-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsea-eagle.html
103 lines (75 loc) · 4.11 KB
/
sea-eagle.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
<head>
<title>Project Sea Eagle</title>
<link rel="icon" href="https://i.ibb.co/VY9G76d/eagle.png">
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css" integrity="sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh" crossorigin="anonymous">
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.3.1/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@teachablemachine/image@0.8/dist/teachablemachine-image.min.js"></script>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.5.1/jquery.min.js"></script>
</head>
<body>
<div class="jumbotron text-center">
<h1>Project Sea Eagle</h1>
<img id="sea-eagle" src="https://i.ibb.co/VY9G76d/eagle.png" alt="your image" width="100px" height="auto" />
<p>Project Sea Eagle uses Transfer Learning to classify Chest X-Ray images to allow for initial screening. </p>
<p>Classified images are given a probability of being normal or indicating an underlying pneumonia.</p>
<p><b>NOTE:</b> This classifier is intended for learning puposes, and should not be used for clinical diagnosis.</p>
<i>Created By: Harvinder Power</i></br>
<i>Logo Credits: Henry Warhurst</i>
</div>
<form runat="server">
<!-- <input type='file' id="imgInp" /> -->
<div class="input-group mb-3" style="width: 400; margin-left: auto; margin-right: auto">
<div class="custom-file" >
<input type="file" class="custom-file-input" id="imgInp">
<label class="custom-file-label" for="imgInp" aria-describedby="inputGroupFileAddon02">Choose file</label>
</div>
</div>
<div class="text-center">
<img id="blah" src="https://dummyimage.com/300x300/000/fff.png&text=Upload+image" alt="your image" width="400px" height="400px" />
</div>
</form>
<div style="display: flex; justify-content: center;">
<button id = 'predict' style="display:none" type="button" class="btn btn-primary" onclick="init()">Classify</button>
</div>
<!-- <button id="predict" style="display:none" type="button" onclick="init()" class="btn btn-sm btn-outline-secondary">PREDICT</button> -->
<h2 id = "normal-prob">Normal Probability:</h2>
<h2 id = "pneumonia-prob">Pneumonia Probability:</h2>
</body>
<script type="text/javascript">
// More API functions here:
// /~https://github.com/googlecreativelab/teachablemachine-community/tree/master/libraries/image
// the link to your model provided by Teachable Machine export panel
const URL = "https://teachablemachine.withgoogle.com/models/UKi3iZJjf/";
let model, webcam, labelContainer, maxPredictions;
function readURL(input) {
if (input.files && input.files[0]) {
var reader = new FileReader();
reader.onload = function(e) {
$('#blah').attr('src', e.target.result);
}
reader.readAsDataURL(input.files[0]); // convert to base64 string
}
}
//
$("#imgInp").change(function() {
readURL(this);
document.getElementById('predict').style.display = "block";
});
// Load the image model and image, and classify
async function init() {
const modelURL = URL + "model.json";
const metadataURL = URL + "metadata.json";
// load the model and metadata
// Refer to tmImage.loadFromFiles() in the API to support files from a file picker
// or files from your local hard drive
// Note: the pose library adds "tmImage" object to your window (window.tmImage)
model = await tmImage.load(modelURL, metadataURL);
maxPredictions = model.getTotalClasses();
const img = document.getElementById("blah")
const prediction = await model.predict(img);
console.log(prediction)
document.getElementById('normal-prob').innerHTML = "Normal Probability: " + prediction[0].probability.toFixed(3)*100 + "%";
document.getElementById('pneumonia-prob').innerHTML = "Pneumonia Probability: " + prediction[1].probability.toFixed(3)*100 + "%";
}
</script>