check_progs():
found_missing = False
for prog in ('r.hypso', 'r.stream.basins', 'r.stream.distance', 'r.stream.extract',
'r.stream.order','r.stream.snap','r.stream.stats', 'r.width.funct'):
if not grass.find_program(prog, '--help'):
found_missing = True
grass.warning(_("'%s' required. Please install '%s' first using 'g.extension %s'") % (prog, prog, prog))
if found_missing:
grass.fatal(_("An ERROR occurred running r.basin"))
def main():
# check dependencies
check_progs()
# check for unsupported locations
in_proj = grass.parse_command('g.proj', flags='g')
if in_proj['unit'].lower() == 'degree':
grass.fatal(_("Latitude-longitude locations are not supported"))
if in_proj['name'].lower() == 'xy_location_unprojected':
grass.fatal(_("xy-locations are not supported"))
r_elevation = options['map'].split('@')[0]
mapname = options['map'].replace("@"," ")
mapname = mapname.split()
mapname[0] = mapname[0].replace(".","_")
coordinates = options['coordinates']
directory = options['dir']
# Check if directory exists
if not os.path.isdir(directory):
os.makedirs(directory)
autothreshold = flags['a']
nomap = flags['c']
prefix = options['prefix']+'_'+mapname[0]
r_accumulation = prefix+'_accumulation'
r_drainage = prefix+'_drainage'
r_stream = prefix+'_stream'
r_slope = prefix+'_slope'
r_aspect = prefix+'_aspect'
r_basin = prefix+'_basin'
r_strahler = prefix+'_strahler'
r_shreve = prefix+'_shreve'
r_horton = prefix+'_horton'
r_hack = prefix+'_hack'
r_distance = prefix+'_dist2out'
r_hillslope_distance = prefix+'_hillslope_distance'
r_height_average = prefix+'_height_average'
r_aspect_mod = prefix+'_aspect_mod'
r_dtm_basin = prefix+'_dtm_basin'
r_mainchannel = prefix+'_mainchannel'
r_stream_e = prefix+'_stream_e'
r_drainage_e = prefix+'_drainage_e'
r_mask = prefix+'_mask'
r_ord_1 = prefix+'_ord_1'
r_average_hillslope = prefix+'_average_hillslope'
r_mainchannel_dim = prefix+'_mainchannel_dim'
r_outlet = prefix+'_r_outlet'
v_outlet = prefix+'_outlet'
v_outlet_snap = prefix+'_outlet_snap'
v_basin = prefix+'_basin'
v_mainchannel = prefix+'_mainchannel'
v_mainchannel_dim = prefix+'_mainchannel_dim'
v_network = prefix+'_network'
v_ord_1 = prefix+'_ord_1'
global tmp
# Save current region
# grass.read_command('g.region', flags = 'p', save = 'original')
# Watershed SFD
grass.run_command('r.watershed', elevation = r_elevation,
accumulation = r_accumulation,
drainage = r_drainage,
convergence = 5,
flags = 'am')
# Managing flag
if autothreshold :
resolution = grass.region()['nsres']
th = 1000000 / (resolution**2)
grass.message( "threshold : %s" % th )
else :
th = options['threshold']
# Stream extraction
grass.run_command('r.stream.extract', elevation = r_elevation,
accumulation = r_accumulation,
threshold = th,
d8cut = 1000000000,
mexp = 0,
stream_rast = r_stream_e,
direction = r_drainage_e)
try:
# Delineation of basin
# Create outlet
grass.write_command('v.in.ascii', output = v_outlet,
input = "-",
sep = ",",
stdin = "%s,9999" % (coordinates))
# Snap outlet to stream network
# TODO: does snap depend on the raster resolution? hardcoded 30 below
grass.run_command('r.stream.snap', input = v_outlet,
output = v_outlet_snap,
stream_rast = r_stream_e,
radius = 30)
grass.run_command('v.to.rast', input = v_outlet_snap,
output = r_outlet,
use = 'cat',
type = 'point',
layer = 1,
value = 1)
grass.run_command('r.stream.basins', direction = r_drainage_e,
basins = r_basin,
points = v_outlet_snap)
grass.message( "Delineation of basin done" )
# Mask and cropping
elevation_name = r_elevation = r_elevation.split('@')[0]
grass.mapcalc("$r_mask = $r_basin / $r_basin",
r_mask = r_mask,
r_basin = r_basin)
grass.mapcalc("tmp = $r_accumulation / $r_mask",
r_accumulation = r_accumulation,
r_mask = r_mask)
grass.run_command('g.remove', flags='f', type='raster', name= r_accumulation, quiet = True)
grass.run_command('g.rename', raster = ('tmp',r_accumulation))
grass.mapcalc("tmp = $r_drainage / $r_mask",
r_drainage = r_drainage,
r_mask = r_mask)
grass.run_command('g.remove', flags='f', type='raster', name= r_drainage, quiet = True)
grass.run_command('g.rename', raster = ('tmp', r_drainage))
grass.mapcalc("$r_elevation_crop = $r_elevation * $r_mask",
r_mask = r_mask,
r_elevation = r_elevation,
r_elevation_crop = 'r_elevation_crop')
grass.mapcalc("tmp = $r_drainage_e * $r_mask",
r_mask = r_mask,
r_drainage_e = r_drainage_e)
grass.run_command('g.remove', flags='f', type='raster', name= r_drainage_e, quiet = True)
grass.run_command('g.rename', raster = ('tmp',r_drainage_e))
grass.mapcalc("tmp = $r_stream_e * $r_mask",
r_mask = r_mask,
r_stream_e = r_stream_e)
grass.run_command('g.remove', flags='f', type='raster', name= r_stream_e, quiet = True)
#grass.run_command('g.rename', raster = (r_stream_e,'streams'))
grass.run_command('g.rename', raster = ('tmp',r_stream_e))
grass.run_command('r.thin', input = r_stream_e,
output = r_stream_e+'_thin')
grass.run_command('r.to.vect', input = r_stream_e+'_thin',
output = v_network,
type = 'line')
# Creation of slope and aspect maps
grass.run_command('r.slope.aspect', elevation = 'r_elevation_crop',
slope = r_slope,
aspect = r_aspect)
# Basin mask (vector)
# Raster to vector
grass.run_command('r.to.vect', input = r_basin,
output = v_basin,
type = 'area',
flags = 'sv')
# Add two columns to the table: area and perimeter
grass.run_command('v.db.addcolumn', map = v_basin,
columns = 'area double precision')
grass.run_command('v.db.addcolumn', map = v_basin,
columns = 'perimeter double precision')
# Populate perimeter column
grass.run_command('v.to.db', map = v_basin,
type = 'line,boundary',
layer = 1,
qlayer = 1,
option = 'perimeter',
units = 'kilometers',
columns = 'perimeter')
# Read perimeter
tmp = grass.read_command('v.to.db', map = v_basin,
type = 'line,boundary',
layer = 1,
qlayer = 1,
option = 'perimeter',
units = 'kilometers',
qcolumn = 'perimeter',
flags = 'p')
perimeter_basin = float(tmp.split('\n')[1].split('|')[1])
# Populate area column
grass.run_command('v.to.db', map = v_basin,
type = 'line,boundary',
layer = 1,
qlayer = 1,
option = 'area',
units = 'kilometers',
columns = 'area')
# Read area
tmp = grass.read_command('v.to.db', map = v_basin,
type = 'line,boundary',
layer = 1,
qlayer = 1,
option = 'area',
units = 'kilometers',
qcolumn = 'area',
flags = 'p')
area_basin = float(tmp.split('\n')[1].split('|')[1])
# Creation of order maps: strahler, horton, hack, shreeve
grass.message( "Creating %s" % r_hack )
grass.run_command('r.stream.order', stream_rast = r_stream_e,
direction = r_drainage_e,
strahler = r_strahler,
shreve = r_shreve,
horton = r_horton,
hack = r_hack)
# Distance to outlet
grass.run_command('r.stream.distance', stream_rast = r_outlet,
direction = r_drainage_e,
flags = 'o',
distance = r_distance)
# hypsographic curve
grass.message( "------------------------------" )
grass.run_command('r.hypso', map = 'r_elevation_crop',
image = os.path.join(directory,prefix), flags = 'ab')
grass.message( "------------------------------" )
# Width Function
grass.message( "------------------------------" )
grass.run_command('r.width.funct', map = r_distance,
image = os.path.join(directory,prefix))
grass.message( "------------------------------" )
# Creation of map of hillslope distance to river network
grass.run_command("r.stream.distance", stream_rast = r_stream_e,
direction = r_drainage,
elevation = 'r_elevation_crop',
distance = r_hillslope_distance)
# Mean elevation
grass.run_command("r.stats.zonal", base = r_basin,
cover = "r_elevation_crop",
method = "average",
output = r_height_average)
grass.message("r.stats.zonal done")
mean_elev = float(grass.read_command('r.info', flags = 'r',
map = r_height_average).split('\n')[0].split('=')[1])
grass.message("r.info done")
# In Grass, aspect categories represent the number degrees of east and they increase
# counterclockwise: 90deg is North, 180 is West, 270 is South 360 is East.
# The aspect value 0 is used to indicate undefined aspect in flat areas with slope=0.
# We calculate the number of degree from north, increasing counterclockwise.
grass.mapcalc("$r_aspect_mod = if($r_aspect == 0, 0, if($r_aspect > 90, 450 - $r_aspect, 90 - $r_aspect))",
r_aspect = r_aspect,
r_aspect_mod = r_aspect_mod)
grass.message("r.mapcalc done")
# Centroid and mean slope
baricenter_slope_baricenter = grass.read_command("r.volume", input = r_slope,
clump = r_basin)
grass.message("r.volume done")
baricenter_slope_baricenter = baricenter_slope_baricenter.split()
mean_slope = baricenter_slope_baricenter[30]
# Rectangle containing basin
basin_east = baricenter_slope_baricenter[33]
basin_north = baricenter_slope_baricenter[34]
info_region_basin = grass.read_command("g.region",
vect = options['prefix']+'_'+mapname[0]+'_basin',
flags = 'mu')
grass.message("Calculation of rectangle containing basin done")
dict_region_basin = dict(x.split('=', 1) for x in info_region_basin.split('\n') if '=' in x)
basin_resolution = float(dict_region_basin['nsres'])
# x_massimo = float(dict_region_basin['n']) + (basin_resolution * 10)
# x_minimo = float(dict_region_basin['w']) - (basin_resolution * 10)
# y_massimo = float(dict_region_basin['e']) + (basin_resolution * 10)
# y_minimo = float(dict_region_basin['s']) - (basin_resolution * 10)
nw = dict_region_basin['w'], dict_region_basin['n']
se = dict_region_basin['e'], dict_region_basin['s']
grass.message("Rectangle containing basin done")
east1,north1 = coordinates.split(',')
east = float(east1)
north = float(north1)
# Directing vector
delta_x = abs(float(basin_east) - east)
delta_y = abs(float(basin_north) - north)
L_orienting_vect = math.sqrt((delta_x**2)+(delta_y**2)) / 1000
grass.message("Directing vector done")
# Prevalent orientation
prevalent_orientation = math.atan(delta_y/delta_x)
grass.message("Prevalent orientation done")
# Compactness coefficient
C_comp = perimeter_basin / ( 2 * math.sqrt( area_basin / math.pi))
grass.message("Compactness coefficient done")
# Circularity ratio
R_c = ( 4 * math.pi * area_basin ) / (perimeter_basin **2)
grass.message("Circularity ratio done")
# Mainchannel
grass.mapcalc("$r_mainchannel = if($r_hack==1,1,null())",
r_hack = r_hack,
r_mainchannel = r_mainchannel)
grass.run_command("r.thin", input = r_mainchannel,
output = r_mainchannel+'_thin')
grass.run_command('r.to.vect', input = r_mainchannel+'_thin',
output = v_mainchannel,
type = 'line',
verbose = True)
# Get coordinates of the outlet (belonging to stream network)
grass.run_command('v.db.addtable', map = v_outlet_snap)
grass.run_command('v.db.addcolumn', map = v_outlet_snap,
columns="x double precision,y double precision" )
grass.run_command('v.to.db', map = v_outlet_snap,
option = "coor",
col = "x,y" )
namefile = os.path.join(directory, prefix + '_outlet_coors.txt')
grass.run_command('v.out.ascii', input = v_outlet_snap,
output = namefile,
cats = 1,
format = "point")
f = open(namefile)
east_o, north_o, cat = f.readline().split('|')
param_mainchannel = grass.read_command('v.what', map = v_mainchannel,
coordinates = '%s,%s' % (east_o,north_o),
distance = 5)
tmp = param_mainchannel.split('\n')[7]
mainchannel = float(tmp.split()[1]) / 1000 # km
# Topological Diameter
grass.mapcalc("$r_mainchannel_dim = -($r_mainchannel - $r_shreve) + 1",
r_mainchannel_dim = r_mainchannel_dim,
r_shreve = r_shreve,
r_mainchannel = r_mainchannel)
grass.run_command('r.thin', input = r_mainchannel_dim,
output = r_mainchannel_dim + '_thin')
grass.run_command('r.to.vect', input = r_mainchannel_dim + '_thin',
output = v_mainchannel_dim,
type = 'line',
flags = 'v',
verbose = True)
try:
D_topo1 = grass.read_command('v.info', map = v_mainchannel_dim,
layer = 1,
flags = 't')
D_topo = float(D_topo1.split('\n')[2].split('=')[1])
except:
D_topo = 1
grass.message( "Topological Diameter = WARNING" )
# Mean slope of mainchannel
grass.message("doing v.to.points")
grass.run_command('v.to.points',
input = v_mainchannel_dim,
output = v_mainchannel_dim+'_point',
type = 'line')
vertex = grass.read_command('v.out.ascii', verbose = True,
input = v_mainchannel_dim+'_point').strip().split('\n')
nodi = zeros((len(vertex),4),float)
pendenze = []
for i in range(len(vertex)):
x, y = float(vertex[i].split('|')[0]) , float(vertex[i].split('|')[1])
vertice1 = grass.read_command('r.what', verbose = True,
map = 'r_elevation_crop',
coordinates = '%s,%s' % (x,y))
vertice = vertice1.replace('\n','').replace('||','|').split('|')
nodi[i,0],nodi[i,1], nodi[i,2] = float(vertice[0]), float(vertice[1]), float(vertice[2])
for i in range(0,len(vertex)-1,2):
dist = math.sqrt(math.fabs((nodi[i,0] - nodi[i+1,0]))**2 + math.fabs((nodi[i,1] - nodi[i+1,1]))**2)
deltaz = math.fabs(nodi[i,2] - nodi[i+1,2])
# Control to prevent float division by zero (dist=0)
try:
pendenza = deltaz / dist
pendenze.append(pendenza)
mainchannel_slope = sum(pendenze) / len(pendenze) * 100
except :
pass
# Elongation Ratio
R_al = (2 * math.sqrt( area_basin / math.pi) ) / mainchannel
# Shape factor
S_f = area_basin / mainchannel
# Characteristic altitudes
height_basin_average = grass.read_command('r.what', map = r_height_average ,
cache = 500 ,
coordinates = '%s,%s' % (east_o , north_o ))
height_basin_average = height_basin_average.replace('\n','')
height_basin_average = float(height_basin_average.split('|')[-1])
minmax_height_basin = grass.read_command('r.info', flags = 'r',
map = 'r_elevation_crop')
minmax_height_basin = minmax_height_basin.strip().split('\n')
min_height_basin, max_height_basin = float(minmax_height_basin[0].split('=')[-1]), float(minmax_height_basin[1].split('=')[-1])
H1 = max_height_basin
H2 = min_height_basin
HM = H1 - H2
# Concentration time (Giandotti, 1934)
t_c = ((4 * math.sqrt(area_basin)) + (1.5 * mainchannel)) / (0.8 * math.sqrt(HM))
# Mean hillslope length
grass.run_command("r.stats.zonal", cover = r_stream_e,
base = r_mask,
method = "average",
output = r_average_hillslope)
mean_hillslope_length = float(grass.read_command('r.info', flags = 'r',
map = r_average_hillslope).split('\n')[0].split('=')[1])
# Magnitude
grass.mapcalc("$r_ord_1 = if($r_strahler==1,1,null())",
r_ord_1 = r_ord_1,
r_strahler = r_strahler)
grass.run_command('r.thin', input = r_ord_1,
output = r_ord_1+'_thin',
iterations = 200)
grass.run_command('r.to.vect', input = r_ord_1+'_thin',
output = v_ord_1,
type = 'line',
flags = 'v')
magnitudo = float(grass.read_command('v.info', map = v_ord_1,
layer = 1,
flags = 't').split('\n')[2].split('=')[1])
# First order stream frequency
FSF = magnitudo / area_basin
# Statistics
stream_stats = grass.read_command('r.stream.stats', stream_rast = r_strahler,
direction = r_drainage_e,
elevation = 'r_elevation_crop' )
print " ------------------------------ "
print "Output of r.stream.stats: "
print stream_stats
stream_stats_summary = stream_stats.split('\n')[4].split('|')
stream_stats_mom = stream_stats.split('\n')[8].split('|')
Max_order , Num_streams , Len_streams , Stream_freq = stream_stats_summary[0] , stream_stats_summary[1] , stream_stats_summary[2] , stream_stats_summary[5]
Bif_ratio , Len_ratio , Area_ratio , Slope_ratio = stream_stats_mom[0] , stream_stats_mom[1] , stream_stats_mom[2] , stream_stats_mom[3]
drainage_density = float(Len_streams) / float(area_basin)
# Cleaning up
grass.run_command('g.remove', flags='f', type='raster', name= 'r_elevation_crop', quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_height_average, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_aspect_mod, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_mainchannel, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_stream_e, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_drainage_e, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_mask, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_ord_1, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_average_hillslope, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_mainchannel_dim, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_outlet, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_basin, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= prefix+'_mainchannel_thin', quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= prefix+'_mainchannel_dim_thin', quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= prefix+'_ord_1_thin', quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= prefix+'_stream_e_thin', quiet = True)
grass.run_command('g.remove', flags='f', type='vector', name= v_mainchannel_dim+'_point', quiet = True)
grass.run_command('g.remove', flags='f', type='vector', name= v_mainchannel_dim, quiet = True)
grass.run_command('g.remove', flags='f', type='vector', name= v_ord_1, quiet = True)
if nomap :
grass.run_command('g.remove', flags='f', type='vector', name= v_outlet, quiet = True)
grass.run_command('g.remove', flags='f', type='vector', name= v_basin, quiet = True)
grass.run_command('g.remove', flags='f', type='vector', name= v_mainchannel, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_accumulation, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_drainage, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_aspect, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_strahler, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_shreve, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_horton, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_hack, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_distance, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_hillslope_distance, quiet = True)
grass.run_command('g.remove', flags='f', type='raster', name= r_slope, quiet = True)
####################################################
parametri_bacino = {}
parametri_bacino["mean_slope"] = float(mean_slope)
parametri_bacino["mean_elev"] = float(mean_elev)
parametri_bacino["basin_east"] = float(basin_east)
parametri_bacino["basin_north"] = float(basin_north)
parametri_bacino["basin_resolution"] = float(basin_resolution)
parametri_bacino["nw"] = nw
parametri_bacino["se"] = se
parametri_bacino["area_basin"] = float(area_basin)
parametri_bacino["perimeter_basin"] = float(perimeter_basin)
parametri_bacino["L_orienting_vect"] = float(L_orienting_vect)
parametri_bacino["prevalent_orientation"] = float(prevalent_orientation)
parametri_bacino["C_comp"] = float(C_comp)
parametri_bacino["R_c"] = float(R_c)
parametri_bacino["mainchannel"] = float(mainchannel)
parametri_bacino["D_topo"] = float(D_topo)
parametri_bacino["mainchannel_slope" ] = float(mainchannel_slope)
parametri_bacino["R_al"] = float(R_al)
parametri_bacino["S_f"] = float(S_f)
parametri_bacino["H1"] = float(H1)
parametri_bacino["H2"] = float(H2)
parametri_bacino["HM"] = float(HM)
parametri_bacino["t_c"] = float(t_c)
parametri_bacino["mean_hillslope_length"] = float(mean_hillslope_length)
parametri_bacino["magnitudo"] = float(magnitudo)
parametri_bacino["Max_order"] = float(Max_order)
parametri_bacino["Num_streams"] = float(Num_streams)
parametri_bacino["Len_streams"] = float(Len_streams)
parametri_bacino["Stream_freq"] = float(Stream_freq)
parametri_bacino["Bif_ratio"] = float(Bif_ratio)
parametri_bacino["Len_ratio"] = float(Len_ratio)
parametri_bacino["Area_ratio"] = float(Area_ratio)
parametri_bacino["Slope_ratio"] = float(Slope_ratio)
parametri_bacino["drainage_density"] = float(drainage_density)
parametri_bacino["FSF"] = float(FSF)
# create .csv file
csvfile = os.path.join( directory, prefix + '_parameters.csv' )
with open(csvfile, 'w') as f:
writer = csv.writer(f)
writer.writerow(['Morphometric parameters of basin:'])
writer.writerow([' '])
writer.writerow(['Easting Centroid of basin'] + [basin_east])
writer.writerow(['Northing Centroid of basin'] + [basin_north])
writer.writerow(['Rectangle containing basin N-W'] + [nw])
writer.writerow(['Rectangle containing basin S-E'] + [se])
writer.writerow(['Area of basin [km^2]'] + [area_basin])
writer.writerow(['Perimeter of basin [km]'] + [perimeter_basin])
writer.writerow(['Max Elevation [m s.l.m.]'] + [H1])
writer.writerow(['Min Elevation [m s.l.m.]'] + [H2])
writer.writerow(['Elevation Difference [m]'] + [HM])
writer.writerow(['Mean Elevation'] + [mean_elev])
writer.writerow(['Mean Slope'] + [mean_slope])
writer.writerow(['Length of Directing Vector [km]'] + [L_orienting_vect])
writer.writerow(['Prevalent Orientation [degree from north, counterclockwise]'] + [prevalent_orientation])
writer.writerow(['Compactness Coefficient'] + [C_comp])
writer.writerow(['Circularity Ratio'] + [R_c])
writer.writerow(['Topological Diameter'] + [D_topo])
writer.writerow(['Elongation Ratio'] + [R_al])
writer.writerow(['Shape Factor'] + [S_f])
writer.writerow(['Concentration Time (Giandotti, 1934) [hr]'] + [t_c])
writer.writerow(['Length of Mainchannel [km]'] + [mainchannel])
writer.writerow(['Mean slope of mainchannel [percent]'] + [mainchannel_slope])
writer.writerow(['Mean hillslope length [m]'] + [mean_hillslope_length])
writer.writerow(['Magnitudo'] + [magnitudo])
writer.writerow(['Max order (Strahler)'] + [Max_order])
writer.writerow(['Number of streams'] + [Num_streams])
writer.writerow(['Total Stream Length [km]'] + [Len_streams])
writer.writerow(['First order stream frequency'] + [FSF])
writer.writerow(['Drainage Density [km/km^2]'] + [drainage_density])
writer.writerow(['Bifurcation Ratio (Horton)'] + [Bif_ratio])
writer.writerow(['Length Ratio (Horton)'] + [Len_ratio])
writer.writerow(['Area ratio (Horton)'] + [Area_ratio])
writer.writerow(['Slope ratio (Horton)'] + [Slope_ratio])
# Create summary (transposed)
csvfileT = os.path.join( directory, prefix + '_parametersT.csv' ) # transposed
with open(csvfileT, 'w') as f:
writer = csv.writer(f)
writer.writerow(['x'] +
['y'] +
['Easting_Centroid_basin'] +
['Northing_Centroid_basin'] +
['Rectangle_containing_basin_N_W'] +
['Rectangle_containing_basin_S_E'] +
['Area_of_basin_km2'] +
['Perimeter_of_basin_km'] +
['Max_Elevation'] +
['Min_Elevation'] +
['Elevation_Difference'] +
['Mean_Elevation'] +
['Mean_Slope'] +
['Length_of_Directing_Vector_km'] +
['Prevalent_Orientation_deg_from_north_ccw'] +
['Compactness_Coefficient'] +
['Circularity_Ratio'] +
['Topological_Diameter'] +
['Elongation_Ratio'] +
['Shape_Factor'] +
['Concentration_Time_hr'] +
['Length_of_Mainchannel_km'] +
['Mean_slope_of_mainchannel_percent'] +
['Mean_hillslope_length_m'] +
['Magnitudo'] +
['Max_order_Strahler'] +
['Number_of_streams'] +
['Total_Stream_Length_km'] +
['First_order_stream_frequency'] +
['Drainage_Density_km_over_km2'] +
['Bifurcation_Ratio_Horton'] +
['Length_Ratio_Horton'] +
['Area_ratio_Horton'] +
['Slope_ratio_Horton'] )
writer.writerow([east_o]
+ [north_o]
+ [basin_east]
+ [basin_north]
+ [nw]
+ [se]
+ [area_basin]
+ [perimeter_basin]
+ [H1]
+ [H2]
+ [HM]
+ [mean_elev]
+ [mean_slope]
+ [L_orienting_vect]
+ [prevalent_orientation]
+ [C_comp]
+ [R_c]
+ [D_topo]
+ [R_al]
+ [S_f]
+ [t_c]
+ [mainchannel]
+ [mainchannel_slope]
+ [mean_hillslope_length]
+ [magnitudo]
+ [Max_order]
+ [Num_streams]
+ [Len_streams]
+ [FSF]
+ [drainage_density]
+ [Bif_ratio]
+ [Len_ratio]
+ [Area_ratio]
+ [Slope_ratio])
# Import table "rbasin_summary", joins it to "outlet_snap", then drops it
grass.message("db.in.ogr: importing CSV table <%s>..." % csvfileT)
grass.run_command("db.in.ogr", input = csvfileT,
output = "rbasin_summary")
grass.run_command("v.db.join", map = v_outlet_snap,
otable = "rbasin_summary",
column = "y",
ocolumn = "y")
grass.run_command("db.droptable", table = "rbasin_summary", flags = 'f')
grass.message( "\n" )
grass.message( "----------------------------------" )
grass.message( "Morphometric parameters of basin :" )
grass.message( "----------------------------------\n" )
grass.message( "Easting Centroid of basin : %s " % basin_east )
grass.message( "Northing Centroid of Basin : %s " % basin_north )
grass.message( "Rectangle containing basin N-W : %s , %s " % nw )
grass.message( "Rectangle containing basin S-E : %s , %s " % se )
grass.message( "Area of basin [km^2] : %s " % area_basin )
grass.message( "Perimeter of basin [km] : %s " % perimeter_basin )
grass.message( "Max Elevation [m s.l.m.] : %s " % H1 )
grass.message( "Min Elevation [m s.l.m.]: %s " % H2 )
grass.message( "Elevation Difference [m]: %s " % HM )
grass.message( "Mean Elevation [m s.l.m.]: %s " % mean_elev )
grass.message( "Mean Slope : %s " % mean_slope )
grass.message( "Length of Directing Vector [km] : %s " % L_orienting_vect )
grass.message( "Prevalent Orientation [degree from north, counterclockwise] : %s " % prevalent_orientation )
grass.message( "Compactness Coefficient : %s " % C_comp )
grass.message( "Circularity Ratio : %s " % R_c )
grass.message( "Topological Diameter : %s " % D_topo )
grass.message( "Elongation Ratio : %s " % R_al )
grass.message( "Shape Factor : %s " % S_f )
grass.message( "Concentration Time (Giandotti, 1934) [hr] : %s " % t_c )
grass.message( "Length of Mainchannel [km] : %s " % mainchannel )
grass.message( "Mean slope of mainchannel [percent] : %f " % mainchannel_slope )
grass.message( "Mean hillslope length [m] : %s " % mean_hillslope_length )
grass.message( "Magnitudo : %s " % magnitudo )
grass.message( "Max order (Strahler) : %s " % Max_order )
grass.message( "Number of streams : %s " % Num_streams )
grass.message( "Total Stream Length [km] : %s " % Len_streams )
grass.message( "First order stream frequency : %s " % FSF )
grass.message( "Drainage Density [km/km^2] : %s " % drainage_density )
grass.message( "Bifurcation Ratio (Horton) : %s " % Bif_ratio )
grass.message( "Length Ratio (Horton) : %s " % Len_ratio )
grass.message( "Area ratio (Horton) : %s " % Area_ratio )
grass.message( "Slope ratio (Horton): %s " % Slope_ratio )
grass.message( "------------------------------" )
grass.message( "\n" )
grass.message( "Done!")
except:
grass.message( "\n" )
grass.message( "------------------------------" )
grass.message( "\n" )
grass.message( "An ERROR occurred running r.basin" )
grass.message( "Please check for error messages above or try with another pairs of outlet coordinates" )
# Set region to original
# grass.read_command('g.region', flags = 'p', region = 'original')
grass.run_command('g.remove', flags = 'f', type = 'region', name = 'original')
if __name__ == "__main__":
options, flags = grass.parser()
sys.exit(main())