From cd310bd48c4b39ccd64603c1bcef7aa56f5ab0f2 Mon Sep 17 00:00:00 2001 From: Iblis Lin Date: Mon, 14 Jan 2019 17:40:17 +0800 Subject: [PATCH] Julia v0.7/1.0 support and drop v0.6 support (#12845) --- ci/docker/install/ubuntu_julia.sh | 28 +- ci/docker/runtime_functions.sh | 50 +- ci/jenkins/Jenkins_steps.groovy | 21 +- ci/jenkins/Jenkinsfile_unix_cpu | 5 +- julia/.gitignore | 3 - julia/README.md | 2 +- julia/REQUIRE | 1 - julia/deps/build.jl | 74 +-- julia/deps/cpcblas.sh | 25 - julia/docs/.gitignore | 6 + julia/docs/Makefile | 13 +- julia/docs/Project.toml | 7 + julia/docs/make.jl | 16 +- julia/docs/mkdocs.yml | 2 +- julia/docs/src/tutorial/mnist.md | 2 +- julia/examples/char-lstm/lstm.jl | 11 +- julia/examples/char-lstm/seq-data.jl | 13 +- julia/examples/char-lstm/train.jl | 2 +- julia/examples/char-lstm/visualize.jl | 4 +- .../Prediction with Pre-trained Model.ipynb | 2 +- julia/examples/mnist/mlp-test.jl | 26 +- julia/examples/mnist/mlp.jl | 2 +- julia/src/MXNet.jl | 20 +- julia/src/autograd.jl | 18 +- julia/src/base.jl | 66 +-- julia/src/broadcast.jl | 29 +- julia/src/callback.jl | 2 +- julia/src/context.jl | 21 +- julia/src/deprecated.jl | 61 ++- julia/src/executor.jl | 20 +- julia/src/initializer.jl | 8 +- julia/src/io.jl | 47 +- julia/src/kvstore.jl | 14 +- julia/src/metric.jl | 60 +-- julia/src/model.jl | 72 +-- julia/src/ndarray.jl | 341 ++++++------- julia/src/nn-factory.jl | 2 +- julia/src/optimizer.jl | 10 +- julia/src/optimizers/adadelta.jl | 2 +- julia/src/optimizers/adagrad.jl | 2 +- julia/src/optimizers/nadam.jl | 2 +- julia/src/optimizers/rmsprop.jl | 2 +- julia/src/optimizers/sgd.jl | 4 +- julia/src/random.jl | 9 +- julia/src/symbolic-node.jl | 242 +++++---- julia/src/util.jl | 34 +- julia/src/visualize.jl | 8 +- julia/test/runtests.jl | 18 +- julia/test/unittest/autograd.jl | 79 ++- julia/test/unittest/bind.jl | 6 +- julia/test/unittest/io.jl | 8 +- julia/test/unittest/kvstore.jl | 14 +- julia/test/unittest/metric.jl | 6 +- julia/test/unittest/model.jl | 6 +- julia/test/unittest/name.jl | 6 +- julia/test/unittest/ndarray.jl | 463 +++++++++--------- julia/test/unittest/operator.jl | 6 +- julia/test/unittest/optimizer.jl | 10 +- julia/test/unittest/random.jl | 15 +- julia/test/unittest/symbolic-node.jl | 120 ++--- julia/test/unittest/util.jl | 9 +- julia/test/unittest/visualize.jl | 4 +- 62 files changed, 1121 insertions(+), 1060 deletions(-) delete mode 100755 julia/deps/cpcblas.sh create mode 100644 julia/docs/.gitignore create mode 100644 julia/docs/Project.toml diff --git a/ci/docker/install/ubuntu_julia.sh b/ci/docker/install/ubuntu_julia.sh index 62013e36d8fd..13093acc42f5 100755 --- a/ci/docker/install/ubuntu_julia.sh +++ b/ci/docker/install/ubuntu_julia.sh @@ -22,16 +22,22 @@ set -ex -export JLBINARY='julia.tar.gz' -export JULIADIR='/work/julia' -export JULIA="${JULIADIR}/bin/julia" +function install_julia() { + local suffix=`echo $1 | sed 's/\.//'` # 0.7 -> 07; 1.0 -> 10 + local JLBINARY="julia-$1.tar.gz" + local JULIADIR="/work/julia$suffix" + local JULIA="${JULIADIR}/bin/julia" -mkdir -p $JULIADIR -# The julia version in Ubuntu repo is too old -# We download the tarball from the official link: -# https://julialang.org/downloads/ -wget -O $JLBINARY https://julialang-s3.julialang.org/bin/linux/x64/0.6/julia-0.6.2-linux-x86_64.tar.gz -tar xzvf $JLBINARY -C $JULIADIR --strip 1 -rm $JLBINARY + mkdir -p $JULIADIR + # The julia version in Ubuntu repo is too old + # We download the tarball from the official link: + # https://julialang.org/downloads/ + wget -O $JLBINARY https://julialang-s3.julialang.org/bin/linux/x64/$1/julia-$2-linux-x86_64.tar.gz + tar xzvf $JLBINARY -C $JULIADIR --strip 1 + rm $JLBINARY -$JULIA -e 'versioninfo()' + $JULIA -e 'using InteractiveUtils; versioninfo()' +} + +install_julia 0.7 0.7.0 +install_julia 1.0 1.0.3 diff --git a/ci/docker/runtime_functions.sh b/ci/docker/runtime_functions.sh index a6bb1064a589..82ed0776572b 100755 --- a/ci/docker/runtime_functions.sh +++ b/ci/docker/runtime_functions.sh @@ -907,36 +907,46 @@ unittest_ubuntu_gpu_R() { make rpkgtest R_LIBS=/tmp/r-site-library R_GPU_ENABLE=1 } -unittest_ubuntu_cpu_julia06() { +unittest_ubuntu_cpu_julia() { set -ex - export PATH="/work/julia/bin:$PATH" + export PATH="$1/bin:$PATH" export MXNET_HOME='/work/mxnet' - export JULIA_PKGDIR='/work/julia-pkg' - export DEPDIR=`julia -e 'print(Pkg.dir())'` + export JULIA_DEPOT_PATH='/work/julia-depot' + export DEVDIR="$JULIA_DEPOT_PATH/dev" - julia -e 'versioninfo()' - julia -e 'Pkg.init()' + julia -e 'using InteractiveUtils; versioninfo()' # install package - ln -sf ${MXNET_HOME}/julia ${DEPDIR}/MXNet + mkdir -p $DEVDIR + ln -sf ${MXNET_HOME}/julia ${DEVDIR}/MXNet - # install dependencies - julia -e 'Pkg.resolve()' + # register MXNet.jl and dependencies + julia -e 'using Pkg; Pkg.develop("MXNet")' # FIXME export LD_PRELOAD='/usr/lib/x86_64-linux-gnu/libjemalloc.so' export LD_LIBRARY_PATH=/work/mxnet/lib:$LD_LIBRARY_PATH # use the prebuilt binary from $MXNET_HOME/lib - julia -e 'Pkg.build("MXNet")' + julia -e 'using Pkg; Pkg.build("MXNet")' # run the script `julia/test/runtests.jl` - julia -e 'Pkg.test("MXNet")' + julia -e 'using Pkg; Pkg.test("MXNet")' # See /~https://github.com/dmlc/MXNet.jl/pull/303#issuecomment-341171774 julia -e 'using MXNet; mx._sig_checker()' } +unittest_ubuntu_cpu_julia07() { + set -ex + unittest_ubuntu_cpu_julia /work/julia07 +} + +unittest_ubuntu_cpu_julia10() { + set -ex + unittest_ubuntu_cpu_julia /work/julia10 +} + unittest_centos7_cpu() { set -ex cd /work/mxnet @@ -1248,25 +1258,19 @@ deploy_docs() { deploy_jl_docs() { set -ex - export PATH="/work/julia/bin:$PATH" + export PATH="/work/julia10/bin:$PATH" export MXNET_HOME='/work/mxnet' - export JULIA_PKGDIR='/work/julia-pkg' - export DEPDIR=`julia -e 'print(Pkg.dir())'` + export JULIA_DEPOT_PATH='/work/julia-depot' + export DEVDIR="$JULIA_DEPOT_PATH/dev" - julia -e 'versioninfo()' - julia -e 'Pkg.init()' - ln -sf ${MXNET_HOME}/julia ${DEPDIR}/MXNet - julia -e 'Pkg.resolve()' + julia -e 'using InteractiveUtils; versioninfo()' + mkdir -p $DEVDIR # FIXME export LD_PRELOAD='/usr/lib/x86_64-linux-gnu/libjemalloc.so' export LD_LIBRARY_PATH=/work/mxnet/lib:$LD_LIBRARY_PATH - # use the prebuilt binary from $MXNET_HOME/lib - julia -e 'Pkg.build("MXNet")' - # build docs - julia -e 'Pkg.add("Documenter")' - julia -e 'cd(Pkg.dir("MXNet")); include(joinpath("docs", "make.jl"))' + make -C julia/docs # TODO: make Jenkins worker push to MXNet.jl ph-pages branch if master build # ... diff --git a/ci/jenkins/Jenkins_steps.groovy b/ci/jenkins/Jenkins_steps.groovy index 33d76aa1668a..e812c4e24feb 100644 --- a/ci/jenkins/Jenkins_steps.groovy +++ b/ci/jenkins/Jenkins_steps.groovy @@ -944,13 +944,26 @@ def test_unix_r_gpu() { }] } -def test_unix_julia_cpu() { - return ['Julia 0.6: CPU': { +def test_unix_julia07_cpu() { + return ['Julia 0.7: CPU': { node(NODE_LINUX_CPU) { - ws('workspace/ut-julia06-cpu') { + ws('workspace/ut-julia07-cpu') { timeout(time: max_time, unit: 'MINUTES') { utils.unpack_and_init('cpu', mx_lib) - utils.docker_run('ubuntu_cpu', 'unittest_ubuntu_cpu_julia06', false) + utils.docker_run('ubuntu_cpu', 'unittest_ubuntu_cpu_julia07', false) + } + } + } + }] +} + +def test_unix_julia10_cpu() { + return ['Julia 1.0: CPU': { + node(NODE_LINUX_CPU) { + ws('workspace/ut-julia10-cpu') { + timeout(time: max_time, unit: 'MINUTES') { + utils.unpack_and_init('cpu', mx_lib) + utils.docker_run('ubuntu_cpu', 'unittest_ubuntu_cpu_julia10', false) } } } diff --git a/ci/jenkins/Jenkinsfile_unix_cpu b/ci/jenkins/Jenkinsfile_unix_cpu index 00b1aa9f68d9..ea3c06175b4b 100644 --- a/ci/jenkins/Jenkinsfile_unix_cpu +++ b/ci/jenkins/Jenkinsfile_unix_cpu @@ -39,7 +39,7 @@ core_logic: { custom_steps.compile_unix_mkl_cpu(), custom_steps.compile_unix_mkldnn_cpu(), custom_steps.compile_unix_mkldnn_mkl_cpu() - ]) + ]) utils.parallel_stage('Tests', [ custom_steps.test_unix_python2_cpu(), @@ -53,7 +53,8 @@ core_logic: { custom_steps.test_unix_scala_mkldnn_cpu(), custom_steps.test_unix_clojure_cpu(), custom_steps.test_unix_r_cpu(), - custom_steps.test_unix_julia_cpu(), + custom_steps.test_unix_julia07_cpu(), + custom_steps.test_unix_julia10_cpu(), custom_steps.test_unix_onnx_cpu(), custom_steps.test_unix_cpp_cpu(), /* Disabled due to master build failure: diff --git a/julia/.gitignore b/julia/.gitignore index d6791c8491bf..3687ed485c5a 100644 --- a/julia/.gitignore +++ b/julia/.gitignore @@ -7,7 +7,4 @@ data deps/src deps/usr deps/deps.jl -docs/_build -docs/build/ -docs/site/ .vscode diff --git a/julia/README.md b/julia/README.md index 2ff7553063f3..91a3981464be 100644 --- a/julia/README.md +++ b/julia/README.md @@ -50,7 +50,7 @@ labels = reduce( labels .= labels .+ 1 # Now we use compute the accuracy -pred = map(i -> indmax(probs[1:10, i]), 1:size(probs, 2)) +pred = map(i -> argmax(probs[1:10, i]), 1:size(probs, 2)) correct = sum(pred .== labels) accuracy = 100correct/length(labels) @printf "Accuracy on eval set: %.2f%%\n" accuracy diff --git a/julia/REQUIRE b/julia/REQUIRE index 5a76dc543b25..b53f0c3cc0ec 100644 --- a/julia/REQUIRE +++ b/julia/REQUIRE @@ -3,5 +3,4 @@ Formatting BinDeps JSON MacroTools -TakingBroadcastSeriously Reexport diff --git a/julia/deps/build.jl b/julia/deps/build.jl index bdc33be8c79b..7a37803f306a 100644 --- a/julia/deps/build.jl +++ b/julia/deps/build.jl @@ -15,7 +15,9 @@ # specific language governing permissions and limitations # under the License. -import JSON +using JSON +using Libdl +using LinearAlgebra ################################################################################ # First try to detect and load existing libmxnet @@ -26,17 +28,17 @@ curr_win = "20180211" # v1.1.0 if haskey(ENV, "MXNET_HOME") MXNET_HOME = ENV["MXNET_HOME"] - info("MXNET_HOME environment detected: $MXNET_HOME") - info("Trying to load existing libmxnet...") + @info("MXNET_HOME environment detected: $MXNET_HOME") + @info("Trying to load existing libmxnet...") # In case of macOS, if user build libmxnet from source and set the MXNET_HOME, # the output is still named as `libmxnet.so`. lib = Libdl.find_library(["libmxnet.$(Libdl.dlext)", "libmxnet.so"], [joinpath(MXNET_HOME, "lib"), MXNET_HOME]) if !isempty(lib) - info("Existing libmxnet detected at $lib, skip building...") + @info("Existing libmxnet detected at $lib, skip building...") libmxnet_detected = true else - info("Failed to load existing libmxnet, trying to build from source...") + @info("Failed to load existing libmxnet, trying to build from source...") end end @@ -44,33 +46,35 @@ end CUDAPATHS = String[] if haskey(ENV, "CUDA_HOME") push!(CUDAPATHS, joinpath(ENV["CUDA_HOME"], "lib64")) -elseif is_linux() +elseif Sys.islinux() append!(CUDAPATHS, ["/opt/cuda/lib64", "/usr/local/cuda/lib64"]) end -if is_unix() +if Sys.isunix() try - push!(CUDAPATHS, replace(strip(readstring(`which nvcc`)), "bin/nvcc", "lib64")) + push!(CUDAPATHS, replace(strip(read(`which nvcc`, String)), "bin/nvcc", "lib64")) + catch end end HAS_CUDA = false HAS_CUDNN = false let cudalib = Libdl.find_library(["libcuda", "nvcuda.dll"], CUDAPATHS) - HAS_CUDA = !isempty(cudalib) && Libdl.dlopen_e(cudalib) != C_NULL + global HAS_CUDA = !isempty(cudalib) && Libdl.dlopen_e(cudalib) != C_NULL end -if !HAS_CUDA && is_windows() +if !HAS_CUDA && Sys.iswindows() # TODO: this needs to be improved. try run(`nvcc --version`) - HAS_CUDA = true + global HAS_CUDA = true + catch end end if HAS_CUDA # then check cudnn let cudnnlib = Libdl.find_library("libcudnn", CUDAPATHS) - HAS_CUDNN = !isempty(cudnnlib) && Libdl.dlopen_e(cudnnlib) != C_NULL + global HAS_CUDNN = !isempty(cudnnlib) && Libdl.dlopen_e(cudnnlib) != C_NULL if HAS_CUDNN && !haskey(ENV, "CUDA_HOME") # inference `CUDA_HOME` ENV["CUDA_HOME"] = dirname(dirname(cudnnlib)) end @@ -78,13 +82,13 @@ if HAS_CUDA # then check cudnn end if HAS_CUDA - info("Found a CUDA installation.") + @info("Found a CUDA installation.") if HAS_CUDNN - info("Found a CuDNN installation.") + @info("Found a CuDNN installation.") end - info("CUDA_HOME -> $(get(ENV, "CUDA_HOME", nothing))") + @info("CUDA_HOME -> $(get(ENV, "CUDA_HOME", nothing))") else - info("Did not find a CUDA installation, using CPU-only version of MXNet.") + @info("Did not find a CUDA installation, using CPU-only version of MXNet.") end # propagate more build flags from ENV @@ -98,26 +102,26 @@ function get_cpucore() if haskey(ENV, "TRAVIS") # on travis-ci 2 else - min(Sys.CPU_CORES, 32) + min(Sys.CPU_THREADS, 32) end end using BinDeps @BinDeps.setup if !libmxnet_detected - if is_windows() + if Sys.iswindows() if Sys.ARCH != :x86_64 - info("Prebuilt windows binaries are only available on 64bit. You will have to built MXNet yourself.") + @info("Prebuilt windows binaries are only available on 64bit. You will have to built MXNet yourself.") return end - info("Downloading pre-built packages for Windows.") + @info("Downloading pre-built packages for Windows.") base_url = "/~https://github.com/yajiedesign/mxnet/releases/download/weekly_binary_build_v2/prebuildbase_win10_x64_vc14_v2.7z" if libmxnet_curr_ver == "master" # download_cmd uses powershell 2, but we need powershell 3 to do this run(`powershell -NoProfile -Command Invoke-WebRequest -Uri "https://api.github.com/repos/yajiedesign/mxnet/releases/latest" -OutFile "mxnet.json"`) curr_win = JSON.parsefile("mxnet.json")["tag_name"] - info("Can't use MXNet master on Windows, using latest binaries from $curr_win.") + @info("Can't use MXNet master on Windows, using latest binaries from $curr_win.") end # TODO: Get url from JSON. name = "mxnet_x64_vc14_$(HAS_CUDA ? "gpu" : "cpu").7z" @@ -144,8 +148,7 @@ if !libmxnet_detected ################################################################################ blas_path = Libdl.dlpath(Libdl.dlopen(Base.libblas_name)) - - blas_vendor = Base.BLAS.vendor() + blas_vendor = LinearAlgebra.BLAS.vendor() ilp64 = "" if blas_vendor == :openblas64 @@ -154,18 +157,18 @@ if !libmxnet_detected FORCE_LAPACK = false if blas_vendor == :unknown - info("Julia is built with an unkown blas library ($blas_path).") - info("Attempting build without reusing the blas library") + @info("Julia is built with an unkown blas library ($blas_path).") + @info("Attempting build without reusing the blas library") USE_JULIA_BLAS = false elseif !(blas_vendor in (:openblas, :openblas64)) - info("Unsure if we can build against $blas_vendor.") - info("Attempting build anyway.") + @info("Unsure if we can build against $blas_vendor.") + @info("Attempting build anyway.") USE_JULIA_BLAS = true else USE_JULIA_BLAS = true FORCE_LAPACK = true end - info("USE_JULIA_BLAS -> $USE_JULIA_BLAS") + @info("USE_JULIA_BLAS -> $USE_JULIA_BLAS") blas_name = blas_vendor == :openblas64 ? "openblas" : string(blas_vendor) MSHADOW_LDFLAGS = "MSHADOW_LDFLAGS=-lm $blas_path" @@ -188,7 +191,7 @@ if !libmxnet_detected @build_steps begin BinDeps.DirectoryRule(_mxdir, @build_steps begin ChangeDirectory(_srcdir) - `git clone /~https://github.com/apache/incubator-mxnet` + `git clone /~https://github.com/apache/incubator-mxnet mxnet` end) @build_steps begin ChangeDirectory(_mxdir) @@ -199,15 +202,12 @@ if !libmxnet_detected `git checkout origin/$libmxnet_curr_ver` end `git submodule update --init --recursive` - `git -C mshadow checkout -- make/mshadow.mk` - - # copying on changed, make travis caching happy - `../../cpcblas.sh` - - `sed -i -s "s/MSHADOW_CFLAGS = \(.*\)/MSHADOW_CFLAGS = \1 $ilp64/" mshadow/make/mshadow.mk` + `git -C 3rdparty/mshadow checkout -- make/mshadow.mk` + `cp -v ../../cblas.h include/cblas.h` + `sed -i -s "s/MSHADOW_CFLAGS = \(.*\)/MSHADOW_CFLAGS = \1 $ilp64/" 3rdparty/mshadow/make/mshadow.mk` # Copy config.mk, always override the file - if is_apple() + if Sys.isapple() `cp make/osx.mk config.mk` else `cp make/config.mk config.mk` @@ -239,7 +239,7 @@ if !libmxnet_detected # Force enable LAPACK build # Julia's OpenBLAS has LAPACK functionality already if FORCE_LAPACK - if is_apple() + if Sys.isapple() MSHADOW_LDFLAGS *= " -framework Accelerate" end `sed -i -s 's/ADD_CFLAGS =\(.*\)/ADD_CFLAGS =\1 -DMXNET_USE_LAPACK/' config.mk` diff --git a/julia/deps/cpcblas.sh b/julia/deps/cpcblas.sh deleted file mode 100755 index 99342897a58c..000000000000 --- a/julia/deps/cpcblas.sh +++ /dev/null @@ -1,25 +0,0 @@ -#!/bin/sh - -# Licensed to the Apache Software Foundation (ASF) under one -# or more contributor license agreements. See the NOTICE file -# distributed with this work for additional information -# regarding copyright ownership. The ASF licenses this file -# to you under the Apache License, Version 2.0 (the -# "License"); you may not use this file except in compliance -# with the License. You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, -# software distributed under the License is distributed on an -# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY -# KIND, either express or implied. See the License for the -# specific language governing permissions and limitations -# under the License. - - -# be invoked from build.jl - -set -e - -diff ../../cblas.h include/cblas.h || cp -v ../../cblas.h include/cblas.h diff --git a/julia/docs/.gitignore b/julia/docs/.gitignore new file mode 100644 index 000000000000..8a6e014fbbce --- /dev/null +++ b/julia/docs/.gitignore @@ -0,0 +1,6 @@ +Manifest.toml + +_build +build/ +site/ +venv/ diff --git a/julia/docs/Makefile b/julia/docs/Makefile index 57c623889a83..e42b8cdccb93 100644 --- a/julia/docs/Makefile +++ b/julia/docs/Makefile @@ -16,5 +16,14 @@ # under the License. all: - julia --color=yes ./make.jl - mkdocs build + julia --color=yes --project=./ -e \ + 'using Pkg; \ + Pkg.develop(PackageSpec(name="MXNet", path = joinpath(pwd(), "..")))' + julia --color=yes --project=./ ./make.jl + pip install --user pygments mkdocs mkdocs-material python-markdown-math + ~/.local/bin/mkdocs build + +clean: + rm -rvf venv + rm -rvf build + rm -rvf site diff --git a/julia/docs/Project.toml b/julia/docs/Project.toml new file mode 100644 index 000000000000..a4b243b0ffea --- /dev/null +++ b/julia/docs/Project.toml @@ -0,0 +1,7 @@ +[deps] +Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4" +DocumenterMarkdown = "997ab1e6-3595-5248-9280-8efb232c3433" +MXNet = "a7949054-b901-59c6-b8e3-7238c29bf7f0" + +[compat] +Documenter = "~0.21" diff --git a/julia/docs/make.jl b/julia/docs/make.jl index 6e3705a95fdc..3e541c636888 100644 --- a/julia/docs/make.jl +++ b/julia/docs/make.jl @@ -15,15 +15,13 @@ # specific language governing permissions and limitations # under the License. -using Documenter, MXNet +using Documenter +using DocumenterMarkdown +using MXNet makedocs( - modules = MXNet, - doctest = false -) - -deploydocs( - deps = Deps.pip("pygments", "mkdocs", "mkdocs-material", "python-markdown-math"), - repo = "github.com/dmlc/MXNet.jl.git", - julia = "0.6", + sitename = "MXNet.jl", + modules = MXNet, + doctest = false, + format = Markdown(), ) diff --git a/julia/docs/mkdocs.yml b/julia/docs/mkdocs.yml index 24281730885f..22cb71869673 100644 --- a/julia/docs/mkdocs.yml +++ b/julia/docs/mkdocs.yml @@ -41,7 +41,7 @@ markdown_extensions: docs_dir: 'build' -pages: +nav: - Home: index.md - Tutorial: - Digit Recognition on MNIST: tutorial/mnist.md diff --git a/julia/docs/src/tutorial/mnist.md b/julia/docs/src/tutorial/mnist.md index 76430fd1b1d0..916e46deb853 100644 --- a/julia/docs/src/tutorial/mnist.md +++ b/julia/docs/src/tutorial/mnist.md @@ -252,7 +252,7 @@ labels = reduce( labels .= labels .+ 1 # Now we use compute the accuracy -pred = map(i -> indmax(probs[1:10, i]), 1:size(probs, 2)) +pred = map(i -> argmax(probs[1:10, i]), 1:size(probs, 2)) correct = sum(pred .== labels) @printf "Accuracy on eval set: %.2f%%\n" 100correct/length(labels) ``` diff --git a/julia/examples/char-lstm/lstm.jl b/julia/examples/char-lstm/lstm.jl index fc4bcc4b6a91..6f6640e9562b 100644 --- a/julia/examples/char-lstm/lstm.jl +++ b/julia/examples/char-lstm/lstm.jl @@ -145,7 +145,16 @@ function mx.update!(metric::NLL, labels::Vector{<:mx.NDArray}, preds::Vector{<:m nll = 0.0 for (label, pred) in zip(labels, preds) @mx.nd_as_jl ro=(label, pred) begin - nll -= sum(log.(max.(broadcast_getindex(pred, round.(Int,label+1), 1:length(label)), 1e-20))) + nll -= sum( + log.( + max.( + getindex.( + (pred,), + round.(Int,label .+ 1), + 1:length(label)), + 1e-20) + ) + ) end end diff --git a/julia/examples/char-lstm/seq-data.jl b/julia/examples/char-lstm/seq-data.jl index 3489e5bc3c39..0df110322317 100644 --- a/julia/examples/char-lstm/seq-data.jl +++ b/julia/examples/char-lstm/seq-data.jl @@ -16,13 +16,14 @@ # under the License. # Simple data provider that load text -using Iterators +using Base.Iterators using MXNet -function build_vocabulary(corpus_fn::AbstractString, vocab_fn::AbstractString; max_vocab=10000) +function build_vocabulary(corpus_fn::AbstractString, vocab_fn::AbstractString; + max_vocab = 10000) if isfile(vocab_fn) - info("Vocabulary already exists, reusing $vocab_fn...") - vocab = Dict{Char,Int}(w => i for (i,w) in enumerate(readstring(vocab_fn))) + @info("Vocabulary already exists, reusing $vocab_fn...") + vocab = Dict{Char,Int}(w => i for (i,w) in enumerate(read(vocab_fn, String))) else # count symbol frequency dict = Dict{Char,Int}() @@ -99,8 +100,8 @@ function mx.eachbatch(p::CharSeqProvider) for idx_batch in partition(idx_all, p.batch_size*p.seq_len) for i = 1:p.seq_len - data_jl[i][:] = 0 - label_jl[i][:] = 0 + data_jl[i][:] .= 0 + label_jl[i][:] .= 0 end for (i, idx_seq) in enumerate(partition(idx_batch, p.seq_len)) diff --git a/julia/examples/char-lstm/train.jl b/julia/examples/char-lstm/train.jl index 57bfeb6b6e11..7dbdefd42e41 100644 --- a/julia/examples/char-lstm/train.jl +++ b/julia/examples/char-lstm/train.jl @@ -31,7 +31,7 @@ lstm = LSTM(LSTM_N_LAYER, SEQ_LENGTH, DIM_HIDDEN, DIM_EMBED, #--data # load data -text_all = readstring(INPUT_FILE) +text_all = read(INPUT_FILE, String) len_train = round(Int, length(text_all)*DATA_TR_RATIO) text_tr = text_all[1:len_train] text_val = text_all[len_train+1:end] diff --git a/julia/examples/char-lstm/visualize.jl b/julia/examples/char-lstm/visualize.jl index e2a2c87c9c10..dd483940095e 100644 --- a/julia/examples/char-lstm/visualize.jl +++ b/julia/examples/char-lstm/visualize.jl @@ -15,8 +15,8 @@ # specific language governing permissions and limitations # under the License. -include(joinpath(dirname(@__FILE__), "config.jl")) -include(joinpath(dirname(@__FILE__), "lstm.jl")) +include(joinpath(@__DIR__, "config.jl")) +include(joinpath(@__DIR__, "lstm.jl")) using MXNet diff --git a/julia/examples/imagenet/ijulia-pretrained-predict/Prediction with Pre-trained Model.ipynb b/julia/examples/imagenet/ijulia-pretrained-predict/Prediction with Pre-trained Model.ipynb index 2d5d0ee7dd97..3ef8040c30f6 100644 --- a/julia/examples/imagenet/ijulia-pretrained-predict/Prediction with Pre-trained Model.ipynb +++ b/julia/examples/imagenet/ijulia-pretrained-predict/Prediction with Pre-trained Model.ipynb @@ -181,7 +181,7 @@ "classes = open(joinpath(model_dir, \"synset.txt\")) do s \n", " map(x -> replace(strip(x), r\"^n[0-9]+ \", \"\"), readlines(s))\n", "end\n", - "println(classes[indmax(pred)])" + "println(classes[argmax(pred)])" ] }, { diff --git a/julia/examples/mnist/mlp-test.jl b/julia/examples/mnist/mlp-test.jl index 1af84ed3ba8a..7a24f9281652 100644 --- a/julia/examples/mnist/mlp-test.jl +++ b/julia/examples/mnist/mlp-test.jl @@ -21,7 +21,7 @@ module MNISTTest using MXNet -using Base.Test +using Test include("mnist-data.jl") @@ -56,7 +56,7 @@ function mnist_fit_and_predict(optimizer, initializer, n_epoch) end mlp_load = mx.load("$cp_prefix-symbol.json", mx.SymbolicNode) @test mx.to_json(mlp_load) == mx.to_json(mlp) - mlp_load = mx.from_json(readstring("$cp_prefix-symbol.json"), mx.SymbolicNode) + mlp_load = mx.from_json(read("$cp_prefix-symbol.json", String), mx.SymbolicNode) @test mx.to_json(mlp_load) == mx.to_json(mlp) #-------------------------------------------------------------------------------- @@ -68,13 +68,13 @@ function mnist_fit_and_predict(optimizer, initializer, n_epoch) for batch in eval_provider push!(labels, copy(mx.get(eval_provider, batch, :softmax_label))) end - labels = cat(1, labels...) + labels = cat(labels..., dims = 1) # Now we use compute the accuracy correct = 0 for i = 1:length(labels) # labels are 0...9 - if indmax(probs[:,i]) == labels[i]+1 + if argmax(probs[:,i]) == labels[i]+1 correct += 1 end end @@ -88,32 +88,32 @@ function mnist_fit_and_predict(optimizer, initializer, n_epoch) end function test_mnist_mlp() - info("MNIST::SGD") + @info("MNIST::SGD") @test mnist_fit_and_predict(mx.SGD(η=.2), mx.UniformInitializer(.01), 2) > 90 - info("MNIST::SGD::η scheduler") + @info("MNIST::SGD::η scheduler") @test mnist_fit_and_predict(mx.SGD(η_sched=mx.LearningRate.Inv(.25)), mx.UniformInitializer(.01), 2) > 90 - info("MNIST::SGD::momentum μ") + @info("MNIST::SGD::momentum μ") @test mnist_fit_and_predict(mx.SGD(η=.1, μ=.9), mx.UniformInitializer(.01), 2) > 90 - info("MNIST::ADAM") + @info("MNIST::ADAM") @test mnist_fit_and_predict(mx.ADAM(), mx.NormalInitializer(), 2) > 90 - info("MNIST::AdaGrad") + @info("MNIST::AdaGrad") @test mnist_fit_and_predict(mx.AdaGrad(), mx.NormalInitializer(), 2) > 90 - info("MNIST::AdaDelta") + @info("MNIST::AdaDelta") @test mnist_fit_and_predict(mx.AdaDelta(), mx.NormalInitializer(), 2) > 90 - info("MNIST::AdaMax") + @info("MNIST::AdaMax") @test mnist_fit_and_predict(mx.AdaMax(), mx.NormalInitializer(), 2) > 90 - info("MNIST::RMSProp") + @info("MNIST::RMSProp") @test mnist_fit_and_predict(mx.RMSProp(), mx.NormalInitializer(), 2) > 90 - info("MNIST::Nadam") + @info("MNIST::Nadam") @test mnist_fit_and_predict(mx.Nadam(), mx.NormalInitializer(), 2) > 90 end diff --git a/julia/examples/mnist/mlp.jl b/julia/examples/mnist/mlp.jl index 20facc9b71b3..86111ee68172 100644 --- a/julia/examples/mnist/mlp.jl +++ b/julia/examples/mnist/mlp.jl @@ -70,6 +70,6 @@ labels = reduce( labels .= labels .+ 1 # Now we use compute the accuracy -pred = map(i -> indmax(probs[1:10, i]), 1:size(probs, 2)) +pred = map(i -> argmax(probs[1:10, i]), 1:size(probs, 2)) correct = sum(pred .== labels) @printf "Accuracy on eval set: %.2f%%\n" 100correct/length(labels) diff --git a/julia/src/MXNet.jl b/julia/src/MXNet.jl index 03c3cb89b530..febd80cc8f8c 100644 --- a/julia/src/MXNet.jl +++ b/julia/src/MXNet.jl @@ -15,8 +15,6 @@ # specific language governing permissions and limitations # under the License. -__precompile__() - module MXNet using Reexport @@ -26,16 +24,20 @@ using Reexport export mx module mx -import Base.Iterators: filter +using Base.Broadcast: Broadcasted, DefaultArrayStyle +using Libdl +using LinearAlgebra +using Markdown +using Printf +using Statistics +using Random using Formatting using MacroTools -using TakingBroadcastSeriously: @unfuse -import TakingBroadcastSeriously: broadcast_ # Functions from base that we can safely extend and that are defined by libmxnet. -import Base: round, ceil, floor, cos, sin, abs, sign, exp, sqrt, exp, log, norm, - transpose +import Base.Broadcast: broadcasted +import Base.Iterators: filter ############################################################################### # exports @@ -140,9 +142,9 @@ include("base.jl") include("context.jl") include("util.jl") -include("broadcast.jl") include("ndarray.jl") + include("random.jl") include("autograd.jl") @@ -150,6 +152,8 @@ include("name.jl") include("symbolic-node.jl") include("executor.jl") +include("broadcast.jl") + include("metric.jl") include("optimizer.jl") include("initializer.jl") diff --git a/julia/src/autograd.jl b/julia/src/autograd.jl index 72fb82ba1bbb..8b5edae5770a 100644 --- a/julia/src/autograd.jl +++ b/julia/src/autograd.jl @@ -43,7 +43,7 @@ function _set_recording(state::Bool)::Bool prev[] end -_set_recording(::Void) = nothing +_set_recording(::Cvoid) = nothing """ Set status to training/predicting. @@ -63,7 +63,7 @@ function _set_training(train_mode::Bool)::Bool prev[] end -_set_training(::Void) = nothing +_set_training(::Cvoid) = nothing ############################################################################### # Public API @@ -91,7 +91,7 @@ function is_training()::Bool state[] end -@inline function _record(f, is_record::Union{Void,Bool}, train_mode::Union{Void,Bool}) +@inline function _record(f, is_record::Union{Cvoid,Bool}, train_mode::Union{Cvoid,Bool}) # Port from Python's `_RecordingStateScope` context manager # __enter__ prev_is_record = _set_recording(is_record) @@ -211,12 +211,12 @@ Compute the gradients of heads w.r.t previously marked variables. - `head::NDArray`: output NDArray -- `head_grad::NDArray` or `Void`: gradient coefficient with respect to head. +- `head_grad::NDArray` or `Cvoid`: gradient coefficient with respect to head. - `heads::Vector{NDArray}`: a list of output NDArray - `head_grads::Vector`: a list of gradient coefficient with respect ot heads. - the element should be `NDArray` or `Void` + the element should be `NDArray` or `Cvoid` - `retain_graph::Bool`: whether to keep the graph after backward. e.g: If you want to differentiate the same graph twice, @@ -227,10 +227,10 @@ Compute the gradients of heads w.r.t previously marked variables. backward!(head::NDArray, head_grad::NDArray; kws...) = backward!([head], [head_grad]; kws...) -backward!(head::NDArray, head_grad::Void = nothing; kws...) = +backward!(head::NDArray, head_grad::Cvoid = nothing; kws...) = backward!([head], head_grad; kws...) -function backward!(heads::VecOfNDArray, head_grad::Void; +function backward!(heads::VecOfNDArray, head_grad::Cvoid; retain_graph::Bool = false, train_mode::Bool = true) @mxcall( :MXAutogradBackwardEx, @@ -262,10 +262,10 @@ function backward!(heads::VecOfNDArray, head_grads::Vector; ograd_handles = map(head_grads) do x if x isa NDArray x.handle - elseif x isa Void + elseif x ≡ nothing # faster than `x isa Cvoid` in Julia 0.7 MX_handle(C_NULL) else - throw(ArgumentError("element of head_grads should be NDArray or Void")) + throw(ArgumentError("element of head_grads should be NDArray or Cvoid")) end end @assert length(output_handles) == length(ograd_handles) diff --git a/julia/src/base.jl b/julia/src/base.jl index ce1c183eafb5..61779d194a94 100644 --- a/julia/src/base.jl +++ b/julia/src/base.jl @@ -27,7 +27,7 @@ Base.show(io::IO, e::MXError) = print(io, e.msg) ################################################################################ const MX_uint = Cuint const MX_float = Cfloat -const MX_handle = Ptr{Void} +const MX_handle = Ptr{Cvoid} const char_p = Ptr{UInt8} const char_pp = Ptr{char_p} @@ -50,7 +50,10 @@ const grad_req_map = Dict{Symbol,GRAD_REQ}( const MXNET_LIB = Libdl.find_library(["libmxnet.$(Libdl.dlext)", "libmxnet.so"], # see build.jl [joinpath(get(ENV, "MXNET_HOME", ""), "lib"), get(ENV, "MXNET_HOME", ""), - Pkg.dir("MXNet", "deps", "usr", "lib")]) + joinpath(@__DIR__, "..", + "deps", "usr", "lib")]) +const LIB_VERSION = Ref{Cint}(0) + if isempty(MXNET_LIB) # touch this file, so that after the user properly build libmxnet, the precompiled # MXNet.ji will be re-compiled to get MXNET_LIB properly. @@ -65,8 +68,7 @@ function __init__() # TODO: bug in nnvm, if do not call this, call get handle "_copyto" will fail _get_libmx_op_names() _populate_iter_creator_cache!() - - global const LIB_VERSION = _get_lib_version() + _get_lib_version!() atexit() do # notify libmxnet we are shutting down @@ -87,8 +89,8 @@ macro mxcall(fv, argtypes, args...) f = eval(fv) args = map(esc, args) quote - _mxret = ccall( ($(Meta.quot(f)), $MXNET_LIB), - Cint, $argtypes, $(args...) ) + _mxret = ccall(($(QuoteNode(f)), $MXNET_LIB), + Cint, $argtypes, $(args...)) if _mxret != 0 err_msg = mx_get_last_error() throw(MXError(err_msg)) @@ -98,38 +100,38 @@ end """ Get libmxnet version + +This function will changes the global variable `LIB_VERSION`. """ -function _get_lib_version() - ver = Ref{Cint}(0) - @mxcall :MXGetVersion (Ref{Cint},) ver - ver[] +function _get_lib_version!() + @mxcall :MXGetVersion (Ref{Cint},) LIB_VERSION + LIB_VERSION[] end ################################################################################ # Handle types ################################################################################ -macro mx_define_handle_t(name, destructor) - name = esc(name) - quote +function mx_define_handle_t(name, destructor) + @eval begin mutable struct $name - value :: MX_handle + value::MX_handle function $name(value = C_NULL) hdr = new(value) - $(if destructor != :nop - :(finalizer(hdr, delete!)) + $(if destructor != nothing + :(finalizer(delete!, hdr)) end) return hdr end end - $(if finalizer != :nop + $(if finalizer != nothing quote function delete!(h :: $name) if h.value != C_NULL - @mxcall($(Meta.quot(destructor)), (MX_handle,), h.value) + @mxcall($(QuoteNode(destructor)), (MX_handle,), h.value) h.value = C_NULL end end @@ -142,16 +144,16 @@ macro mx_define_handle_t(name, destructor) Base.convert(t::Type{MX_handle}, obj::$name) = Base.unsafe_convert(t, obj) Base.cconvert(t::Type{MX_handle}, obj::$name) = Base.unsafe_convert(t, obj) - function Base.isnull(obj::$name) obj.value == C_NULL end + MX_handle(x::$name) = Base.convert(MX_handle, x) end end -@mx_define_handle_t(MX_NDArrayHandle, MXNDArrayFree) -@mx_define_handle_t(MX_OpHandle, nop) -@mx_define_handle_t(MX_SymbolHandle, MXSymbolFree) -@mx_define_handle_t(MX_ExecutorHandle, MXExecutorFree) -@mx_define_handle_t(MX_DataIterHandle, MXDataIterFree) -@mx_define_handle_t(MX_KVStoreHandle, MXKVStoreFree) +mx_define_handle_t(:MX_NDArrayHandle, :MXNDArrayFree) +mx_define_handle_t(:MX_OpHandle, nothing) +mx_define_handle_t(:MX_SymbolHandle, :MXSymbolFree) +mx_define_handle_t(:MX_ExecutorHandle, :MXExecutorFree) +mx_define_handle_t(:MX_DataIterHandle, :MXDataIterFree) +mx_define_handle_t(:MX_KVStoreHandle, :MXKVStoreFree) ################################################################################ # MXNet Params @@ -183,8 +185,8 @@ dump_mx_param(val::Float64) = @sprintf("%.16e", val) dump_mx_param(val::Float32) = @sprintf("%.8e", val) dump_mx_param(val::Float16) = @sprintf("%.4e", val) dump_mx_param(val::Irrational) = @sprintf("%.16e", val) -dump_mx_param(shape::NTuple{N, <:Integer}) where N = - string(tuple(flipdim([shape...], 1)...)) +dump_mx_param(shape::NTuple{N,<:Integer}) where N = + string(reverse(shape)) """ @@ -248,11 +250,11 @@ function _defstruct_impl(is_immutable, name, fields) name = esc(name.args[1]) end - field_defs = Vector{Expr}(length(fields)) # :(field2 :: Int) - field_names = Vector{Expr}(length(fields)) # :field2 - field_defaults = Vector{Expr}(length(fields)) # :(field2 = 0) - field_types = Vector{Expr}(length(fields)) # Int - field_asserts = Vector{Expr}(length(fields)) # :(field2 >= 0) + field_defs = Vector{Expr}(undef, length(fields)) # :(field2 :: Int) + field_names = Vector{Expr}(undef, length(fields)) # :field2 + field_defaults = Vector{Expr}(undef, length(fields)) # :(field2 = 0) + field_types = Vector{Expr}(undef, length(fields)) # Int + field_asserts = Vector{Expr}(undef, length(fields)) # :(field2 >= 0) required_field = Symbol[] for i = 1:length(fields) diff --git a/julia/src/broadcast.jl b/julia/src/broadcast.jl index fee960a46271..7c68fab5007c 100644 --- a/julia/src/broadcast.jl +++ b/julia/src/broadcast.jl @@ -15,22 +15,17 @@ # specific language governing permissions and limitations # under the License. -using TakingBroadcastSeriously: Broadcasted, unwrap +struct NDArrayStyle{N} <: Broadcast.AbstractArrayStyle{N} end +NDArrayStyle(::Val{N}) where N = NDArrayStyle{N}() +NDArrayStyle{M}(::Val{N}) where {N,M} = NDArrayStyle{N}() -for f in :[%, - tan, asin, acos, atan, - sinh, cosh, tanh, asinh, acosh, atanh, - min, max, - hypot].args - # copy from TakingBroadcastSeriously - @eval Base.$f(a::Broadcasted...) = Broadcasted(broadcast_($f, unwrap.(a)...)) - @eval Base.$f(a::Broadcasted, b) = Broadcasted(broadcast_($f, unwrap(a), b)) - @eval Base.$f(b, a::Broadcasted) = Broadcasted(broadcast_($f, b, unwrap(a))) -end +# Determin the output type +Base.BroadcastStyle(::Type{<:NDArray{T,N}}) where {T,N} = NDArrayStyle{N}() -for f in :[σ, sigmoid, relu, softmax, log_softmax].args - # copy from TakingBroadcastSeriously - @eval $f(a::Broadcasted...) = Broadcasted(broadcast_($f, unwrap.(a)...)) - @eval $f(a::Broadcasted, b) = Broadcasted(broadcast_($f, unwrap(a), b)) - @eval $f(b, a::Broadcasted) = Broadcasted(broadcast_($f, b, unwrap(a))) -end +Base.broadcastable(x::NDArray) = x + +# Make it non-lazy +broadcasted(f, x::NDArray, args...) = f(x, args...) +broadcasted(f, y, x::NDArray, args...) = f(y, x, args...) +broadcasted(f, x::NDArray{T,N}, y::NDArray{T,N}, args...) where {T,N} = + f(x, y, args...) diff --git a/julia/src/callback.jl b/julia/src/callback.jl index 06e431de06d0..39d8f2552035 100644 --- a/julia/src/callback.jl +++ b/julia/src/callback.jl @@ -96,7 +96,7 @@ function speedometer(;frequency::Int = 50) cl_tic = time() else speed = frequency * state.batch_size / (time() - cl_tic) - info(format("Speed: {1:>6.2f} samples/sec", speed)) + @info(format("Speed: {1:>6.2f} samples/sec", speed)) cl_tic = time() end end diff --git a/julia/src/context.jl b/julia/src/context.jl index c97522b3b846..71aee3020daa 100644 --- a/julia/src/context.jl +++ b/julia/src/context.jl @@ -17,17 +17,22 @@ @enum CONTEXT_TYPE CPU=1 GPU=2 CPU_PINNED=3 +Base.convert(::Type{CONTEXT_TYPE}, x::Integer) = CONTEXT_TYPE(x) + """ Context(dev_type, dev_id) A context describes the device type and id on which computation should be carried on. """ struct Context - device_type :: CONTEXT_TYPE - device_id :: Int + device_type::CONTEXT_TYPE + device_id::Int + + Context(dev_type::CONTEXT_TYPE, dev_id::Integer = 0) = new(dev_type, dev_id) end -Context(dev_type :: Union{CONTEXT_TYPE, Int}, dev_id :: Int = 0) = - Context(convert(CONTEXT_TYPE, dev_type), dev_id) + +Context(dev_type::Integer, dev_id::Integer = 0) = + Context(convert(CONTEXT_TYPE, dev_type), dev_id) Base.show(io::IO, ctx::Context) = print(io, "$(ctx.device_type)$(ctx.device_id)") @@ -39,9 +44,9 @@ Get a CPU context with a specific id. `cpu()` is usually the default context for operations when no context is specified. # Arguments -* `dev_id::Int = 0`: the CPU id. +* `dev_id::Integer = 0`: the CPU id. """ -cpu(dev_id::Int = 0) = Context(CPU, dev_id) +cpu(dev_id::Integer = 0) = Context(CPU, dev_id) """ gpu(dev_id) @@ -49,6 +54,6 @@ cpu(dev_id::Int = 0) = Context(CPU, dev_id) Get a GPU context with a specific id. The K GPUs on a node is typically numbered as 0,...,K-1. # Arguments -* `dev_id :: Int = 0` the GPU device id. +* `dev_id::Integer = 0` the GPU device id. """ -gpu(dev_id::Int = 0) = return Context(GPU, dev_id) +gpu(dev_id::Integer = 0) = Context(GPU, dev_id) diff --git a/julia/src/deprecated.jl b/julia/src/deprecated.jl index 12c5345aa198..32819810eb8d 100644 --- a/julia/src/deprecated.jl +++ b/julia/src/deprecated.jl @@ -44,26 +44,26 @@ # @deprecate make `randn` exported accidentially # so we make the depwarn manually function randn(μ, σ, dims::NTuple{N,Int}, ctx::Context = cpu()) where N - warn("mx.randn(μ, σ, dims, ctx = cpu()) is deprecated, use " * - "mx.randn(dims...; μ = μ, σ = σ, context = ctx) instead.") + @warn("mx.randn(μ, σ, dims, ctx = cpu()) is deprecated, use " * + "mx.randn(dims...; μ = μ, σ = σ, context = ctx) instead.") mx.randn(dims...; μ = μ, σ = σ, context = ctx) end function randn!(μ, σ, x::NDArray) - warn("mx.randn!(μ, σ, x::NDArray) is deprecated, use " * - "mx.randn!(x; μ = μ, σ = σ) instead.") + @warn("mx.randn!(μ, σ, x::NDArray) is deprecated, use " * + "mx.randn!(x; μ = μ, σ = σ) instead.") randn!(x; μ = μ, σ = σ) end function rand!(low::Real, high::Real, x::NDArray) - warn("rand!(low, high, x::NDArray) is deprecated, use " * - "rand!(x, low = low, high = high) instead.") + @warn("rand!(low, high, x::NDArray) is deprecated, use " * + "rand!(x, low = low, high = high) instead.") rand!(x, low = low, high = high) end function rand(low::Real, high::Real, dims::NTuple{N,Int}, context::Context = cpu()) where N - warn("rand!(low, high, dims, x::NDArray, context = cpu()) is deprecated, use " * - "rand!(dims..., x; low = low, high = high, context = cpu()) instead.") + @warn("rand!(low, high, dims, x::NDArray, context = cpu()) is deprecated, use " * + "rand!(dims..., x; low = low, high = high, context = cpu()) instead.") rand(dims...; low = low, high = high, context = context) end @@ -75,86 +75,97 @@ end @deprecate clip(x; a_min = 0, a_max = 0) clip(x, a_min, a_max) function broadcast_plus(x::NDArray, y::NDArray) - warn("broadcast_plus(x, y) is deprecated, use x .+ y instead.") + @warn("broadcast_plus(x, y) is deprecated, use x .+ y instead.") x .+ y end function broadcast_add(x::NDArray, y::NDArray) - warn("broadcast_add(x, y) is deprecated, use x .+ y instead.") + @warn("broadcast_add(x, y) is deprecated, use x .+ y instead.") x .+ y end function broadcast_sub(x::NDArray, y::NDArray) - warn("broadcast_sub(x, y) is deprecated, use x .- y instead.") + @warn("broadcast_sub(x, y) is deprecated, use x .- y instead.") x .- y end function broadcast_minus(x::NDArray, y::NDArray) - warn("broadcast_minus(x, y) is deprecated, use x .- y instead.") + @warn("broadcast_minus(x, y) is deprecated, use x .- y instead.") x .- y end function broadcast_mul(x::NDArray, y::NDArray) - warn("broadcast_mul(x, y) is deprecated, use x .* y instead.") + @warn("broadcast_mul(x, y) is deprecated, use x .* y instead.") x .* y end function broadcast_div(x::NDArray, y::NDArray) - warn("broadcast_div(x, y) is deprecated, use x ./ y instead.") + @warn("broadcast_div(x, y) is deprecated, use x ./ y instead.") x ./ y end function broadcast_mod(x::NDArray, y::NDArray) - warn("broadcast_mod(x, y) is deprecated, use x .% y instead.") + @warn("broadcast_mod(x, y) is deprecated, use x .% y instead.") x .% y end function broadcast_power(x::NDArray, y::NDArray) - warn("broadcast_power(x, y) is deprecated, use x.^y instead.") + @warn("broadcast_power(x, y) is deprecated, use x.^y instead.") x.^y end function broadcast_equal(x::NDArray, y::NDArray) - warn("broadcast_equal(x, y) is deprecated, use x .== y instead.") + @warn("broadcast_equal(x, y) is deprecated, use x .== y instead.") x .== y end function broadcast_not_equal(x::NDArray, y::NDArray) - warn("broadcast_not_equal(x, y) is deprecated, use x .== y instead.") + @warn("broadcast_not_equal(x, y) is deprecated, use x .== y instead.") x .!= y end function broadcast_greater(x::NDArray, y::NDArray) - warn("broadcast_greater(x, y) is deprecated, use x .== y instead.") + @warn("broadcast_greater(x, y) is deprecated, use x .== y instead.") x .> y end function broadcast_greater_equal(x::NDArray, y::NDArray) - warn("broadcast_greater_equal(x, y) is deprecated, use x .== y instead.") + @warn("broadcast_greater_equal(x, y) is deprecated, use x .== y instead.") x .>= y end function broadcast_lesser(x::NDArray, y::NDArray) - warn("broadcast_lesser(x, y) is deprecated, use x .== y instead.") + @warn("broadcast_lesser(x, y) is deprecated, use x .== y instead.") x .< y end function broadcast_lesser_equal(x::NDArray, y::NDArray) - warn("broadcast_lesser_equal(x, y) is deprecated, use x .== y instead.") + @warn("broadcast_lesser_equal(x, y) is deprecated, use x .== y instead.") x .<= y end function broadcast_maximum(x::NDArray, y::NDArray) - warn("broadcast_maximum(x, y) is deprecated, use max.(x, y) instead.") + @warn("broadcast_maximum(x, y) is deprecated, use max.(x, y) instead.") max.(x, y) end function broadcast_minimum(x::NDArray, y::NDArray) - warn("broadcast_minimum(x, y) is deprecated, use min.(x, y) instead.") + @warn("broadcast_minimum(x, y) is deprecated, use min.(x, y) instead.") min.(x, y) end function broadcast_hypot(x::NDArray, y::NDArray) - warn("broadcast_hypot(x, y) is deprecated, use hypot.(x, y) instead.") + @warn("broadcast_hypot(x, y) is deprecated, use hypot.(x, y) instead.") hypot.(x, y) end + +# Introduced by /~https://github.com/apache/incubator-mxnet/pull/12845 +import Base: sum, maximum, minimum, prod, cat +@deprecate sum(x::NDArray, dims) sum(x, dims = dims) +@deprecate maximum(x::NDArray, dims) maximum(x, dims = dims) +@deprecate minimum(x::NDArray, dims) minimum(x, dims = dims) +@deprecate prod(x::NDArray, dims) prod(x, dims = dims) +@deprecate cat(dims, As::NDArray{T}...) where T cat(As..., dims = dims) + +import Statistics: mean +@deprecate mean(x::NDArray, dims) mean(x, dims = dims) diff --git a/julia/src/executor.jl b/julia/src/executor.jl index 4bf4339d65d1..29c21c8f481f 100644 --- a/julia/src/executor.jl +++ b/julia/src/executor.jl @@ -28,7 +28,7 @@ mutable struct Executor handle :: MX_ExecutorHandle symbol :: SymbolicNode arg_arrays :: VecOfNDArray - grad_arrays :: Vector{Union{Void,<:NDArray}} + grad_arrays :: Vector{Union{Cvoid,<:NDArray}} aux_arrays :: VecOfNDArray outputs :: VecOfNDArray arg_dict :: Dict{Symbol} @@ -73,17 +73,17 @@ function _get_ndarray_inputs(arg_key::AbstractString, args::Dict{Symbol}, args_vec = map(arg_names) do name arr = get(args, name, nothing) if !allow_missing - @assert(!isa(arr, Void), "Must specify all arguments in $arg_key ($name is missing)") + @assert(!isa(arr, Cvoid), "Must specify all arguments in $arg_key ($name is missing)") end arr end # help the type inference if allow_missing - args_vec = Union{NDArray,Void}[args_vec...] + args_vec = Union{NDArray,Cvoid}[args_vec...] else args_vec = NDArray[args_vec...] end - args_hdr = MX_handle[(isa(x,Void) ? MX_handle(0) : x) for x in args_vec] + args_hdr = MX_handle[(isa(x,Cvoid) ? MX_handle(0) : x) for x in args_vec] return (args_hdr, args_vec) end @@ -115,12 +115,12 @@ function bind(self::SymbolicNode, ctx::Context, args; aux_args_hdr, aux_states = _get_ndarray_inputs("aux_states", aux_states, list_auxiliary_states(self), false) if isa(grad_req, GRAD_REQ) - reqs = MX_uint[grad_req for i=1:length(args)] + reqs = MX_uint[MX_uint(grad_req) for i=1:length(args)] elseif isa(grad_req, Vector{GRAD_REQ}) @assert(length(grad_req) == length(args)) - reqs = MX_uint[grad_req...] + reqs = MX_uint[MX_uint.(grad_req)...] elseif isa(grad_req, Dict{Symbol, GRAD_REQ}) - reqs = MX_uint[get(grad_req, name, GRAD_NOP) for name in arg_names] + reqs = MX_uint[MX_uint(get(grad_req, name, GRAD_NOP)) for name in arg_names] end ref_hdr = Ref{MX_handle}(0) @@ -129,7 +129,7 @@ function bind(self::SymbolicNode, ctx::Context, args; MX_uint, Ptr{MX_handle}, Ref{MX_handle}), self, ctx.device_type, ctx.device_id, length(args), args_hdr, args_grad_hdr, reqs, length(aux_states), aux_args_hdr, ref_hdr) - args_grad = convert(Vector{Union{Void,NDArray}}, args_grad) + args_grad = convert(Vector{Union{Cvoid,NDArray}}, args_grad) executor = Executor(MX_ExecutorHandle(ref_hdr[]), self, args, args_grad, aux_states) end @@ -145,7 +145,7 @@ function simple_bind(self::SymbolicNode, ctx::Context; grad_req::Union{GRAD_REQ,Dict{Symbol,GRAD_REQ}} = GRAD_WRITE, kwargs...) arg_shapes, out_shapes, aux_shapes = infer_shape(self; kwargs...) - @assert(!isa(arg_shapes, Void), "Information not enough to perform complete shape inference") + @assert(!isa(arg_shapes, Cvoid), "Information not enough to perform complete shape inference") arg_arrays = NDArray[zeros(shape, ctx) for shape in arg_shapes] arg_names = list_arguments(self) @@ -228,7 +228,7 @@ julia> x = mx.Variable(:x) MXNet.mx.SymbolicNode x julia> exec = mx.bind(x + 1, mx.cpu(), Dict(:x => mx.ones(2,3))) -mx.Executor Ptr{Void} @0x000055c3dee9eb30 +mx.Executor Ptr{Nothing} @0x000055c3dee9eb30 julia> print(exec) Symbol Outputs: diff --git a/julia/src/initializer.jl b/julia/src/initializer.jl index 95dbeb31febd..d4b35c0ce8bc 100644 --- a/julia/src/initializer.jl +++ b/julia/src/initializer.jl @@ -143,6 +143,10 @@ NormalInitializer(; mu=0, sigma=0.01) = NormalInitializer(mu, sigma) _init_weight(i::NormalInitializer, name::Symbol, x::NDArray) = randn!(x, μ = i.μ, σ = i.σ) +@enum XavierDistribution xv_uniform xv_normal +@enum XavierRegularization xv_avg xv_in xv_out + + """ XavierInitializer @@ -161,10 +165,6 @@ used by various libraries. * [K. He, X. Zhang, S. Ren, and J. Sun 2015]: `mx.XavierInitializer(distribution = mx.xv_gaussian, regularization = mx.xv_in, magnitude = 2)` * caffe_avg: `mx.XavierInitializer(distribution = mx.xv_uniform, regularization = mx.xv_avg, magnitude = 3)` """ - -@enum XavierDistribution xv_uniform xv_normal -@enum XavierRegularization xv_avg xv_in xv_out - struct XavierInitializer <: AbstractInitializer distribution :: XavierDistribution regularization :: XavierRegularization diff --git a/julia/src/io.jl b/julia/src/io.jl index e5f43950754c..32f7fece7e41 100644 --- a/julia/src/io.jl +++ b/julia/src/io.jl @@ -24,13 +24,12 @@ The root type for all data provider. A data provider should implement the follow * [`provide_data`](@ref) * [`provide_label`](@ref) -As well as the Julia iterator interface (see [the Julia manual](http://docs.julialang.org/en/stable/manual/interfaces/)). +As well as the Julia iterator interface (see +[the Julia manual](https://docs.julialang.org/en/v1/manual/interfaces/#man-interface-iteration-1)). Normally this involves defining: * `Base.eltype(provider) -> AbstractDataBatch` -* `Base.start(provider) -> AbstractDataProviderState` -* `Base.done(provider, state) -> Bool` -* `Base.next(provider, state) -> (AbstractDataBatch, AbstractDataProvider)` +* `Base.iterate(provider[, state]) -> (AbstractDataBatch, AbstractDataProvider)` """ abstract type AbstractDataProvider end @@ -395,7 +394,11 @@ end Base.eltype(provider :: ArrayDataProvider) = ArrayDataProviderState -function Base.start(provider :: ArrayDataProvider) +struct ArrayDataBatch <: AbstractDataBatch + idx :: UnitRange{Int} +end + +function _start(provider::ArrayDataProvider) if provider.shuffle # re-shuffle all data idx_perm = randperm(provider.sample_count) @@ -406,13 +409,9 @@ function Base.start(provider :: ArrayDataProvider) return ArrayDataProviderState(1) end -Base.done(provider::ArrayDataProvider, state::ArrayDataProviderState) = - state.curr_idx > provider.sample_count - -struct ArrayDataBatch <: AbstractDataBatch - idx :: UnitRange{Int} -end -function Base.next(provider :: ArrayDataProvider, state :: ArrayDataProviderState) +function Base.iterate(provider::ArrayDataProvider, + state::ArrayDataProviderState = _start(provider)) + (state.curr_idx > provider.sample_count) && return nothing idx = state.curr_idx:Base.min(state.curr_idx+provider.batch_size-1, provider.sample_count) return (ArrayDataBatch(idx), ArrayDataProviderState(idx.stop+1)) end @@ -480,12 +479,12 @@ end function MXDataProvider(handle :: MX_DataIterHandle; data_name :: Symbol = :data, - label_name :: Union{Symbol,Void} = :softmax_label, + label_name :: Union{Symbol,Nothing} = :softmax_label, kwargs...) # for convenience, we ignore the rest keyword arguments # init iterator, load the first batch and get shapes @assert(_iter_next(handle), "Failed to load the first batch in MXDataProvider") data_shape = Tuple{Base.Symbol, Tuple}[(data_name, size(_get_data(handle)))] - if !isa(label_name, Void) + if !isa(label_name, Nothing) label_shape = Tuple{Base.Symbol, Tuple}[(label_name::Base.Symbol, size(_get_label(handle)))] else label_shape = Tuple{Base.Symbol, Tuple}[] @@ -504,10 +503,9 @@ end struct MXDataBatch <: AbstractDataBatch end -function Base.eltype(provider :: MXDataProvider) - MXDataBatch -end -function Base.start(provider :: MXDataProvider) +Base.eltype(::MXDataProvider) = MXDataBatch + +function _start(provider::MXDataProvider) if !provider.first_epoch _reset_data_iter(provider.handle) else @@ -516,7 +514,8 @@ function Base.start(provider :: MXDataProvider) return MXDataProviderState(true) end -function Base.done(provider :: MXDataProvider, state :: MXDataProviderState) + +function _done(provider::MXDataProvider, state::MXDataProviderState) if provider.first_batch state.has_next = true provider.first_batch = false @@ -525,8 +524,10 @@ function Base.done(provider :: MXDataProvider, state :: MXDataProviderState) end return !state.has_next end -function Base.next(provider :: MXDataProvider, state :: MXDataProviderState) - return (MXDataBatch(), state) + +function Base.iterate(provider::MXDataProvider, state::MXDataProviderState = _start(provider)) + _done(provider, state) && return nothing + MXDataBatch(), state end function get_data(provider :: MXDataProvider, batch :: MXDataBatch) @@ -574,7 +575,7 @@ function _populate_iter_creator_cache!() end end -_get_iter_creator(name :: Symbol) = _iter_creator_cache[name] +_get_iter_creator(name::Symbol) = _iter_creator_cache[name] function _define_data_iter_creator(hdr :: MX_handle) ref_name = Ref{char_p}(0) @@ -611,7 +612,7 @@ function _define_data_iter_creator(hdr :: MX_handle) end defun = quote - @doc $f_desc -> + @doc $f_desc function $iter_name(; kwargs...) arg_keys = String[string(k) for (k,v) in kwargs] arg_vals = String[dump_mx_param(v) for (k,v) in kwargs] diff --git a/julia/src/kvstore.jl b/julia/src/kvstore.jl index ac0367144384..000684d5f20d 100644 --- a/julia/src/kvstore.jl +++ b/julia/src/kvstore.jl @@ -45,10 +45,10 @@ For distributed training, `KVStore` also supports a number of types: """ mutable struct KVStore handle :: MX_KVStoreHandle - updater_c :: Ptr{Void} + updater_c :: Ptr{Cvoid} updater :: Function - KVStore(hdr::MX_KVStoreHandle) = new(hdr, Ptr{Void}(0)) + KVStore(hdr::MX_KVStoreHandle) = new(hdr, Ptr{Cvoid}(0)) end function KVStore(kv_type::Symbol = :local) @@ -251,7 +251,7 @@ barrier(kv::KVStore) = @mxcall(:MXKVStoreBarrier, (MX_handle,), kv) # extra handle parameter of the API to pass the updater object around. Fix this when someday # full closure cfunction is supported in Julia. function _kvstore_update_wrapper(key::Cint, nd_recv::MX_handle, nd_local::MX_handle, - updater::Ptr{Void}) + updater::Ptr{Cvoid}) updater_func = unsafe_pointer_to_objref(updater) updater_func(Int(key), NDArray(MX_NDArrayHandle(nd_recv)), NDArray(MX_NDArrayHandle(nd_local))) @@ -291,9 +291,9 @@ julia> x """ function setupdater!(kv::KVStore, updater) kv.updater = updater # keep a reference to the julia object so that updater_c is kept valid - kv.updater_c = cfunction(_kvstore_update_wrapper, Void, - (Cint, MX_handle, MX_handle, Ptr{Void})) - @mxcall(:MXKVStoreSetUpdater, (MX_handle, Ptr{Void}, Any), + kv.updater_c = @cfunction(_kvstore_update_wrapper, Cvoid, + (Cint,MX_handle,MX_handle,Ptr{Cvoid})) + @mxcall(:MXKVStoreSetUpdater, (MX_handle, Ptr{Cvoid}, Any), kv, kv.updater_c, updater) end @@ -336,7 +336,7 @@ julia> W ``` """ function setoptimizer!(kv::KVStore, opt::AbstractOptimizer) - if ismatch(r"dist", string(get_type(kv))) && _isworker() + if occursin(r"dist", string(get_type(kv))) && _isworker() # TODO error("not implemented") else diff --git a/julia/src/metric.jl b/julia/src/metric.jl index 772eb3b3e680..f1cdc68d947f 100644 --- a/julia/src/metric.jl +++ b/julia/src/metric.jl @@ -47,16 +47,16 @@ Update and accumulate metrics. * `labels::Vector{NDArray}`: the labels from the data provider. * `preds::Vector{NDArray}`: the outputs (predictions) of the network. """ -function update!(metric::T, labels::VecOfNDArray, preds::VecOfNDArray) where T <: AbstractEvalMetric +update!(metric::T, labels::VecOfNDArray, preds::VecOfNDArray) where T<:AbstractEvalMetric = _update!(metric, labels, preds, hasNDArraySupport(metric)) -end function _update!(metric::T, labels::VecOfNDArray, preds::VecOfNDArray, - ::Val{true}) where T<: AbstractEvalMetric + ::Val{true}) where T<:AbstractEvalMetric if length(labels) != length(preds) - Base.warn_once( - "The number of labels ($(length(labels))) does not correspond to the\ - number of outputs ($(length(preds))). The calculated metric might not be accuracte.") + @warn( + "The number of labels ($(length(labels))) does not correspond to the " * + "number of outputs ($(length(preds))). The calculated metric might not be accuracte.", + maxlog = 1) end for (label, pred) in zip(labels, preds) _update_single_output(metric, label, pred) @@ -64,11 +64,12 @@ function _update!(metric::T, labels::VecOfNDArray, preds::VecOfNDArray, end function _update!(metric::T, labels::VecOfNDArray, preds::VecOfNDArray, - ::Val{false}) where T<: AbstractEvalMetric + ::Val{false}) where {T<:AbstractEvalMetric} if length(labels) != length(preds) - Base.warn_once( - "The number of labels ($(length(labels))) does not correspond to the\ - number of outputs ($(length(preds))). The calculated metric might not be accuracte.") + @warn( + "The number of labels ($(length(labels))) does not correspond to the " * + "number of outputs ($(length(preds))). The calculated metric might not be accuracte.", + maxlog = 1) end for (label, pred) in zip(labels, preds) @nd_as_jl ro=(label, pred) begin @@ -124,19 +125,19 @@ To calculate both mean-squared error [`Accuracy`](@ref) and log-loss [`ACE`](@re ``` """ mutable struct MultiMetric <: AbstractEvalMetric - metrics :: Vector{mx.AbstractEvalMetric} + metrics :: Vector{mx.AbstractEvalMetric} end function update!(metric :: MultiMetric, labels :: Vector{<:NDArray}, preds :: Vector{<:NDArray}) - for m in metric.metrics - update!(m, labels, preds) - end - nothing + for m in metric.metrics + update!(m, labels, preds) + end + nothing end function reset!(metric :: MultiMetric) - map(reset!, metric.metrics) - nothing + map(reset!, metric.metrics) + nothing end get(metric::MultiMetric) = mapreduce(get, append!, metric.metrics) @@ -154,21 +155,21 @@ and log-loss [`ACE`](@ref) for the second output: ``` """ mutable struct SeqMetric <: AbstractEvalMetric - metrics :: Vector{AbstractEvalMetric} + metrics :: Vector{AbstractEvalMetric} end function update!(metric::SeqMetric, labels::VecOfNDArray, preds::VecOfNDArray) - @assert length(metric.metrics) == length(labels) - @assert length(metric.metrics) == length(preds) - for (m, l, p) in zip(metric.metrics, labels, preds) - update!(m, [l], [p]) - end - nothing + @assert length(metric.metrics) == length(labels) + @assert length(metric.metrics) == length(preds) + for (m, l, p) in zip(metric.metrics, labels, preds) + update!(m, [l], [p]) + end + nothing end function reset!(metric::SeqMetric) - map(reset!, metric.metrics) - nothing + map(reset!, metric.metrics) + nothing end get(metric::SeqMetric) = mapreduce(get, append!, metric.metrics) @@ -204,7 +205,7 @@ function _update_single_output(metric::Accuracy, label::Array, pred::Array) for i in 1:size(labels, 1) label = labels[i, j, 1, sample] klasses = view(pred, i, j, :, sample) - klass = indmax(klasses) - 1 # Classes start at 0...k-1 + klass = argmax(klasses) - 1 # Classes start at 0...k-1 metric.acc_sum += klass == label metric.n_sample += 1 @@ -213,7 +214,7 @@ function _update_single_output(metric::Accuracy, label::Array, pred::Array) end elseif ndims(pred) == 2 # 1-dimensional case for sample in 1:size(label, 1) - klass = indmax(view(pred, :, sample)) - 1 + klass = argmax(view(pred, :, sample)) - 1 metric.acc_sum += klass == label[sample] metric.n_sample += 1 end @@ -237,7 +238,6 @@ Mean Squared Error. Calculates the mean squared error regression loss. Requires that label and prediction have the same shape. """ - mutable struct MSE{N} <: AbstractEvalMetric mse_sum :: Vector{NDArray{MX_float,N}} n_sample :: Int @@ -269,7 +269,7 @@ function reset!(metric::MSE{N}) where N metric.n_sample = 0 end -doc""" +@doc doc""" NMSE Normalized Mean Squared Error diff --git a/julia/src/model.jl b/julia/src/model.jl index 109cb35e38a6..cb5f95e3c1eb 100644 --- a/julia/src/model.jl +++ b/julia/src/model.jl @@ -38,7 +38,7 @@ mutable struct FeedForward <: AbstractModel arg_params :: Dict{Symbol} aux_params :: Dict{Symbol} - pred_exec :: Union{Executor,Void} + pred_exec :: Union{Executor,Cvoid} # leave the rest fields undefined FeedForward(arch::SymbolicNode, ctx::Vector{Context}) = new(arch, ctx) @@ -53,9 +53,9 @@ piece. function _split_inputs(batch_size::Int, n_split::Int) @assert(batch_size >= n_split) per_split = floor(Int, batch_size / n_split) - counts = Base.zeros(Int, n_split)+per_split + counts = Base.zeros(Int, n_split) .+ per_split extra = batch_size - Base.sum(counts) - counts[1:extra] += 1 + counts[1:extra] .+= 1 cum = [0, cumsum(counts)...] idx = [cum[i-1]+1:cum[i] for i = 2:length(cum)] @@ -118,7 +118,7 @@ function init_model(self::FeedForward, initializer::AbstractInitializer; overwri arg_params[name] = self.arg_params[name] continue else - warn("Shape mismatch for $name. Overwriting with new one.") + @warn("Shape mismatch for $name. Overwriting with new one.") delete!(self.arg_params, name) end end @@ -131,7 +131,7 @@ function init_model(self::FeedForward, initializer::AbstractInitializer; overwri aux_params[name] = self.aux_params[name] continue else - warn("Shape mismatch for $name. Overwriting with new one.") + @warn("Shape mismatch for $name. Overwriting with new one.") delete!(self.aux_params, name) end end @@ -156,7 +156,7 @@ function init_model(self::FeedForward, initializer::AbstractInitializer; overwri end function _setup_predictor(self::FeedForward, overwrite::Bool=false; verbosity::Integer = 1, data_shapes...) - if !isdefined(self, :pred_exec) || isa(self.pred_exec, Void) || overwrite + if !isdefined(self, :pred_exec) || isa(self.pred_exec, Cvoid) || overwrite if !isdefined(self, :arg_params) || !isdefined(self, :aux_params) @assert(false, "Model weights not defined, please init or train the model, or load from file") end @@ -164,7 +164,7 @@ function _setup_predictor(self::FeedForward, overwrite::Bool=false; verbosity::I # the predictor use only the first device self.pred_exec = simple_bind(self.arch, self.ctx[1]; grad_req=GRAD_NOP, data_shapes...) dbg_str = mx.debug_str(self.pred_exec) - verbosity >= 1 && info(string("TempSpace: ", split(dbg_str, ['\n'])[end-2]..., " on ", self.ctx[1])) + verbosity >= 1 && @info(string("TempSpace: ", split(dbg_str, ['\n'])[end-2]..., " on ", self.ctx[1])) copy_params_from(self.pred_exec, self.arg_params, self.aux_params) else # make sure the new setup is compatible with the existing one @@ -224,7 +224,7 @@ function predict(callback::Function, self::FeedForward, data::AbstractDataProvid predict(self, data; overwrite = overwrite, callback=callback, verbosity = verbosity) end function predict(self::FeedForward, data::AbstractDataProvider; - overwrite::Bool = true, callback::Union{Function,Void}=nothing, verbosity::Integer = 1) + overwrite::Bool = true, callback::Union{Function,Cvoid}=nothing, verbosity::Integer = 1) data_shapes = provide_data(data) data_names = [x[1] for x in data_shapes] _setup_predictor(self, overwrite; verbosity = verbosity, data_shapes...) @@ -235,7 +235,7 @@ function predict(self::FeedForward, data::AbstractDataProvider; for batch in eachbatch(data) load_data!(data, batch, data_arrays) forward(self.pred_exec, is_train=false) - if isa(callback, Void) + if isa(callback, Cvoid) # no callback, accumulate the data and return at the end for (o_list, o_nd) in zip(output_list, self.pred_exec.outputs) push!(o_list, copy(slice(o_nd, 1:count_samples(data, batch)))) @@ -249,7 +249,7 @@ function predict(self::FeedForward, data::AbstractDataProvider; end end - if !isa(callback, Void) + if !isa(callback, Cvoid) # callback exists, do not accumulate data return nothing end @@ -264,7 +264,7 @@ function predict(self::FeedForward, data::AbstractDataProvider; end # concatenate along mini-batches - output_arrays = [cat(ndims(x[1]), x...) for x in output_list] + output_arrays = [cat(x..., dims = ndims(x[1])) for x in output_list] if length(output_arrays) == 1 # only 1 output, return it directly, instead of a list output_arrays = output_arrays[1] @@ -279,7 +279,7 @@ function _init_model(self::FeedForward, data::AbstractDataProvider, end function _create_kvstore(kv_type::Symbol, num_device::Int, arg_params::Dict{Symbol}, verbosity::Int) - if num_device == 1 && !ismatch(r"dist", string(kv_type)) + if num_device == 1 && !occursin(r"dist", string(kv_type)) return nothing else if kv_type == :local @@ -289,7 +289,7 @@ function _create_kvstore(kv_type::Symbol, num_device::Int, arg_params::Dict{Symb else kv_type = :local_allreduce_cpu end - verbosity >= 2 && info("Auto-select kvstore type = $kv_type") + verbosity >= 2 && @info("Auto-select kvstore type = $kv_type") end return KVStore(kv_type) end @@ -298,7 +298,7 @@ end @defstruct TrainingOptions ( initializer :: AbstractInitializer = UniformInitializer(0.01), n_epoch :: Int = 10, - eval_data :: Union{Void,AbstractDataProvider} = nothing, + eval_data :: Union{Cvoid,AbstractDataProvider} = nothing, eval_metric :: AbstractEvalMetric = Accuracy(), kvstore :: Union{Symbol,KVStore} = :local, force_init :: Bool = false, @@ -364,25 +364,25 @@ function fit(self::FeedForward, optimizer::AbstractOptimizer, data::AbstractData kwargs...) opts = TrainingOptions(; kwargs...) - opts.verbosity >= 1 && info("Start training on $(self.ctx)") + opts.verbosity >= 1 && @info("Start training on $(self.ctx)") batch_size = get_batch_size(data) num_dev = length(self.ctx) slices = _split_inputs(batch_size, num_dev) # initialize parameters - opts.verbosity >= 2 && info("Initializing parameters...") + opts.verbosity >= 2 && @info("Initializing parameters...") arg_names, param_names, aux_names = _init_model(self, data, opts.initializer, opts.force_init) # setup kvstore kvstore = opts.kvstore if isa(kvstore, Symbol) - opts.verbosity >= 2 && info("Creating KVStore...") + opts.verbosity >= 2 && @info("Creating KVStore...") kvstore = _create_kvstore(kvstore, length(self.ctx), self.arg_params, opts.verbosity) end update_on_kvstore = true - if isa(kvstore, Void) || ismatch(r"local_allreduce", string(get_type(kvstore))) + if isa(kvstore, Cvoid) || occursin(r"local_allreduce", string(get_type(kvstore))) update_on_kvstore = false end @@ -407,13 +407,13 @@ function fit(self::FeedForward, optimizer::AbstractOptimizer, data::AbstractData end end - train_execs = Array{Executor}(num_dev) + train_execs = Array{Executor}(undef, num_dev) for i = 1:num_dev data_shapes = Dict(map((x) -> x[1] => tuple(x[2][1:end-1]...,length(slices[i])), provide_data(data))) label_shapes = Dict(map((x) -> x[1] => tuple(x[2][1:end-1]...,length(slices[i])), provide_label(data))) train_execs[i] = simple_bind(self.arch, self.ctx[i]; grad_req=grad_req, data_shapes..., label_shapes...) dbg_str = mx.debug_str(train_execs[i]) - opts.verbosity >= 2 && info(string("TempSpace: ", split(dbg_str, ['\n'])[end-2]..., " on ", self.ctx[i])) + opts.verbosity >= 2 && @info(string("TempSpace: ", split(dbg_str, ['\n'])[end-2]..., " on ", self.ctx[i])) copy_params_from(train_execs[i], self.arg_params, self.aux_params) end @@ -441,12 +441,12 @@ function fit(self::FeedForward, optimizer::AbstractOptimizer, data::AbstractData updater = getupdater(optimizer) end - if !isa(kvstore, Void) + if !isa(kvstore, Cvoid) if update_on_kvstore set_optimizer(kvstore, optimizer) end - opts.verbosity >= 2 && info("Initializing KVStore...") + opts.verbosity >= 2 && @info("Initializing KVStore...") # init kv with gradients for idx = 1:length(param_arrays) param_on_devs = param_arrays[idx] @@ -469,7 +469,7 @@ function fit(self::FeedForward, optimizer::AbstractOptimizer, data::AbstractData # invoke callbacks on epoch 0 _invoke_callbacks(self, opts.callbacks, op_state, AbstractEpochCallback) - opts.verbosity >= 2 && info("Start training...") + opts.verbosity >= 2 && @info("Start training...") for i_epoch = 1:opts.n_epoch time_start = time() reset!(opts.eval_metric) @@ -506,7 +506,7 @@ function fit(self::FeedForward, optimizer::AbstractOptimizer, data::AbstractData end # gradient synchronization - if !isa(kvstore, Void) + if !isa(kvstore, Cvoid) # push gradient, priority is negative index push!(kvstore, idx, grad_arrays[idx], priority=-idx) if update_on_kvstore @@ -543,17 +543,17 @@ function fit(self::FeedForward, optimizer::AbstractOptimizer, data::AbstractData time_stop = time() metric = get(opts.eval_metric) - opts.verbosity >= 2 && info(format("== Epoch {1:0>3d}/{2:0>3d} ==========", i_epoch, opts.n_epoch)) + opts.verbosity >= 2 && @info(format("== Epoch {1:0>3d}/{2:0>3d} ==========", i_epoch, opts.n_epoch)) if opts.verbosity >= 3 - info("## Training summary") + @info("## Training summary") for (name, value) in metric - info(format("{1:>18s} = {2:.4f}", string(name), value)) + @info(format("{1:>18s} = {2:.4f}", string(name), value)) end - info(format("{1:>18s} = {2:.4f} seconds", "time", time_stop-time_start)) + @info(format("{1:>18s} = {2:.4f} seconds", "time", time_stop-time_start)) end # evaluation on validation set - if !isa(opts.eval_data, Void) + if !isa(opts.eval_data, Cvoid) # because we are re-using the memory allocated for the training network, # the batch_size of the validation dataset must be the same as the training # batch_size @@ -577,9 +577,9 @@ function fit(self::FeedForward, optimizer::AbstractOptimizer, data::AbstractData end if opts.verbosity >= 3 - info("## Validation summary") + @info("## Validation summary") for (name, value) in get(opts.eval_metric) - info(format("{1:>18s} = {2:.4f}", string(name), value)) + @info(format("{1:>18s} = {2:.4f}", string(name), value)) end end end @@ -603,7 +603,7 @@ function fit(self::FeedForward, optimizer::AbstractOptimizer, data::AbstractData _invoke_callbacks(self, opts.callbacks, op_state, AbstractEpochCallback; metric=metric) end # end of all epochs - opts.verbosity >= 1 && info("Finish training on $(self.ctx)") + opts.verbosity >= 1 && @info("Finish training on $(self.ctx)") nothing end @@ -613,13 +613,15 @@ save_checkpoint(self::FeedForward, prefix::AbstractString, state::OptimizationSt function save_checkpoint(sym::SymbolicNode, arg_params::Dict{Symbol}, aux_params::Dict{Symbol}, prefix::AbstractString, epoch::Int) save("$prefix-symbol.json", sym) - save_dict = Dict{Symbol, NDArray}(map((x) -> Symbol("arg:$(x[1])") => x[2], arg_params)) + save_dict = Dict{Symbol,NDArray}( + Symbol("arg:$(x[1])") => x[2] for x in arg_params + ) if !isempty(aux_params) merge!(save_dict, Dict(map((x) -> Symbol("aux:$(x[1])") => x[2], aux_params))) end save_filename = format("{1}-{2:04d}.params", prefix, epoch) save(save_filename, save_dict) - info("Saved checkpoint to '$save_filename'") + @info("Saved checkpoint to '$save_filename'") end function load_checkpoint(prefix::AbstractString, epoch::Int) @@ -656,7 +658,7 @@ end function load_checkpoint(self::FeedForward, prefix::AbstractString, epoch::Int; overwrite::Bool = true, allow_different_arch::Bool = false) if isdefined(self, :arg_params) && isdefined(self, :aux_params) && !overwrite - info("model weights already exists, skip loading... (call with overwrite=true if needed)") + @info("model weights already exists, skip loading... (call with overwrite=true if needed)") return self end diff --git a/julia/src/ndarray.jl b/julia/src/ndarray.jl index 9e47150a1a00..dad9b59e8210 100644 --- a/julia/src/ndarray.jl +++ b/julia/src/ndarray.jl @@ -61,22 +61,22 @@ function fromTypeFlag(T::TypeFlag) end # create a NDArray handle of specific shape -function _ndarray_alloc(shape :: NTuple{N, Int}, ctx :: Context, delay_alloc :: Bool) where N +function _ndarray_alloc(shape::NTuple{N,Int}, ctx::Context, delay_alloc::Bool) where N h_ref = Ref{MX_handle}(0) - shape = flipdim(MX_uint[shape...],1) + shape = collect(reverse(MX_uint.(shape))) @mxcall(:MXNDArrayCreate, (Ptr{MX_uint}, MX_uint, Cint, Cint, Cint, Ref{MX_handle}), - shape, length(shape), ctx.device_type, ctx.device_id, delay_alloc, h_ref) + shape, N, ctx.device_type, ctx.device_id, delay_alloc, h_ref) handle = MX_NDArrayHandle(h_ref[]) return handle end # create a NDArray handle of specific shape type -function _ndarray_alloc(:: Type{T}, shape :: NTuple{N, Int}, ctx :: Context, delay_alloc :: Bool) where {T <: DType,N} +function _ndarray_alloc(::Type{T}, shape::NTuple{N,Int}, ctx::Context, delay_alloc::Bool) where {T<:DType,N} h_ref = Ref{MX_handle}(0) - shape = flipdim(MX_uint[shape...],1) + shape = collect(reverse(MX_uint.(shape))) dtype = toTypeFlag(T) @mxcall(:MXNDArrayCreateEx, (Ptr{MX_uint}, MX_uint, Cint, Cint, Cint, Cint, Ref{MX_handle}), - shape, length(shape), ctx.device_type, ctx.device_id, delay_alloc, dtype, h_ref) + shape, N, ctx.device_type, ctx.device_id, delay_alloc, dtype, h_ref) handle = MX_NDArrayHandle(h_ref[]) return handle end @@ -113,51 +113,53 @@ mutable struct NDArray{T,N} NDArray{T,N}(handle, writable = true) where {T,N} = new(handle, writable) end -NDArray(x::AbstractArray{T}) where {T<:DType} = copy(collect(x), cpu()) -NDArray(x::Array{T}) where {T<:DType} = copy(x, cpu()) +NDArray(x::AbstractArray{<:DType}) = copy(collect(x), cpu()) +NDArray(x::Array{<:DType}) = copy(x, cpu()) NDArray(::Type{T}, x::AbstractArray) where {T<:DType} = copy(convert(AbstractArray{T}, x), cpu()) NDArray(handle, writable = true) = NDArray{eltype(handle), ndims(handle)}(handle, writable) # type aliases -const NDArrayOrReal = Union{NDArray, Real} +const NDArrayOrReal = Union{NDArray,Real} const VecOfNDArray = AbstractVector{<:NDArray} -@unfuse NDArray - function Base.show(io::IO, x::NDArray) - print(io, "NDArray ") - Base.showarray(io, try_get_shared(x, sync = :read), header = false) + print(io, "NDArray(") + Base.show(io, try_get_shared(x, sync = :read)) + print(io, ")") end # for REPL -function Base.show(io::IO, ::MIME{Symbol("text/plain")}, x::NDArray{T, N}) where {T, N} +function Base.show(io::IO, ::MIME{Symbol("text/plain")}, x::NDArray{T,N}) where {T,N} type_ = split(string(typeof(x)), '.', limit=2)[end] - size_ = N == 1 ? "$(length(x))-element" : join(size(x), "×") - println(io, "$size_ $type_ @ $(context(x)):") - Base.showarray(io, try_get_shared(x, sync = :read), false, header = false) + n = length(x) + size_ = N == 1 ? "$n-element" : join(size(x), "×") + print(io, "$size_ $type_ @ $(context(x))", (n == 0) ? "" : ":\n") + Base.print_array(io, try_get_shared(x, sync = :read)) end -Base.unsafe_convert(::Type{MX_handle}, obj::NDArray) = - Base.unsafe_convert(MX_handle, obj.handle) -Base.convert(T::Type{MX_handle}, obj::NDArray) = Base.unsafe_convert(T, obj) -Base.cconvert(T::Type{MX_handle}, obj::NDArray) = Base.unsafe_convert(T, obj) +Base.unsafe_convert(::Type{MX_handle}, x::NDArray) = + Base.unsafe_convert(MX_handle, x.handle) +Base.convert(T::Type{MX_handle}, x::NDArray) = Base.unsafe_convert(T, x) +Base.cconvert(T::Type{MX_handle}, x::NDArray) = Base.unsafe_convert(T, x) + +MX_handle(x::NDArray) = Base.convert(MX_handle, x) ################################################################################ # NDArray functions exported to the users ################################################################################ """ - context(arr::NDArray) + context(x::NDArray) Get the context that this `NDArray` lives on. """ -function context(arr::NDArray) +function context(x::NDArray) ref_typeid = Ref{Cint}(0) ref_devid = Ref{Cint}(0) @mxcall(:MXNDArrayGetContext, (MX_handle, Ref{Cint}, Ref{Cint}), - arr, ref_typeid, ref_devid) - return Context(ref_typeid[], ref_devid[]) + x, ref_typeid, ref_devid) + Context(ref_typeid[], ref_devid[]) end """ @@ -168,7 +170,7 @@ end Allocate memory for an uninitialized `NDArray` with a specified type. """ empty(::Type{T}, dims::NTuple{N,Int}, ctx::Context = cpu()) where {N,T<:DType} = - NDArray{T, N}(_ndarray_alloc(T, dims, ctx, false)) + NDArray{T,N}(_ndarray_alloc(T, dims, ctx, false)) empty(::Type{T}, dims::Int...) where {T<:DType} = empty(T, dims) """ @@ -198,9 +200,9 @@ Base.similar(x::NDArray{T}) where {T} = empty(T, size(x), context(x)) Create zero-ed `NDArray` with specific shape and type. """ function zeros(::Type{T}, dims::NTuple{N,Int}, ctx::Context = cpu()) where {N,T<:DType} - arr = empty(T, dims, ctx) - arr[:] = zero(T) - arr + x = empty(T, dims, ctx) + x[:] = zero(T) + x end zeros(::Type{T}, dims::Int...) where {T<:DType} = zeros(T, dims) @@ -234,32 +236,24 @@ ones(dims::Int...) = ones(dims) ones(x::NDArray)::typeof(x) = ones_like(x) Base.ones(x::NDArray)::typeof(x) = ones_like(x) -import Base: size, length, ndims, eltype +import Base: length, ndims """ size(x::NDArray) - size(x::NDArray, dims...) + size(x::NDArray, dims) Get the shape of an `NDArray`. The shape is in Julia's column-major convention. See also the notes on NDArray shapes [`NDArray`](@ref). """ -function size(x::NDArray) +function Base.size(x::NDArray) ref_ndim = Ref{MX_uint}(0) ref_shape = Ref{Ptr{MX_uint}}(0) @mxcall(:MXNDArrayGetShape, (MX_handle, Ref{MX_uint}, Ref{Ptr{MX_uint}}), x, ref_ndim, ref_shape) - tuple(map(Int, flipdim(unsafe_wrap(Array, ref_shape[], ref_ndim[]),1))...) + tuple(map(Int, reverse(unsafe_wrap(Array, ref_shape[], ref_ndim[])))...) end -function size(x::NDArray{T,N}, dim::Int) where {T,N} - if dim > N - 1 - else - size(x)[dim] - end -end - -size(x::NDArray, dims::Int...) = map(d -> size(x, d), dims) +Base.size(x::NDArray{T,N}, dims::Integer) where {T,N} = (dims > N) ? 1 : size(x)[dims] """ length(x::NDArray) @@ -289,25 +283,23 @@ end Get the element type of an `NDArray`. """ -function eltype(x::Union{NDArray, MX_NDArrayHandle}) +function Base.eltype(x::Union{NDArray,MX_NDArrayHandle}) dtype_ref = Ref{Cint}(0) @mxcall(:MXNDArrayGetDType, (MX_handle, Ptr{Cint}), x, dtype_ref) if dtype_ref[] == -1 # x->is_none() - warn("Eltype of $x is not defined") - Base.show_backtrace(STDOUT, backtrace()) - println() - Float32 - else - fromTypeFlag(TypeFlag(dtype_ref[])) + # TODO: unit test for this branch + throw(MXError("Eltype of $x is not defined")) end + + fromTypeFlag(TypeFlag(dtype_ref[])) end @inline _first(x::NDArray) = try_get_shared(x, sync = :read) |> first Base.first(x::NDArray) = _first(x) -Base.endof(x::NDArray) = length(x) +Base.lastindex(x::NDArray) = length(x) """ slice(arr :: NDArray, start:stop) @@ -456,7 +448,7 @@ Copy contents of `src` into `dst`. function copy!(dst::NDArray, src::NDArray) @assert(dst.writable) if dst.handle == src.handle - warn("Copying an NDArray to itself") + @warn("Copying an NDArray to itself") return end @@ -466,7 +458,7 @@ end function copy!(dst::Array{T}, src::NDArray{T}) where T<:DType @assert size(dst) == size(src) - @mxcall(:MXNDArraySyncCopyToCPU, (MX_handle, Ptr{Void}, Csize_t), + @mxcall(:MXNDArraySyncCopyToCPU, (MX_handle, Ptr{Cvoid}, Csize_t), src, pointer(dst), length(dst)) dst end @@ -478,7 +470,7 @@ function copy!(dst::NDArray{T}, src::Array{<:Real}) where {T} @assert dst.writable @assert size(dst) == size(src) src = convert(Array{T}, src) # this might involve copying - @mxcall(:MXNDArraySyncCopyFromCPU, (MX_handle, Ptr{Void}, Csize_t), + @mxcall(:MXNDArraySyncCopyFromCPU, (MX_handle, Ptr{Cvoid}, Csize_t), dst.handle, pointer(src), length(src)) dst end @@ -487,7 +479,7 @@ function copy_ignore_shape!(dst::NDArray{T}, src::Array{<:Real}) where {T} @assert dst.writable @assert length(dst) == length(src) src = convert(Array{T}, src) # this might involve copying - @mxcall(:MXNDArraySyncCopyFromCPU, (MX_handle, Ptr{Void}, Csize_t), + @mxcall(:MXNDArraySyncCopyFromCPU, (MX_handle, Ptr{Cvoid}, Csize_t), dst.handle, pointer(src), length(src)) dst end @@ -501,8 +493,10 @@ end Create a copy of an array. When no `Context` is given, create a Julia `Array`. Otherwise, create an `NDArray` on the specified context. """ +copy + # Create copy: NDArray -> Julia Array -copy(x::NDArray{T,D}) where{T,D} = copy!(Array{T,D}(size(x)), x) +copy(x::NDArray{T,D}) where{T,D} = copy!(Array{T,D}(undef, size(x)), x) # Create copy: NDArray -> NDArray in a given context copy(x::NDArray{T,D}, ctx::Context) where {T,D} = @@ -538,27 +532,27 @@ end """ hcat(x::NDArray...) """ -Base.hcat(xs::NDArray{T}...) where T = cat(2, xs...) +Base.hcat(xs::NDArray{T}...) where T = cat(xs..., dims = 2) """ vcat(x::NDArray...) """ -Base.vcat(xs::NDArray{T}...) where T = cat(1, xs...) +Base.vcat(xs::NDArray{T}...) where T = cat(xs..., dims = 1) """ - cat(dim, xs::NDArray...) + cat(xs::NDArray...; dims) -Concate the `NDArray`s which have the same element type along the `dim`. +Concate the `NDArray`s which have the same element type along the `dims`. Building a diagonal matrix is not supported yet. """ -function Base.cat(dim::Int, xs::NDArray{T}...) where T +function Base.cat(xs::NDArray{T}...; dims) where T ns = ndims.(xs) - d = Base.max(dim, maximum(ns)) + d = Base.max(dims, maximum(ns)) xs′ = map(zip(ns, xs)) do i n, x = i (d > n) ? reshape(x, -2, Base.ones(Int, d - n)...) : x end - concat(xs′..., dim = d - dim) + concat(xs′..., dim = d - dims) end """ @@ -633,11 +627,7 @@ added together. Note at least the first or second argument needs to be an +(x::NDArray, y::Real) = _plus_scalar(x, scalar = y) +(y::Real, x::NDArray) = _plus_scalar(x, scalar = y) -broadcast_(::typeof(+), x::NDArray, y::Real) = x + y -broadcast_(::typeof(+), x::Real, y::NDArray) = x + y - -broadcast_(::typeof(+), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = x + y -broadcast_(::typeof(+), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = +broadcasted(::typeof(+), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = _broadcast_add(x, y) """ @@ -665,16 +655,12 @@ import Base: - Subtraction `x - y`, of scalar types or `NDArray`. Or create the negative of `x`. """ --(x::NDArray) = _mul_scalar(x, scalar = -one(eltype(x))) +-(x::NDArray) = _mul_scalar(x, scalar = -one(eltype(x))) -(x::NDArray, y::NDArray) = _minus(x, y) -(x::NDArray, y::Real) = _minus_scalar(x, scalar = y) -(y::Real, x::NDArray) = _rminus_scalar(x, scalar = y) -broadcast_(::typeof(-), x::NDArray, y::Real) = x - y -broadcast_(::typeof(-), x::Real, y::NDArray) = x - y - -broadcast_(::typeof(-), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = x - y -broadcast_(::typeof(-), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = +broadcasted(::typeof(-), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = _broadcast_minus(x, y) """ @@ -703,12 +689,9 @@ Elementwise multiplication for `NDArray`. *(x::NDArray, y::Real) = _mul_scalar(x, scalar = y) *(y::Real, x::NDArray) = _mul_scalar(x, scalar = y) -broadcast_(::typeof(*), x::NDArray, y::Real) = x * y -broadcast_(::typeof(*), y::Real, x::NDArray) = x * y - -broadcast_(::typeof(*), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = +broadcasted(::typeof(*), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = _mul(x, y) -broadcast_(::typeof(*), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = +broadcasted(::typeof(*), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = _broadcast_mul(x, y) """ @@ -718,6 +701,9 @@ Matrix/tensor multiplication. """ *(x::NDArray{T}, y::NDArray{T}) where T = x ⋅ y +LinearAlgebra.adjoint(x::NDArray{T,1}) where T = transpose(x) +LinearAlgebra.adjoint(x::NDArray{T,2}) where T = transpose(x) + """ div_from!(dst::NDArray, arg::NDArrayOrReal) @@ -767,15 +753,13 @@ of the same shape. """ /(x::NDArray, y::Real) = _div_scalar(x, scalar = y) -broadcast_(::typeof(/), x::NDArray, y::Real) = _div_scalar(x, scalar = y) -broadcast_(::typeof(/), y::Real, x::NDArray) = _rdiv_scalar(x, scalar = y) - -broadcast_(::typeof(/), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = +broadcasted(::typeof(/), y::Real, x::NDArray) = _rdiv_scalar(x, scalar = y) +broadcasted(::typeof(/), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = _div(x, y) -broadcast_(::typeof(/), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = +broadcasted(::typeof(/), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = _broadcast_div(x, y) -function broadcast_(::typeof(/), x::NDArray{T}, y::Real) where {T<:Integer} +function broadcasted(::typeof(/), x::NDArray{T}, y::Real) where {T<:Integer} @assert(round(T, y) != zero(T), "Integer divided by zero") _div_scalar(x, scalar = y) end @@ -807,52 +791,50 @@ import Base: % Elementwise modulo for `NDArray`. """ -%(x::NDArray, y::Real) = _mod_scalar(x, scalar = y) - -broadcast_(::typeof(%), x::NDArray, y::Real) = _mod_scalar(x, y) -broadcast_(::typeof(%), y::Real, x::NDArray) = _rmod_scalar(x, y) +%(x::NDArray, y::Real) = _mod_scalar(x, y) -broadcast_(::typeof(%), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = +broadcasted(::typeof(%), y::Real, x::NDArray) = _rmod_scalar(x, y) +broadcasted(::typeof(%), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = _mod(x, y) -broadcast_(::typeof(%), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = +broadcasted(::typeof(%), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = _broadcast_mod(x, y) -import Base: ^ - # document of `.^` is merged into SymbolicNode's -broadcast_(::typeof(^), x::NDArray, s::Real) = _power_scalar(x, scalar = s) -broadcast_(::typeof(^), s::Real, x::NDArray) = _rpower_scalar(x, scalar = s) +broadcasted(::typeof(Base.literal_pow), ::typeof(^), x::NDArray, ::Val{s}) where {s} = + _power_scalar(x, scalar = s) +broadcasted(::typeof(^), x::NDArray, s::Real) = _power_scalar(x, scalar = s) +broadcasted(::typeof(^), s::Real, x::NDArray) = _rpower_scalar(x, scalar = s) -broadcast_(::typeof(^), ::Irrational{:e}, x::NDArray) = exp(x) -broadcast_(::typeof(^), x::NDArray, s::Irrational) = _power_scalar(x, scalar = s) -broadcast_(::typeof(^), s::Irrational, x::NDArray) = _rpower_scalar(x, scalar = s) +broadcasted(::typeof(^), ::Irrational{:ℯ}, x::NDArray) = exp(x) +broadcasted(::typeof(^), x::NDArray, s::Irrational) = _power_scalar(x, scalar = s) +broadcasted(::typeof(^), s::Irrational, x::NDArray) = _rpower_scalar(x, scalar = s) -broadcast_(::typeof(^), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = +broadcasted(::typeof(^), x::NDArray{T,N}, y::NDArray{T,N}) where {T,N} = _power(x, y) -broadcast_(::typeof(^), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = +broadcasted(::typeof(^), x::NDArray{T,N}, y::NDArray{T,M}) where {T,N,M} = _broadcast_power(x, y) ############################################################################### # comparison ############################################################################### -broadcast_(::typeof(==), x::NDArray{T}, y::NDArray{T}) where {T} = +broadcasted(::typeof(==), x::NDArray{T}, y::NDArray{T}) where {T} = _broadcast_equal(x, y) -broadcast_(::typeof(!=), x::NDArray{T}, y::NDArray{T}) where {T} = +broadcasted(::typeof(!=), x::NDArray{T}, y::NDArray{T}) where {T} = _broadcast_not_equal(x, y) -broadcast_(::typeof(>), x::NDArray{T}, y::NDArray{T}) where {T} = +broadcasted(::typeof(>), x::NDArray{T}, y::NDArray{T}) where {T} = _broadcast_greater(x, y) -broadcast_(::typeof(>=), x::NDArray{T}, y::NDArray{T}) where {T} = +broadcasted(::typeof(>=), x::NDArray{T}, y::NDArray{T}) where {T} = _broadcast_greater_equal(x, y) -broadcast_(::typeof(<), x::NDArray{T}, y::NDArray{T}) where {T} = +broadcasted(::typeof(<), x::NDArray{T}, y::NDArray{T}) where {T} = _broadcast_lesser(x, y) -broadcast_(::typeof(<=), x::NDArray{T}, y::NDArray{T}) where {T} = +broadcasted(::typeof(<=), x::NDArray{T}, y::NDArray{T}) where {T} = _broadcast_lesser_equal(x, y) @@ -862,10 +844,10 @@ broadcast_(::typeof(<=), x::NDArray{T}, y::NDArray{T}) where {T} = import Base: min, max -broadcast_(::typeof(max), x::NDArray{T}, y::NDArray{T}) where {T} = +broadcasted(::typeof(max), x::NDArray{T}, y::NDArray{T}) where {T} = _broadcast_maximum(x, y) -broadcast_(::typeof(min), x::NDArray{T}, y::NDArray{T}) where {T} = +broadcasted(::typeof(min), x::NDArray{T}, y::NDArray{T}) where {T} = _broadcast_minimum(x, y) """ @@ -894,7 +876,7 @@ fill(x, dims::Integer...) = fill(x, dims) import Base: hypot -broadcast_(::typeof(hypot), x::NDArray{T}, y::NDArray{T}) where {T} = +broadcasted(::typeof(hypot), x::NDArray{T}, y::NDArray{T}) where {T} = _broadcast_hypot(x, y) """ @@ -985,7 +967,7 @@ macro nd_as_jl(m_args...) wait_statements = Expr(:block, [:(_wait_to_read($v)) for v in nd_ro]..., [:(_wait_to_write($v)) for v in nd_rw]...) clear_statements = Expr(:block, [:($v_orig = nothing) for v_orig in rw_origs]...) - let_assignments = [:($v = try_get_shared($v)) for v in nd_all] + let_assignments = Expr(:block, [:($v = try_get_shared($v)) for v in nd_all]...) sync_statements = map(rw_origs, nd_rw) do v_orig, v quote if !is_shared($v, $v_orig) @@ -996,10 +978,10 @@ macro nd_as_jl(m_args...) end sync_statements = Expr(:block, sync_statements...) - let_statement = Expr(:let, quote + let_statement = Expr(:let, let_assignments, quote $stmts $sync_statements - end, let_assignments...) + end) m_body = quote $wait_statements $save_statements @@ -1015,8 +997,8 @@ end # pointers from CPU) leads to undefined behavior. import Base.pointer function pointer(arr :: NDArray) - pdata = Ref{Ptr{Void}}(0) - @mxcall(:MXNDArrayGetData, (MX_handle, Ref{Ptr{Void}}), arr, pdata) + pdata = Ref{Ptr{Cvoid}}(0) + @mxcall(:MXNDArrayGetData, (MX_handle, Ref{Ptr{Cvoid}}), arr, pdata) return convert(Ptr{eltype(arr)}, pdata[]) end @@ -1146,18 +1128,6 @@ end const _ndsig = Dict{Symbol,Expr}() const _nddoc = Dict{Symbol,Any}() -function _autoimport(name::Symbol, sig::Expr) - if name == :broadcast_ - name = _broadcast_target(sig) - end - - if isdefined(Base, name) - :(import Base: $name) - else - :() - end -end - _isinplace(name::Symbol) = endswith(string(name), "!") _writable(name::Symbol, x) = @@ -1178,7 +1148,7 @@ _broadcast_target(sig::Expr) = sig.args[2].args[].args[end] Generate docstring from function signature """ function _docsig(fname::Symbol, sig::Expr, opname::String) - if fname !== :broadcast_ + if fname !== :broadcasted get(_nddoc, fname, " $sig") * "\n" * _getdocdefine(opname) else name = _broadcast_target(sig) @@ -1205,11 +1175,12 @@ function _docsig(fname::Symbol, sig::Expr, opname::String) end end + macro _remap(sig::Expr, imp::Expr) - fname = (sig.head == :call) ? sig.args[1] : sig.args[1].args[1] # case of `where` - opname = string(imp.args[1]) + d = splitdef(:($sig = $imp)) + @capture d[:name] (M_.fname_|fname_) - import_expr = _autoimport(fname, sig) + opname = string(imp.args[1]) if isa(imp.args[2], Expr) && imp.args[2].head == :parameters ndin = imp.args[3:end] @@ -1257,8 +1228,7 @@ macro _remap(sig::Expr, imp::Expr) func_def = Expr(:function, sig, func_body) esc(quote - $import_expr - @doc $docstr -> + @doc $docstr $func_def end) end @@ -1271,32 +1241,37 @@ macro _remap(sig::Expr, imp::Symbol) end) end -_ndsig[:reshape] = :(reshape(arr; shape = dim, reverse = !reverse)) -@_remap reshape(arr::NDArray, dim...; reverse = false) reshape -@_remap reshape(arr::NDArray, dim; reverse = false) reshape +_ndsig[:reshape] = :(reshape(x; shape = dim, reverse = !reverse)) +@_remap Base.reshape(x::NDArray, dim...; reverse = false) reshape +@_remap Base.reshape(x::NDArray, dim ; reverse = false) reshape -@_remap mean(arr::NDArray) mean(arr) -@_remap mean(arr::NDArray, region) mean(arr; axis = 0 .- region, keepdims = true) +Statistics.mean(x::NDArray; dims = :) = _mean(x, dims) +@_remap _mean(x::NDArray, ::Colon) mean(x) +@_remap _mean(x::NDArray, dims) mean(x; axis = 0 .- dims, keepdims = true) -@_remap sum(arr::NDArray) sum(arr) -@_remap sum(arr::NDArray, dims) sum(arr; axis = 0 .- dims, keepdims = true) +Base.sum(x::NDArray; dims = :) = _sum(x, dims) +@_remap _sum(x::NDArray, ::Colon) sum(x) +@_remap _sum(x::NDArray, dims) sum(x; axis = 0 .- dims, keepdims = true) -@_remap maximum(arr::NDArray) max(arr) -@_remap maximum(arr::NDArray, dims) max(arr; axis = 0 .- dims, keepdims = true) +Base.maximum(x::NDArray; dims = :) = _nd_maximum(x, dims) +@_remap _nd_maximum(x::NDArray, ::Colon) max(x) +@_remap _nd_maximum(x::NDArray, dims) max(x; axis = 0 .- dims, keepdims = true) -@_remap minimum(arr::NDArray) min(arr) -@_remap minimum(arr::NDArray, dims) min(arr; axis = 0 .- dims, keepdims = true) +Base.minimum(x::NDArray; dims = :) = _nd_minimum(x, dims) +@_remap _nd_minimum(x::NDArray, ::Colon) min(x) +@_remap _nd_minimum(x::NDArray, dims) min(x; axis = 0 .- dims, keepdims = true) # See /~https://github.com/dmlc/MXNet.jl/issues/55 -@_remap dot(x::NDArray, y::NDArray) dot(y, x) +@_remap LinearAlgebra.dot(x::NDArray, y::NDArray) dot(y, x) # See /~https://github.com/dmlc/MXNet.jl/pull/123 -@_remap transpose(arr::NDArray{T,1}) where T reshape(arr; shape = (1, length(arr)), reverse = true) -@_remap transpose(arr::NDArray{T,2}) where T transpose(arr) -@_remap permutedims(arr::NDArray, axes) transpose(arr; axes = length(axes) .- tuple(axes...)) +@_remap Base.transpose(x::NDArray{T,1}) where T reshape(x; shape = (1, length(x)), reverse = true) +@_remap Base.transpose(x::NDArray{T,2}) where T transpose(x) +@_remap Base.permutedims(x::NDArray, axes) transpose(x; axes = length(axes) .- tuple(axes...)) -@_remap prod(arr::NDArray) prod(arr) -@_remap prod(arr::NDArray, dims) prod(arr; axis = 0 .- dims, keepdims = true) +Base.prod(x::NDArray; dims = :) = _prod(x, dims) +@_remap _prod(x::NDArray, ::Colon) prod(x) +@_remap _prod(x::NDArray, dims) prod(x; axis = 0 .- dims, keepdims = true) _nddoc[:clip] = _nddoc[:clip!] = """ @@ -1362,23 +1337,23 @@ julia> mx.expand_dims(x, 2) @_remap expand_dims(x::NDArray, dim) expand_dims(x; axis = -dim) # trigonometric functions, remap to keep consistent with Base -@_remap broadcast_(::typeof(sin), x::NDArray) sin(x) -@_remap broadcast_(::typeof(cos), x::NDArray) cos(x) -@_remap broadcast_(::typeof(tan), x::NDArray) tan(x) -@_remap broadcast_(::typeof(asin), x::NDArray) arcsin(x) -@_remap broadcast_(::typeof(acos), x::NDArray) arccos(x) -@_remap broadcast_(::typeof(atan), x::NDArray) arctan(x) +@_remap broadcasted(::typeof(sin), x::NDArray) sin(x) +@_remap broadcasted(::typeof(cos), x::NDArray) cos(x) +@_remap broadcasted(::typeof(tan), x::NDArray) tan(x) +@_remap broadcasted(::typeof(asin), x::NDArray) arcsin(x) +@_remap broadcasted(::typeof(acos), x::NDArray) arccos(x) +@_remap broadcasted(::typeof(atan), x::NDArray) arctan(x) # hyperbolic funcs, remap to keep consistent with Base -@_remap broadcast_(::typeof(sinh), x::NDArray) sinh(x) -@_remap broadcast_(::typeof(cosh), x::NDArray) cosh(x) -@_remap broadcast_(::typeof(tanh), x::NDArray) tanh(x) -@_remap broadcast_(::typeof(asinh), x::NDArray) arcsinh(x) -@_remap broadcast_(::typeof(acosh), x::NDArray) arccosh(x) -@_remap broadcast_(::typeof(atanh), x::NDArray) arctanh(x) +@_remap broadcasted(::typeof(sinh), x::NDArray) sinh(x) +@_remap broadcasted(::typeof(cosh), x::NDArray) cosh(x) +@_remap broadcasted(::typeof(tanh), x::NDArray) tanh(x) +@_remap broadcasted(::typeof(asinh), x::NDArray) arcsinh(x) +@_remap broadcasted(::typeof(acosh), x::NDArray) arccosh(x) +@_remap broadcasted(::typeof(atanh), x::NDArray) arctanh(x) # activation functions -_nddoc[:σ] = _nddoc[:sigmoid] = doc""" +@doc doc""" σ.(x::NDArray) sigmoid.(x::NDArray) @@ -1390,10 +1365,12 @@ Computes sigmoid of x element-wise. The storage type of `sigmoid` output is always dense. """ -@_remap broadcast_(::typeof(σ), x::NDArray) sigmoid(x) -@_remap broadcast_(::typeof(sigmoid), x::NDArray) sigmoid(x) +function σ end +const sigmoid = σ +_nddoc[:σ] = false +@_remap broadcasted(::typeof(σ), x::NDArray) sigmoid(x) -_nddoc[:relu] = doc""" +@doc doc""" relu.(x::NDArray) Computes rectified linear. @@ -1402,9 +1379,11 @@ Computes rectified linear. \max(x, 0) ``` """ -@_remap broadcast_(::typeof(relu), x::NDArray) relu(x) +function relu end +_nddoc[:relu] = false +@_remap broadcasted(::typeof(relu), x::NDArray) relu(x) -_nddoc[:softmax] = doc""" +@doc doc""" softmax.(x::NDArray, [dim = ndims(x)]) Applies the softmax function. @@ -1416,10 +1395,12 @@ and the elements along the given axis sum up to 1. softmax(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}} ``` """ -@_remap broadcast_(::typeof(softmax), x::NDArray) softmax(x; axis = -ndims(x)) -@_remap broadcast_(::typeof(softmax), x::NDArray, dim::Int) softmax(x; axis = -dim) +function softmax end +_nddoc[:softmax] = false +@_remap broadcasted(::typeof(softmax), x::NDArray) softmax(x; axis = -ndims(x)) +@_remap broadcasted(::typeof(softmax), x::NDArray, dim::Int) softmax(x; axis = -dim) -_nddoc[:log_softmax] = """ +""" log_softmax.(x::NDArray, [dim = ndims(x)]) Computes the log softmax of the input. @@ -1435,8 +1416,10 @@ julia> mx.log_softmax.(x) -1.41703 -0.41703 -2.31703 -2.31703 -0.41703 -1.41703 """ -@_remap broadcast_(::typeof(log_softmax), x::NDArray) log_softmax(x; axis = -ndims(x)) -@_remap broadcast_(::typeof(log_softmax), x::NDArray, dim::Int) log_softmax(x; axis = -dim) +function log_softmax end +_nddoc[:log_softmax] = false +@_remap broadcasted(::typeof(log_softmax), x::NDArray) log_softmax(x; axis = -ndims(x)) +@_remap broadcasted(::typeof(log_softmax), x::NDArray, dim::Int) log_softmax(x; axis = -dim) ################################################################################ # remapping to solving type unstablility @@ -1570,7 +1553,7 @@ julia> mx.broadcast_axis(x, 3, 2) """ @_remap(broadcast_axis(x::NDArray, dim, size), broadcast_axis(x; axis = ndims(x) .- dim, size = size)) -@_remap(broadcast_axes(x::NDArray, dim, size), +@_remap(Base.broadcast_axes(x::NDArray, dim, size), broadcast_axes(x; axis = ndims(x) .- dim, size = size)) ################################################################################ @@ -1619,7 +1602,7 @@ Upon calling, the output arguments will be automatically initialized with empty Those functions always return the output arguments. If there is only one output (the typical situation), that object (`NDArray`) is returned. Otherwise, a tuple containing all the outputs will be returned. """ -function _get_ndarray_function_def(name :: String) +function _get_ndarray_function_def(name::String) func_name = Symbol(name) func_def = quote @@ -1763,11 +1746,13 @@ macro _import_ndarray_functions() func_def, func_def2 = _get_ndarray_function_def(name) func_name = Symbol(name) - expr = quote - # TODO the explicit exclusion of take will no longer be necessary when it is removed from Base - $((isdefined(Base, func_name) && func_name ≠ :take) ? :(import Base.$func_name) : :()) + + import_expr = _import_expr(func_name) + + quote + $import_expr $func_def - @doc $desc -> + @doc $desc $func_def2 end end @@ -1777,4 +1762,4 @@ macro _import_ndarray_functions() end) end -@_import_ndarray_functions() +@_import_ndarray_functions diff --git a/julia/src/nn-factory.jl b/julia/src/nn-factory.jl index b5134f9d2bd5..cb5df3722470 100644 --- a/julia/src/nn-factory.jl +++ b/julia/src/nn-factory.jl @@ -38,7 +38,7 @@ fully connected layers. Returns the constructed MLP. """ -function MLP(input, spec; hidden_activation::Symbol=:relu, prefix=gensym()) +function MLP(input, spec; hidden_activation::Symbol = :relu, prefix = gensym()) spec = convert(Vector{Union{Int,Tuple}}, spec) n_layer = length(spec) diff --git a/julia/src/optimizer.jl b/julia/src/optimizer.jl index 6436878df678..46726500f81f 100644 --- a/julia/src/optimizer.jl +++ b/julia/src/optimizer.jl @@ -73,6 +73,8 @@ OptimizationState(batch_size::Int) = OptimizationState(batch_size, 0, 0, 0) module LearningRate +using Markdown + import Base: get import ..mx: AbstractLearningRateScheduler, OptimizationState, update! @@ -100,7 +102,7 @@ end get(f::Fixed) = f.η -doc""" +@doc doc""" LearningRate.Exp(η₀; γ = 0.9) ```math @@ -122,7 +124,7 @@ end get(a::Exp) = a.η₀ * a.γ^a.t -doc""" +@doc doc""" LearningRate.Inv(η₀; γ = 0.9, p = 0.5) ```math @@ -156,6 +158,8 @@ using .LearningRate module Momentum +using Markdown + import Base: get import ..mx: AbstractMomentumScheduler, OptimizationState @@ -194,7 +198,7 @@ end get(f::Fixed) = f.μ -doc""" +@doc doc""" NadamScheduler(; μ = 0.99, δ = 0.004, γ = 0.5, α = 0.96) Nesterov-accelerated adaptive momentum scheduler. diff --git a/julia/src/optimizers/adadelta.jl b/julia/src/optimizers/adadelta.jl index 2b0cd0060261..7a45dd0459db 100644 --- a/julia/src/optimizers/adadelta.jl +++ b/julia/src/optimizers/adadelta.jl @@ -15,7 +15,7 @@ # specific language governing permissions and limitations # under the License. -doc""" +@doc doc""" AdaDelta(; kwargs...) Scale learning rates by the ratio of accumulated gradients to accumulated diff --git a/julia/src/optimizers/adagrad.jl b/julia/src/optimizers/adagrad.jl index 4236cb8cda20..6ddcb36280bc 100644 --- a/julia/src/optimizers/adagrad.jl +++ b/julia/src/optimizers/adagrad.jl @@ -15,7 +15,7 @@ # specific language governing permissions and limitations # under the License. -doc""" +@doc doc""" AdaGrad(; kwargs...) Scale learning rates by dividing with the square root of accumulated diff --git a/julia/src/optimizers/nadam.jl b/julia/src/optimizers/nadam.jl index fdcd1ea7e7ab..522e9194caa8 100644 --- a/julia/src/optimizers/nadam.jl +++ b/julia/src/optimizers/nadam.jl @@ -15,7 +15,7 @@ # specific language governing permissions and limitations # under the License. -doc""" +@doc doc""" Nadam(; kwargs...) Nesterov Adam optimizer: Adam RMSprop with Nesterov momentum, diff --git a/julia/src/optimizers/rmsprop.jl b/julia/src/optimizers/rmsprop.jl index 8351142681b1..18445752588a 100644 --- a/julia/src/optimizers/rmsprop.jl +++ b/julia/src/optimizers/rmsprop.jl @@ -15,7 +15,7 @@ # specific language governing permissions and limitations # under the License. -doc""" +@doc doc""" RMSProp(; kwargs...) Scale learning rates by dividing with the moving average of the root mean diff --git a/julia/src/optimizers/sgd.jl b/julia/src/optimizers/sgd.jl index dfd3d954baa3..6af8094829f6 100644 --- a/julia/src/optimizers/sgd.jl +++ b/julia/src/optimizers/sgd.jl @@ -15,7 +15,7 @@ # specific language governing permissions and limitations # under the License. -doc""" +@doc doc""" SGD(; kwargs...) Stochastic gradient descent optimizer. @@ -69,7 +69,7 @@ SGD create_state(sgd::SGD, ::Int, W::NDArray) = isa(sgd.μ_sched, Momentum.Null) ? nothing : zeros(size(W), context(W)) -function update!(sgd::SGD, ::Int, W::NDArray, ∇::NDArray, ::Void) +function update!(sgd::SGD, ::Int, W::NDArray, ∇::NDArray, ::Nothing) η = get(sgd.η_sched) normgrad!(sgd, W, ∇) @inplace W += -η * ∇ diff --git a/julia/src/random.jl b/julia/src/random.jl index b9b32a42ecff..e18e906a5307 100644 --- a/julia/src/random.jl +++ b/julia/src/random.jl @@ -76,8 +76,13 @@ randn(dims::Int...; μ = 0, σ = 1, context = cpu()) = randn!(empty(dims, context), μ = μ, σ = σ) """ - srand(seed::Int) + seed!(seed::Int) Set the random seed of libmxnet """ -srand(seed_state::Int) = @mxcall(:MXRandomSeed, (Cint,), seed_state) +seed!(s::Int) = @mxcall :MXRandomSeed (Cint,) s + +function srand(s::Int) + @warn "`mx.srand` is deprecated, use `mx.seed!` instead." + seed!(s) +end diff --git a/julia/src/symbolic-node.jl b/julia/src/symbolic-node.jl index 508f9d449028..8b7a8be0999d 100644 --- a/julia/src/symbolic-node.jl +++ b/julia/src/symbolic-node.jl @@ -19,20 +19,21 @@ SymbolicNode SymbolicNode is the basic building block of the symbolic graph in MXNet.jl. +It's a callable object and supports following calls: - (self :: SymbolicNode)(args :: SymbolicNode...) - (self :: SymbolicNode)(; kwargs...) + (s::SymbolicNode)(args::SymbolicNode...) + (s::SymbolicNode)(; kwargs...) -Make a new node by composing `self` with `args`. Or the arguments +Make a new node by composing `s` with `args`. Or the arguments can be specified using keyword arguments. """ mutable struct SymbolicNode handle::MX_SymbolHandle end -const SymbolicNodeOrReal = Union{SymbolicNode, Real} +const SymbolicNodeOrReal = Union{SymbolicNode,Real} -@unfuse SymbolicNode # for broadcasting +# @unfuse SymbolicNode # for broadcasting Base.unsafe_convert(::Type{MX_handle}, obj::SymbolicNode) = Base.unsafe_convert(MX_handle, obj.handle) @@ -40,31 +41,31 @@ Base.convert(t::Type{MX_handle}, obj::SymbolicNode) = Base.unsafe_convert(t, obj Base.cconvert(t::Type{MX_handle}, obj::SymbolicNode) = Base.unsafe_convert(t, obj) """ - deepcopy(self :: SymbolicNode) + deepcopy(s::SymbolicNode) Make a deep copy of a SymbolicNode. """ -function Base.deepcopy(self :: SymbolicNode) - ref_hdr = Ref{MX_handle}(0) - @mxcall(:MXSymbolCopy, (MX_handle, Ref{MX_handle}), self, ref_hdr) - return SymbolicNode(MX_SymbolHandle(ref_hdr[])) +function Base.deepcopy(s::SymbolicNode) + ref_hdr = Ref{MX_handle}(C_NULL) + @mxcall(:MXSymbolCopy, (MX_handle, Ref{MX_handle}), s, ref_hdr) + SymbolicNode(MX_SymbolHandle(ref_hdr[])) end """ - copy(self :: SymbolicNode) + copy(s::SymbolicNode) Make a copy of a SymbolicNode. The same as making a deep copy. """ -function Base.copy(self :: SymbolicNode) - Base.deepcopy(self) -end +Base.copy(s::SymbolicNode) = Base.deepcopy(s) -function (self::SymbolicNode)(args :: SymbolicNode...) - s = deepcopy(self) + +function (s::SymbolicNode)(args::SymbolicNode...) + s = deepcopy(s) _compose!(s, args...) end -function (self::SymbolicNode)(;kwargs...) - s = deepcopy(self) + +function (s::SymbolicNode)(; kwargs...) + s = deepcopy(s) _compose!(s; kwargs...) end @@ -82,7 +83,7 @@ macro _list_symbol_info(self, func_name) end """ - list_arguments(self :: SymbolicNode) + list_arguments(s::SymbolicNode) List all the arguments of this node. The argument for a node contains both the inputs and parameters. For example, a `FullyConnected` node will @@ -91,24 +92,20 @@ list all the arguments for intermediate nodes. Returns a list of symbols indicating the names of the arguments. """ -function list_arguments(self :: SymbolicNode) - @_list_symbol_info(self, :MXSymbolListArguments) -end +list_arguments(s::SymbolicNode) = @_list_symbol_info(s, :MXSymbolListArguments) """ - list_outputs(self :: SymbolicNode) + list_outputs(s::SymbolicNode) List all the outputs of this node. Returns a list of symbols indicating the names of the outputs. """ -function list_outputs(self :: SymbolicNode) - @_list_symbol_info(self, :MXSymbolListOutputs) -end +list_outputs(s::SymbolicNode) = @_list_symbol_info(s, :MXSymbolListOutputs) """ - list_auxiliary_states(self :: SymbolicNode) + list_auxiliary_states(s::SymbolicNode) List all auxiliary states in the symbool. @@ -120,19 +117,18 @@ Most operators do not have Auxiliary states. Returns a list of symbols indicating the names of the auxiliary states. """ -function list_auxiliary_states(self :: SymbolicNode) - @_list_symbol_info(self, :MXSymbolListAuxiliaryStates) -end +list_auxiliary_states(s::SymbolicNode) = + @_list_symbol_info(s, :MXSymbolListAuxiliaryStates) """ - get_internals(self :: SymbolicNode) + get_internals(s::SymbolicNode) Get a new grouped `SymbolicNode` whose output contains all the internal outputs of this `SymbolicNode`. """ -function get_internals(self :: SymbolicNode) +function get_internals(s::SymbolicNode) ref_hdr = Ref{MX_handle}(0) - @mxcall(:MXSymbolGetInternals, (MX_handle, Ref{MX_handle}), self, ref_hdr) + @mxcall(:MXSymbolGetInternals, (MX_handle, Ref{MX_handle}), s, ref_hdr) return SymbolicNode(MX_SymbolHandle(ref_hdr[])) end @@ -166,37 +162,38 @@ function get_children(x::SymbolicNode) end """ - get_attr(self :: SymbolicNode, key :: Symbol) + get_attr(s::SymbolicNode, key::Symbol) Get attribute attached to this `SymbolicNode` belonging to key. -Returns the value belonging to key as a `Nullable`. +Returns the value belonging to key as a `String`. +If not available, returns `missing`. """ -function get_attr(self :: SymbolicNode, key :: Symbol) +function get_attr(s::SymbolicNode, key::Symbol) key_s = string(key) ref_out = Ref{Cstring}() ref_success = Ref{Cint}(-1) @mxcall(:MXSymbolGetAttr, (MX_handle, Cstring, Ref{Cstring}, Ref{Cint}), - self, key_s, ref_out, ref_success) + s, key_s, ref_out, ref_success) if ref_success[] == 1 - return Nullable{String}(unsafe_string(ref_out[])) + unsafe_string(ref_out[]) else - return Nullable{String}() + missing end end """ - list_attr(self :: SymbolicNode) + list_attr(s::SymbolicNode) Get all attributes from a symbol. Returns a dictionary of attributes. """ -function list_attr(self :: SymbolicNode) +function list_attr(s::SymbolicNode) ref_sz = Ref{MX_uint}(0) ref_strings = Ref{char_pp}(0) @mxcall(:MXSymbolListAttrShallow, (MX_handle, Ref{MX_uint}, Ref{char_pp}), - self, ref_sz, ref_strings) + s, ref_sz, ref_strings) narg = 2*ref_sz[] strings = unsafe_wrap(Array, ref_strings[], narg) out = Dict{Symbol, String}() @@ -209,17 +206,17 @@ function list_attr(self :: SymbolicNode) end """ - list_all_attr(self :: SymbolicNode) + list_all_attr(s::SymbolicNode) Get all attributes from the symbol graph. Returns a dictionary of attributes. """ -function list_all_attr(self :: SymbolicNode) +function list_all_attr(s::SymbolicNode) ref_sz = Ref{MX_uint}(0) ref_strings = Ref{char_pp}(0) @mxcall(:MXSymbolListAttr, (MX_handle, Ref{MX_uint}, Ref{char_pp}), - self, ref_sz, ref_strings) + s, ref_sz, ref_strings) narg = 2*ref_sz[] strings = unsafe_wrap(Array, ref_strings[], narg) out = Dict{Symbol, String}() @@ -232,7 +229,7 @@ function list_all_attr(self :: SymbolicNode) end """ - set_attr(self:: SymbolicNode, key :: Symbol, value :: AbstractString) + set_attr(s::SymbolicNode, key::Symbol, value::AbstractString) Set the attribute key to value for this `SymbolicNode`. @@ -242,15 +239,15 @@ Set the attribute key to value for this `SymbolicNode`. the attributes of a `SymbolicNode` that is already been used somewhere else might cause unexpected behavior and inconsistency. """ -function set_attr(self :: SymbolicNode, key :: Symbol, value :: AbstractString) +function set_attr(s::SymbolicNode, key::Symbol, value::AbstractString) key_s = string(key) value_s = String(value) - @mxcall(:MXSymbolSetAttr, (MX_handle, Cstring, Cstring), self, key_s, value_s) + @mxcall(:MXSymbolSetAttr, (MX_handle, Cstring, Cstring), s, key_s, value_s) end """ - get_name(self :: SymbolicNode) + get_name(s::SymbolicNode) Get the name of the symbol. @@ -262,15 +259,15 @@ Get the name of the symbol. julia> mx.get_name(y) :fullyconnected0 """ -function get_name(self :: mx.SymbolicNode) - name = Ref{mx.char_p}(0) +function get_name(s::mx.SymbolicNode) + name = Ref{mx.char_p}(C_NULL) success = Ref(0) - @mxcall(:MXSymbolGetName, (MX_handle, Ref{char_p}, Ref{Int}), self.handle.value, name, success) + @mxcall(:MXSymbolGetName, (MX_handle, Ref{char_p}, Ref{Int}), s.handle.value, name, success) @assert success[] != -1 str = name[] if str == C_NULL # e.g. the symbol returned via get_internals - string(self.handle.value) + string(s.handle.value) else Symbol(unsafe_string(str)) end @@ -279,16 +276,6 @@ end Base.show(io::IO, sym::SymbolicNode) = print(io, "$(typeof(sym)) $(get_name(sym))") -import Base: print - -function print(io::IO, sym::SymbolicNode) - out = Ref{mx.char_p}(C_NULL) - @mx.mxcall(:MXSymbolPrint, (mx.MX_SymbolHandle, Ref{mx.char_p}), sym.handle, out) - print(io, unsafe_string(out[])) -end - -print(sym::SymbolicNode) = print(STDOUT, sym) - """ print([io::IO], sym::SymbolicNode) @@ -298,7 +285,7 @@ Print the content of symbol, used for debug. julia> layer = @mx.chain mx.Variable(:data) => mx.FullyConnected(name=:fc1, num_hidden=128) => mx.Activation(name=:relu1, act_type=:relu) -MXNet.mx.SymbolicNode(MXNet.mx.MX_SymbolHandle(Ptr{Void} @0x000055b29b9c3520)) +MXNet.mx.SymbolicNode(MXNet.mx.MX_SymbolHandle(Ptr{Nothing} @0x000055b29b9c3520)) julia> print(layer) Symbol Outputs: @@ -322,25 +309,32 @@ Attrs: act_type=relu ``` """ -print +function Base.print(io::IO, sym::SymbolicNode) + out = Ref{mx.char_p}(C_NULL) + @mx.mxcall(:MXSymbolPrint, (mx.MX_SymbolHandle, Ref{mx.char_p}), sym.handle, out) + print(io, unsafe_string(out[])) +end + +Base.print(sym::SymbolicNode) = print(STDOUT, sym) """ - grad(self :: SymbolicNode, wrt :: Vector{SymbolicNode}) + grad(s::SymbolicNode, wrt::Vector{Symbol}) Get the autodiff gradient of the current `SymbolicNode`. This function can only be used if the current symbol is a loss function. # Arguments: -* `self::SymbolicNode`: current node. +* `s::SymbolicNode`: current node. * `wrt::Vector{Symbol}`: the names of the arguments to the gradient. Returns a gradient symbol of the corresponding gradient. """ -function grad(self :: SymbolicNode, wrt :: Vector{Symbol}) - hdr_ref = Ref{MX_handle}(0) - keys = String[string(key) for key in wrt] +function grad(s::SymbolicNode, wrt::Vector{Symbol}) + hdr_ref = Ref{MX_handle}(C_NULL) + keys = string.(key) - @mxcall(:MXSymbolGrad, (MX_handle, MX_uint, char_pp, Ptr{MX_handle}), self, length(keys), keys, hdr_ref) + @mxcall(:MXSymbolGrad, (MX_handle, MX_uint, char_pp, Ptr{MX_handle}), + self, length(keys), keys, hdr_ref) return SymbolicNode(MX_SymbolHandle(hdr_ref[])) end @@ -403,7 +397,7 @@ function _build_shapes(shape_size::MX_uint, shape_ndim::Ptr{MX_uint}, shape_data shape_data = unsafe_wrap(Array, shape_data, shape_size) shapes = map(1:shape_size) do i my_shape = unsafe_wrap(Array, shape_data[i], shape_ndim[i]) - tuple(flipdim(Int[my_shape...],1)...) + tuple(reverse(Int[my_shape...], dims = 1)...) end convert(Vector{Tuple}, shapes) end @@ -458,18 +452,18 @@ function infer_shape(self :: SymbolicNode; kwargs...) sdata = MX_uint[] indptr = MX_uint[0] for (k,v) in kwargs - append!(sdata, flipdim([v...],1)) + append!(sdata, reverse([v...], dims = 1)) push!(indptr, length(sdata)) end keys = AbstractString[string(x[1]) for x in kwargs] _infer_shape(self, keys, indptr, sdata) end -function infer_shape(self :: SymbolicNode, args :: Union{Tuple, Void}...) +function infer_shape(self :: SymbolicNode, args::Union{Tuple, Cvoid}...) sdata = MX_uint[] indptr = MX_uint[0] for arg in args - if isa(arg, Void); continue; end - append!(sdata, flipdim([arg...],1)) + if isa(arg, Cvoid); continue; end + append!(sdata, reverse([arg...], dims = 1)) push!(indptr, length(sdata)) end keys = Ptr{char_p}(0) @@ -528,12 +522,12 @@ function infer_type(self :: SymbolicNode; kwargs...) _infer_type(self, keys, types) end -function infer_type(self :: SymbolicNode, args :: Union{Tuple, Void}...) +function infer_type(self :: SymbolicNode, args :: Union{Tuple,Cvoid}...) types = Cint[] keys = Ptr{char_p}(0) for arg in args - if isa(arg, Void); continue; end + if isa(arg, Cvoid); continue; end push!(types, toTypeFlag(arg)) end _infer_type(self, keys, types) @@ -548,7 +542,7 @@ indicating the index, as in the list of [`list_outputs`](@ref). """ function Base.getindex(self :: SymbolicNode, idx :: Union{Base.Symbol, AbstractString}) idx = Symbol(idx) - i_idx = find(idx .== list_outputs(self)) + i_idx = findall(idx .== list_outputs(self)) @assert(length(i_idx) > 0, "Cannot find output with name '$idx'") @assert(length(i_idx) < 2, "Found duplicated output with name '$idx'") Base.getindex(self, i_idx[1]) @@ -582,8 +576,8 @@ end +(s::Real, x::SymbolicNode, ys::SymbolicNodeOrReal...) = +(x + s, ys...) -broadcast_(::typeof(+), x::SymbolicNode, ys::SymbolicNodeOrReal...) = +(x, ys...) -broadcast_(::typeof(+), s::Real, x::SymbolicNode, ys::SymbolicNodeOrReal...) = +(x + s, ys...) +broadcasted(::typeof(+), x::SymbolicNode, ys::SymbolicNodeOrReal...) = +(x, ys...) +broadcasted(::typeof(+), s::Real, x::SymbolicNode, ys::SymbolicNodeOrReal...) = +(x + s, ys...) import Base: - @@ -600,8 +594,8 @@ s::Real - x::SymbolicNode = _rminus_scalar(x, scalar=MX_float(s)) -(x::SymbolicNode) = 0 - x -broadcast_(::typeof(-), x::SymbolicNode, y::SymbolicNodeOrReal) = x - y -broadcast_(::typeof(-), s::Real, x::SymbolicNode) = s - x +broadcasted(::typeof(-), x::SymbolicNode, y::SymbolicNodeOrReal) = x - y +broadcasted(::typeof(-), s::Real, x::SymbolicNode) = s - x import Base: * @@ -613,7 +607,7 @@ Elementwise multiplication of `SymbolicNode`. x::SymbolicNode * s::Real = _mul_scalar(x, scalar=MX_float(s)) s::Real * x::SymbolicNode = _mul_scalar(x, scalar=MX_float(s)) -function broadcast_(::typeof(*), x::SymbolicNode, ys::SymbolicNodeOrReal...) +function broadcasted(::typeof(*), x::SymbolicNode, ys::SymbolicNodeOrReal...) ret = x for y in ys if y isa SymbolicNode @@ -625,8 +619,8 @@ function broadcast_(::typeof(*), x::SymbolicNode, ys::SymbolicNodeOrReal...) ret end -broadcast_(::typeof(*), s::Real, x::SymbolicNode, ys::SymbolicNodeOrReal...) = - broadcast_(*, x * s, ys...) +broadcasted(::typeof(*), s::Real, x::SymbolicNode, ys::SymbolicNodeOrReal...) = + broadcasted(*, x * s, ys...) import Base: / @@ -642,9 +636,9 @@ of the same shape. """ x::SymbolicNode / s::Real = _DivScalar(x, scalar=MX_float(s)) -broadcast_(::typeof(/), x::SymbolicNode, y::SymbolicNode) = _div(x, y) -broadcast_(::typeof(/), x::SymbolicNode, s::Real) = _div_scalar(x, scalar=MX_float(s)) -broadcast_(::typeof(/), s::Real, x::SymbolicNode) = _rdiv_scalar(x, scalar=MX_float(s)) +broadcasted(::typeof(/), x::SymbolicNode, y::SymbolicNode) = _div(x, y) +broadcasted(::typeof(/), x::SymbolicNode, s::Real) = _div_scalar(x, scalar=MX_float(s)) +broadcasted(::typeof(/), s::Real, x::SymbolicNode) = _rdiv_scalar(x, scalar=MX_float(s)) import Base: ^ @@ -657,22 +651,24 @@ Operating with `Real` is available. """ ^ -broadcast_(::typeof(^), x::SymbolicNode, y::SymbolicNode) = _power(x, y) -broadcast_(::typeof(^), x::SymbolicNode, s::Real) = _power_scalar(x, scalar=MX_float(s)) -broadcast_(::typeof(^), s::Real, x::SymbolicNode) = _rpower_scalar(x, scalar=MX_float(s)) +broadcasted(::typeof(^), x::SymbolicNode, y::SymbolicNode) = _power(x, y) +broadcasted(::typeof(^), x::SymbolicNode, s::Real) = _power_scalar(x, scalar = s) +broadcasted(::typeof(^), s::Real, x::SymbolicNode) = _rpower_scalar(x, scalar = s) +broadcasted(::typeof(Base.literal_pow), ::typeof(^), x::SymbolicNode, ::Val{s}) where {s} = + _power_scalar(x, scalar = s) -broadcast_(::typeof(^), ::Irrational{:e}, x::SymbolicNode) = exp(x) -broadcast_(::typeof(^), x::SymbolicNode, s::Irrational) = +broadcasted(::typeof(^), ::Irrational{:ℯ}, x::SymbolicNode) = exp(x) +broadcasted(::typeof(^), x::SymbolicNode, s::Irrational) = _power_scalar(x, scalar=MX_float(s)) -broadcast_(::typeof(^), s::Irrational, x::SymbolicNode) = +broadcasted(::typeof(^), s::Irrational, x::SymbolicNode) = _rpower_scalar(x, scalar=MX_float(s)) -function _compose!(node :: SymbolicNode; kwargs...) - name = char_p(0) - arg_keys = AbstractString[] +function _compose!(node::SymbolicNode; kwargs...) + name = char_p(C_NULL) + arg_keys = AbstractString[] # FIXME: can it be String[] ? arg_vals = MX_handle[] - for (k,v) in kwargs + for (k, v) in kwargs if k == :name name = string(v) else @@ -685,20 +681,21 @@ function _compose!(node :: SymbolicNode; kwargs...) @mxcall(:MXSymbolCompose, (MX_handle, char_p, MX_uint, Ptr{char_p}, Ptr{MX_handle}), node, name, length(arg_keys), arg_keys, arg_vals) - return node + node end -function _compose!(node :: SymbolicNode, args::SymbolicNode...) +_compose!(node::SymbolicNode, args::SymbolicNode...) = _compose!(node, char_p(0), args...) -end -function _compose!(node :: SymbolicNode, name :: Union{Base.Symbol, char_p}, args::SymbolicNode...) - if isa(name, Base.Symbol); name = string(name); end - arg_keys = Ptr{char_p}(0) +function _compose!(node::SymbolicNode, name::Union{Symbol, char_p}, args::SymbolicNode...) + if name isa Symbol + name = string(name) + end + arg_keys = Ptr{char_p}(C_NULL) arg_vals = MX_handle[args...] @mxcall(:MXSymbolCompose, (MX_handle, char_p, MX_uint, Ptr{char_p}, Ptr{MX_handle}), node, name, length(arg_vals), arg_keys, arg_vals) - return node + node end """ @@ -844,30 +841,26 @@ end node end -function _define_atomic_symbol_creator(name :: String) +function _define_atomic_symbol_creator(name::String) handle = _get_libmx_op_handle(name) f_desc, key_narg = _get_libmx_op_description(name, handle) f_desc *= "* `name::Symbol`: The name of the `SymbolicNode`. (e.g. `:my_symbol`), optional.\n" - f_desc *= "* `attrs::Dict{Symbol, AbstractString}`: The attributes associated with this `SymbolicNode`.\n\n" + f_desc *= "* `attrs::Dict{Symbol,String}`: The attributes associated with this `SymbolicNode`.\n\n" func_name = Symbol(name) + import_expr = _import_expr(func_name) + func_def = quote - function $func_name(::Type{SymbolicNode}, args::SymbolicNode...; kwargs...) - idx = findfirst(x -> x[1] == :name, kwargs) - if idx > 0 - name = kwargs[idx][2] - else - name = "" - end + function $func_name(::Type{SymbolicNode}, args::SymbolicNode...; name = "", kwargs...) - # XXX: hacky way of solving the problem that the arguments of `dot` should be swapped + # NOTE: hacky way of solving the problem that the arguments of `dot` should be swapped # See /~https://github.com/dmlc/MXNet.jl/issues/55 if $name == "dot" args = reverse(args) end - # XXX: hacky way of solving the semantic difference of the axes parameter in Julia + # NOTE: hacky way of solving the semantic difference of the axes parameter in Julia # and in libmxnet. # See /~https://github.com/dmlc/MXNet.jl/pull/123 if $name == "transpose" @@ -876,8 +869,8 @@ function _define_atomic_symbol_creator(name :: String) param_keys = String[] param_vals = String[] - symbol_kws = Dict{Symbol, SymbolicNode}() - attrs = Dict{Symbol, String}() + symbol_kws = Dict{Symbol,SymbolicNode}() + attrs = Dict{Symbol,String}() $(if key_narg != "" quote @@ -936,23 +929,24 @@ function _define_atomic_symbol_creator(name :: String) end # quote func_def2 = quote - @doc $f_desc -> + @doc $f_desc function $func_name(args::SymbolicNode...; kwargs...) $func_name(SymbolicNode, args...; kwargs...) end # function end # quote return quote + $import_expr $func_def $func_def2 end end macro _import_atomic_symbol_creators() - # XXX: those are operators defined for NDArray, we exclude them here + # NOTE: those are operators defined for NDArray, we exclude them here # because the calling convention for the type signature is not strong # enough to disambiguate the method for NDArray and SymbolicNode - const ignored_ops = ["_set_value", "reshape"] # in lowercase + ignored_ops = ("_set_value", "reshape") # in lowercase op_names = _get_libmx_op_names() func_exprs = map(op_names) do name @@ -966,7 +960,7 @@ macro _import_atomic_symbol_creators() end) end -@_import_atomic_symbol_creators() +@_import_atomic_symbol_creators ################################################################################ # Utility macros to chain up symbols @@ -976,7 +970,7 @@ macro chain(layers) last_layer = nothing function _chain_layer(layer, last_layer) - if isa(last_layer, Void) + if last_layer ≡ nothing return esc(layer) else if @capture(layer, f_(x__)) diff --git a/julia/src/util.jl b/julia/src/util.jl index c07c9ec910fb..a836d3e39bba 100644 --- a/julia/src/util.jl +++ b/julia/src/util.jl @@ -19,7 +19,7 @@ # Dataset related utilities ################################################################################ function get_data_dir() - data_dir = joinpath(Pkg.dir("MXNet"), "data") + data_dir = joinpath(@__DIR__, "..", "data") mkpath(data_dir) data_dir end @@ -32,7 +32,7 @@ function get_mnist_ubyte() :train_label => "train-labels-idx1-ubyte", :test_data => "t10k-images-idx3-ubyte", :test_label => "t10k-labels-idx1-ubyte") - filenames = Dict(map((x) -> x[1] => joinpath(mnist_dir, x[2]), filenames)) + filenames = Dict((x[1] => joinpath(mnist_dir, x[2]) for x ∈ pairs(filenames))) if !all(isfile, values(filenames)) cd(mnist_dir) do mnist_dir = download("http://data.mxnet.io/mxnet/data/mnist.zip", "mnist.zip") @@ -40,7 +40,7 @@ function get_mnist_ubyte() run(`unzip -u $mnist_dir`) catch try - run(pipe(`7z x $mnist_dir`,stdout=DevNull)) + run(pipe(`7z x $mnist_dir`,stdout = devnull)) catch error("Extraction Failed:No extraction program found in path") end @@ -63,7 +63,7 @@ function get_cifar10() run(`unzip -u cifar10.zip`) catch try - run(pipeline(`7z x cifar10.zip`, stdout=DevNull)) + run(pipeline(`7z x cifar10.zip`, stdout = devnull)) catch error("Extraction Failed:No extraction program found in path") end @@ -149,9 +149,8 @@ function _get_libmx_op_description(name::String, handle::MX_OpHandle) return desc, key_narg end -function _format_typestring(typestr :: String) - replace(typestr, r"\bSymbol\b", "SymbolicNode") -end +_format_typestring(s::String) = replace(s, r"\bSymbol\b" => "SymbolicNode") + function _format_docstring(narg::Int, arg_names::Ref{char_pp}, arg_types::Ref{char_pp}, arg_descs::Ref{char_pp}, remove_dup::Bool=true) param_keys = Set{String}() @@ -191,7 +190,7 @@ function _getdocdefine(name::String) op = _get_libmx_op_handle(name) str = _get_libmx_op_description(name, op)[1] lines = split(str, '\n') - for m ∈ match.(r"^Defined in .*$", lines) + for m ∈ match.(Ref(r"^Defined in .*$"), lines) m != nothing && return m.match end "" @@ -227,7 +226,7 @@ function _sig_checker() return end - warn(_sig) + @warn(_sig) end end @@ -253,3 +252,20 @@ function _firstarg(sig::Expr) end _firstarg(s::Symbol) = s + +const _import_map = Dict{Symbol,Union{Missing,Module}}( + :diag => LinearAlgebra, + :dot => LinearAlgebra, + :norm => LinearAlgebra, + + :shuffle => Random, + + :mean => Statistics, + + :gamma => missing, +) + +function _import_expr(func_name::Symbol) + mod = get(_import_map, func_name, Base) + isdefined(mod, func_name) ? :(import $(Symbol(mod)): $func_name) : :() +end diff --git a/julia/src/visualize.jl b/julia/src/visualize.jl index b41db7e9e5a7..ddbb3c11fe9b 100644 --- a/julia/src/visualize.jl +++ b/julia/src/visualize.jl @@ -30,14 +30,14 @@ import JSON Returns the graph description in GraphViz `dot` language. """ function to_graphviz(network :: SymbolicNode; title="Network Visualization", input_shapes=nothing) - if !isa(input_shapes, Void) + if !isa(input_shapes, Cvoid) internals = get_internals(network) if isa(input_shapes, Dict) _, out_shapes, _ = infer_shape(internals; input_shapes...) else _, out_shapes, _ = infer_shape(internals, input_shapes...) end - @assert(!isa(out_shapes, Void), "Failed to do shape inference, input shapes are incomplete") + @assert(!isa(out_shapes, Cvoid), "Failed to do shape inference, input shapes are incomplete") shape_dict = Dict(zip(list_outputs(internals), out_shapes)) draw_shape = true else @@ -170,7 +170,7 @@ end function _format_graphviz_attr(io::IOBuffer, attrs) label = get(attrs, :label, nothing) - if isa(label, Void) + if isa(label, Cvoid) print(io, " [") else print(io, " [label=$(_simple_escape(label)),") @@ -195,7 +195,7 @@ function _format_graphviz_attr(io::IOBuffer, attrs) println(io, "];") end function _simple_escape(str) - str = replace(string(str), r"\n", "\\n") + str = replace(string(str), r"\n" => "\\n") return "\"$str\"" end function _format_graphviz_node(io::IOBuffer, name::AbstractString, attrs) diff --git a/julia/test/runtests.jl b/julia/test/runtests.jl index 8b46bfda6726..4e5f273950a7 100644 --- a/julia/test/runtests.jl +++ b/julia/test/runtests.jl @@ -15,29 +15,33 @@ # specific language governing permissions and limitations # under the License. +using Test using MXNet -using Base.Test # run test in the whole directory, latest modified files # are run first, this makes waiting time shorter when writing # or modifying unit-tests function test_dir(dir) - jl_files = sort(filter(x -> ismatch(r".*\.jl$", x), readdir(dir)), by = fn -> stat(joinpath(dir,fn)).mtime) - map(reverse(jl_files)) do file + jl_files = sort( + filter(x -> occursin(r".*\.jl$", x), readdir(dir)), + by = fn -> stat(joinpath(dir, fn)).mtime) + foreach(reverse(jl_files)) do file include("$dir/$file") end end -info("libmxnet version => $(mx.LIB_VERSION)") +@info "libmxnet version => $(mx.LIB_VERSION[])" -include(joinpath(dirname(@__FILE__), "common.jl")) +const BASEDIR = joinpath(@__DIR__, "..") + +include(joinpath(@__DIR__, "common.jl")) @testset "MXNet Test" begin - test_dir(joinpath(dirname(@__FILE__), "unittest")) + test_dir(joinpath(@__DIR__, "unittest")) # run the basic MNIST mlp example if haskey(ENV, "CONTINUOUS_INTEGRATION") @testset "MNIST Test" begin - include(joinpath(Pkg.dir("MXNet"), "examples", "mnist", "mlp-test.jl")) + include(joinpath(BASEDIR, "examples", "mnist", "mlp-test.jl")) end end end diff --git a/julia/test/unittest/autograd.jl b/julia/test/unittest/autograd.jl index 96f275b626af..8209fe7e0327 100644 --- a/julia/test/unittest/autograd.jl +++ b/julia/test/unittest/autograd.jl @@ -17,9 +17,8 @@ module TestAutoGrad -using Base.Test - using MXNet +using Test function checkgradient(f, x, y, ∇) @@ -33,12 +32,12 @@ end # function checkgradient function test_getgrad() - info("AutoGrad::getgrad") + @info("AutoGrad::getgrad") - info("AutoGrad::getgrad::unattached") + @info("AutoGrad::getgrad::unattached") @test nothing == mx.getgrad(mx.zeros(10)) - info("AutoGrad::getgrad::attached") + @info("AutoGrad::getgrad::attached") x = mx.NDArray([1 2; 3 4]) grad = mx.attach_grad!(x) @test eltype(grad) ≡ Int @@ -50,7 +49,7 @@ end function test_mark_variables!() - info("AutoGrad::mark_variables!") + @info("AutoGrad::mark_variables!") x = mx.zeros(4) ẋ = mx.zeros(4) y = mx.zeros(4) @@ -62,13 +61,13 @@ function test_mark_variables!() @test copy(mx.getgrad(x)) == [42, 42, 42, 42] @test copy(mx.getgrad(y)) == [24, 24, 24, 24] - info("AutoGrad::mark_variables!::invalid grad_reqs") + @info("AutoGrad::mark_variables!::invalid grad_reqs") x = mx.zeros(4) y = mx.zeros(4) @test_throws ArgumentError mx.mark_variables!(x, y, :magic) @test_throws ArgumentError mx.mark_variables!([x], [y], [:magic]) - info("AutoGrad::mark_variables!::args length mismatch") + @info("AutoGrad::mark_variables!::args length mismatch") x = mx.zeros(4) y = mx.zeros(4) z = mx.zeros(4) @@ -79,7 +78,7 @@ end function test_record() let x = mx.NDArray([1 2; 3 4]) - info("AutoGrad::record::backward!") + @info("AutoGrad::record::backward!") y = [1 4; 9 16] ∇ = [2 4; 6 8] # gradient is 2x @@ -89,7 +88,7 @@ function test_record() end let x = mx.NDArray([1 2; 3 4]) - info("AutoGrad::record::symbol") + @info("AutoGrad::record::symbol") mx.attach_grad!(x) y = mx.record() do @@ -102,7 +101,7 @@ function test_record() end let x = mx.NDArray([1 2; 3 4]) - info("AutoGrad::record::backward!(retain_graph=true)") + @info("AutoGrad::record::backward!(retain_graph=true)") mx.attach_grad!(x) y = mx.record() do @@ -125,7 +124,7 @@ end # function test_record function test_is_recording() - info("AutoGrad::is_recording") + @info("AutoGrad::is_recording") mx.record() do @test mx.is_recording() end @@ -133,7 +132,7 @@ end # function test_is_recording function test_is_training() - info("AutoGrad::is_training") + @info("AutoGrad::is_training") mx.record() do @test mx.is_training() end @@ -145,7 +144,7 @@ end # function test_is_training function test_pause() - info("AutoGrad::pause") + @info("AutoGrad::pause") let x = mx.NDArray([1 2; 3 4]) ∇ = mx.attach_grad!(x) y = mx.record() do @@ -166,7 +165,7 @@ end # function test_pause function test_train_mode() - info("AutoGrad::train_mode") + @info("AutoGrad::train_mode") let x = mx.NDArray(Float32[1 2; 3 4]) y = mx.train_mode() do mx.Dropout(x, p = 1) @@ -178,7 +177,7 @@ end # function test_train_mode function test_predict_mode() - info("AutoGrad::predict_mode") + @info("AutoGrad::predict_mode") let x = mx.NDArray(Float32[1 2; 3 4]) y = mx.predict_mode() do mx.Dropout(x, p = 1) @@ -190,7 +189,7 @@ end # function test_train_mode function test_backward!() - info("AutoGrad::backward!::with head_grad") + @info("AutoGrad::backward!::with head_grad") let x = mx.NDArray(Float32[1 2; 3 4]), A = Float32[.2 .4; 0 .1] ∇ = mx.attach_grad!(x) y = mx.record() do @@ -200,7 +199,7 @@ function test_backward!() @test copy(∇) ≈ [2 4; 6 8] .* A end - info("AutoGrad::backward!::with head_grads") + @info("AutoGrad::backward!::with head_grads") let x = mx.NDArray(Float32[1 2; 3 4]) ∇ = mx.attach_grad!(x) mx.record() do @@ -216,7 +215,7 @@ function test_backward!() @test copy(∇) ≈ ans end - info("AutoGrad::backward!::ArgumentError") + @info("AutoGrad::backward!::ArgumentError") let x = mx.NDArray([42]) @test_throws ArgumentError mx.backward!([x], [24]) end @@ -224,7 +223,7 @@ end # function test_backward! function test_symbol() - info("AutoGrad::symbol") + @info("AutoGrad::symbol") let x = mx.zeros(4) mx.attach_grad!(x) @@ -234,9 +233,9 @@ end function test_add() - info("AutoGrad::add") + @info("AutoGrad::add") - info("AutoGrad::add::x") + @info("AutoGrad::add::x") let x = mx.NDArray([1 2; 3 4]) y = [1 2; 3 4] ∇ = [1 1; 1 1] # gradient is 1 @@ -245,7 +244,7 @@ function test_add() end end - info("AutoGrad::add::+x") + @info("AutoGrad::add::+x") let x = mx.NDArray([1 2; 3 4]) y = [1 2; 3 4] ∇ = [1 1; 1 1] # gradient is 1 @@ -254,7 +253,7 @@ function test_add() end end - info("AutoGrad::add::x .+ 42") + @info("AutoGrad::add::x .+ 42") let x = mx.NDArray([1 2; 3 4]) y = [43 44; 45 46] ∇ = [1 1; 1 1] # gradient is 1 @@ -263,7 +262,7 @@ function test_add() end end - info("AutoGrad::add::42 .+ x") + @info("AutoGrad::add::42 .+ x") let x = mx.NDArray([1 2; 3 4]) y = [43 44; 45 46] ∇ = [1 1; 1 1] @@ -272,14 +271,14 @@ function test_add() end end - # TODO: info("AutoGrad::add::x .+ y") + # TODO: @info("AutoGrad::add::x .+ y") end # function test_add function test_sub() - info("AutoGrad::sub") + @info("AutoGrad::sub") - info("AutoGrad::sub::-x") + @info("AutoGrad::sub::-x") let x = mx.NDArray([1 2; 3 4]) y = [-1 -2; -3 -4] ∇ = [-1 -1; -1 -1] # gradient is -1 @@ -288,7 +287,7 @@ function test_sub() end end - info("AutoGrad::sub::x .- 42") + @info("AutoGrad::sub::x .- 42") let x = mx.NDArray([1 2; 3 4]) y = [-41 -40; -39 -38] ∇ = [1 1; 1 1] @@ -297,7 +296,7 @@ function test_sub() end end - info("AutoGrad::sub::42 .- x") + @info("AutoGrad::sub::42 .- x") let x = mx.NDArray([1 2; 3 4]) y = [41 40; 39 38] ∇ = -[1 1; 1 1] @@ -306,14 +305,14 @@ function test_sub() end end - # TODO: info("AutoGrad::add::x .- y") + # TODO: @info("AutoGrad::sub::x .- y") end # function test_sub function test_mul() - info("AutoGrad::mul") + @info("AutoGrad::mul") - info("AutoGrad::mul::2x .* x") + @info("AutoGrad::mul::2x .* x") let x = mx.NDArray([1 2; 3 4]) y = [2 8; 18 32] ∇ = [4 8; 12 16] # 4x @@ -322,7 +321,7 @@ function test_mul() end end - info("AutoGrad::mul::x * 2 .* x") + @info("AutoGrad::mul::x * 2 .* x") let x = mx.NDArray([1 2; 3 4]) y = [2 8; 18 32] ∇ = [4 8; 12 16] # 4x @@ -334,9 +333,9 @@ end function test_div() - info("AutoGrad::div") + @info("AutoGrad::div") - info("AutoGrad::div::x ./ 2") + @info("AutoGrad::div::x ./ 2") let x = mx.NDArray(Float32[1 2; 3 4]) y = Float32[.5 1; 1.5 2] ∇ = [.5 .5; .5 .5] @@ -345,7 +344,7 @@ function test_div() end end - info("AutoGrad::rdiv::2 ./ x") + @info("AutoGrad::rdiv::2 ./ x") let A = Float32[1 2; 3 4], x = mx.NDArray(A) y = 2 ./ A ∇ = @. -2 / A^2 # -2 / x² @@ -357,9 +356,9 @@ end # function test_div function test_power() - info("AutoGrad::power") + @info("AutoGrad::power") - info("AutoGrad::power::x.^3") + @info("AutoGrad::power::x.^3") let A = Float32[1 2; 3 4] x = mx.NDArray(A) y = A.^3 @@ -369,7 +368,7 @@ function test_power() end end - info("AutoGrad::power::x.^.5") + @info("AutoGrad::power::x.^.5") let A = Float32[1 2; 3 4] x = mx.NDArray(A) y = A.^.5 diff --git a/julia/test/unittest/bind.jl b/julia/test/unittest/bind.jl index 538b556bf474..abaca884bab1 100644 --- a/julia/test/unittest/bind.jl +++ b/julia/test/unittest/bind.jl @@ -17,7 +17,7 @@ module TestBind using MXNet -using Base.Test +using Test using ..Main: rand_dims @@ -26,7 +26,7 @@ using ..Main: rand_dims ################################################################################ function test_arithmetic(::Type{T}, uf, gf) where T <: mx.DType shape = rand_dims() - info("Bind::arithmetic::$T::$uf::dims = $shape") + @info "Bind::arithmetic::$T::$uf::dims = $shape" lhs = mx.Variable(:lhs) rhs = mx.Variable(:rhs) @@ -77,7 +77,7 @@ function test_arithmetic() test_arithmetic(T, (x,y) -> x .- y, (g,x,y) -> (g,-g)) test_arithmetic(T, (x,y) -> x .* y, (g,x,y) -> (y.*g, x.*g)) if T <: Integer || T == Float16 - warn("Not running division test for $T") + @warn "Not running division test for $T" else test_arithmetic(T, (x,y) -> x ./ y, (g,x,y) -> (g ./ y, -x .* g ./ (y.^2))) end diff --git a/julia/test/unittest/io.jl b/julia/test/unittest/io.jl index 81f2ff79a83b..cf8d8368d212 100644 --- a/julia/test/unittest/io.jl +++ b/julia/test/unittest/io.jl @@ -18,12 +18,12 @@ module TestIO using MXNet -using Base.Test +using Test using ..Main: rand_dims function test_mnist() - info("IO::MNIST") + @info "IO::MNIST" filenames = mx.get_mnist_ubyte() batch_size = 10 @@ -76,7 +76,7 @@ function test_arrays_impl(data::Vector, label::Vector, provider::mx.ArrayDataPro @test batch_size == d2[end] end - info("IO::Array::#data=$(length(data)),#label=$(length(label)),batch_size=$batch_size") + @info "IO::Array::#data=$(length(data)),#label=$(length(label)),batch_size=$batch_size" for (idx, batch) in zip(idx_all, provider) data_batch = [x[[Colon() for i=1:ndims(x)-1]..., idx:min(idx+batch_size-1,sample_count)] for x in data] data_get = mx.get_data(provider, batch) @@ -111,7 +111,7 @@ function test_arrays() end function test_arrays_shuffle() - info("IO::Array::shuffle") + @info "IO::Array::shuffle" sample_count = 15 batch_size = 4 diff --git a/julia/test/unittest/kvstore.jl b/julia/test/unittest/kvstore.jl index 96e1643d8d83..503a1fdbd533 100644 --- a/julia/test/unittest/kvstore.jl +++ b/julia/test/unittest/kvstore.jl @@ -17,7 +17,7 @@ module TestKVStore using MXNet -using Base.Test +using Test using ..Main: rand_dims @@ -34,7 +34,7 @@ function init_kv() end function test_kv_basic() - info("KVStore::basic") + @info("KVStore::basic") kv = init_kv() @test mx.get_type(kv) == :local @@ -43,7 +43,7 @@ function test_kv_basic() end function test_single_kv_pair() - info("KVStore::single") + @info("KVStore::single") kv = init_kv() mx.push!(kv, 3, mx.ones(SHAPE)) @@ -53,7 +53,7 @@ function test_single_kv_pair() end function test_aggregator() - info("KVStore::aggregator") + @info("KVStore::aggregator") kv = init_kv() @@ -64,7 +64,7 @@ function test_aggregator() mx.push!(kv, 3, vals) mx.pull!(kv, 3, vals) for v in vals - @test maximum(abs.(copy(v)) - num_devs) == 0 + @test maximum(abs.(copy(v)) .- num_devs) == 0 end # list @@ -74,7 +74,7 @@ function test_aggregator() for vv in vals for v in vv - @test maximum(abs.(copy(v)) - 2 * num_devs) == 0 + @test maximum(abs.(copy(v)) .- 2 * num_devs) == 0 end end end @@ -95,7 +95,7 @@ function check_setupdater!(f) end # function check_setupdater! function test_setupdater!() - info("KVStore::setupdater!") + @info("KVStore::setupdater!") f(key, Δ, x) = @mx.inplace x += 2Δ g(key, Δ, x) = (x[:] += 2Δ) diff --git a/julia/test/unittest/metric.jl b/julia/test/unittest/metric.jl index 32c4538b608c..05e4dbda47f4 100644 --- a/julia/test/unittest/metric.jl +++ b/julia/test/unittest/metric.jl @@ -18,7 +18,7 @@ module TestMetric using MXNet -using Base.Test +using Test ################################################################################ # Supporting functions @@ -58,7 +58,7 @@ end ################################################################################ function test_ace() - info("EvalMetric::ACE") + @info "EvalMetric::ACE" n_categories = 4 n_observations = 100 labels = convert(Vector{Float32}, rand(0:(n_categories - 1), n_observations)) # MXNet uses Float32 @@ -72,7 +72,7 @@ end function test_nmse() - info("EvalMetric::NMSE") + @info "EvalMetric::NMSE" @testset "EvalMetric::NMSE::update!" begin metric = mx.NMSE() diff --git a/julia/test/unittest/model.jl b/julia/test/unittest/model.jl index dbe97093dc68..387a0cd555ab 100644 --- a/julia/test/unittest/model.jl +++ b/julia/test/unittest/model.jl @@ -17,19 +17,19 @@ module TestModel -using Base.Test +using Test using MXNet function test_feedforward() - info("Model::FeedForward::constructor") + @info("Model::FeedForward::constructor") let x = @mx.var x m = mx.FeedForward(x) @test m.arch === x @test length(m.ctx) == 1 end - info("Model::FeedForward::constructor::keyword context") + @info("Model::FeedForward::constructor::keyword context") let x = @mx.var x m = mx.FeedForward(x, context = mx.cpu()) @test m.arch === x diff --git a/julia/test/unittest/name.jl b/julia/test/unittest/name.jl index eea73efb43c9..1099ec4a7df5 100644 --- a/julia/test/unittest/name.jl +++ b/julia/test/unittest/name.jl @@ -17,10 +17,10 @@ module TestNameManager using MXNet -using Base.Test +using Test function test_default() - info("NameManager::default") + @info("NameManager::default") name = :_____aaaaa_____ @test get!(mx.DEFAULT_NAME_MANAGER, name, "") == name @@ -32,7 +32,7 @@ function test_default() end function test_prefix() - info("NameManager::prefix") + @info("NameManager::prefix") name = :_____bbbbb_____ prefix = :_____foobar_____ diff --git a/julia/test/unittest/ndarray.jl b/julia/test/unittest/ndarray.jl index 3bacbb009dfc..9ca4ba206027 100644 --- a/julia/test/unittest/ndarray.jl +++ b/julia/test/unittest/ndarray.jl @@ -18,7 +18,9 @@ module TestNDArray using MXNet -using Base.Test +using Statistics +using LinearAlgebra +using Test using ..Main: rand_dims @@ -33,7 +35,7 @@ function rand_tensors(::Type{T}, dims::NTuple{N,Int}) where {N,T} end function test_constructor() - info("NDArray::NDArray(x::AbstractArray)") + @info("NDArray::NDArray(x::AbstractArray)") function check_absarray(x) y = mx.NDArray(x) @test ndims(x) == ndims(y) @@ -44,7 +46,7 @@ function test_constructor() check_absarray(1:10) check_absarray(1.0:10) - info("NDArray::NDArray(Type, AbstractArray)") + @info("NDArray::NDArray(Type, AbstractArray)") let x = mx.NDArray(Float32, [1, 2, 3]) @test eltype(x) == Float32 @@ -59,7 +61,7 @@ end # function test_constructor function test_ones_zeros_like() - info("NDArray::Base.zeros") + @info("NDArray::Base.zeros") let x = mx.rand(1, 3, 2, 4, low = 1, high = 10) y = zeros(x) @test sum(copy(y)) == 0 @@ -68,7 +70,7 @@ function test_ones_zeros_like() @test sum(copy(y)) == 0 end - info("NDArray::Base.ones") + @info("NDArray::Base.ones") let x = mx.rand(1, 3, 2, 4, low = 1, high = 10) y = ones(x) @test sum(copy(y)) == 1 * 3 * 2 * 4 @@ -83,7 +85,7 @@ function test_copy() dims = rand_dims() tensor = rand(mx.MX_float, dims) - info("NDArray::copy::dims = $dims") + @info("NDArray::copy::dims = $dims") # copy to NDArray and back array = copy(tensor, mx.cpu()) @@ -95,7 +97,7 @@ function test_copy() tensor2 = copy(array2) @test tensor ≈ tensor2 - info("NDArray::copy::AbstractArray") + @info("NDArray::copy::AbstractArray") let x = copy(1:4, mx.cpu()) @test eltype(x) == Int @test copy(x) == [1, 2, 3, 4] @@ -106,7 +108,7 @@ function test_copy() @test copy(x) ≈ [1., 2, 3, 4] end - info("NDArray::copy!::AbstractArray") + @info("NDArray::copy!::AbstractArray") let x = mx.zeros(4) copy!(x, 1:4) @@ -117,7 +119,7 @@ function test_copy() end function test_deepcopy() - info("NDArray::deepcopy") + @info("NDArray::deepcopy") x = mx.zeros(2, 5) y = deepcopy(x) @@ -129,7 +131,7 @@ function test_assign() dims = rand_dims() tensor = rand(mx.MX_float, dims) - info("NDArray::assign::dims = $dims") + @info("NDArray::assign::dims = $dims") # Julia Array -> NDArray assignment array = mx.empty(size(tensor)) @@ -145,21 +147,21 @@ function test_assign() # scalar -> NDArray assignment scalar = rand() array2[:] = scalar - @test zeros(size(tensor)) + scalar ≈ copy(array2) + @test zeros(size(tensor)) .+ scalar ≈ copy(array2) scalar = rand(Float16) array2[:] = scalar - @test zeros(size(tensor)) + scalar ≈ copy(array2) + @test zeros(size(tensor)) .+ scalar ≈ copy(array2) scalar = rand(Float64) array2[:] = scalar array3[:] = scalar - @test zeros(size(tensor)) + scalar ≈ copy(array2) - @test zeros(Float16, size(tensor)) + scalar ≈ copy(array3) + @test zeros(size(tensor)) .+ scalar ≈ copy(array2) + @test zeros(Float16, size(tensor)) .+ scalar ≈ copy(array3) # NDArray -> NDArray assignment array[:] = array2 - @test zeros(size(tensor)) + scalar ≈ copy(array) + @test zeros(size(tensor)) .+ scalar ≈ copy(array) end function test_slice() @@ -170,7 +172,7 @@ function test_slice() end function test_linear_idx() - info("NDArray::getindex::linear indexing") + @info("NDArray::getindex::linear indexing") let A = reshape(1:30, 3, 10) x = mx.NDArray(A) @@ -201,7 +203,7 @@ function test_linear_idx() @test copy(x[14]) == [14] end - info("NDArray::setindex!::linear indexing") + @info("NDArray::setindex!::linear indexing") let A = reshape(1:24, 3, 2, 4) x = mx.NDArray(A) @@ -217,7 +219,7 @@ function test_linear_idx() @test copy(x[24]) == [42] end - info("NDArray::setindex!::type convert") + @info("NDArray::setindex!::type convert") let x = NDArray([1, 2, 3]) @test eltype(x) == Int @@ -227,7 +229,7 @@ function test_linear_idx() end # function test_linear_idx function test_first() - info("NDArray::first") + @info("NDArray::first") let A = reshape(1:30, 3, 10) x = mx.NDArray(A) @@ -239,12 +241,12 @@ function test_first() end end # function test_first -function test_endof() - info("NDArray::endof") +function test_lastindex() + @info("NDArray::lastindex") let A = [1 2; 3 4; 5 6], x = mx.NDArray(A) - @test endof(A) == endof(x) + @test lastindex(A) == lastindex(x) end -end # function test_endof +end # function test_lastindex function test_cat() function check_cat(f, A, B = 2A) @@ -270,39 +272,39 @@ function test_cat() end let A = [1, 2, 3, 4] - info("NDArray::hcat::1D") + @info("NDArray::hcat::1D") check_cat(:hcat, A) - info("NDArray::vcat::1D") + @info("NDArray::vcat::1D") check_cat(:vcat, A) end let A = [1 2; 3 4] - info("NDArray::hcat::2D") + @info("NDArray::hcat::2D") check_cat(:hcat, A) - info("NDArray::vcat::2D") + @info("NDArray::vcat::2D") check_cat(:vcat, A) end let A = rand(4, 3, 2) - info("NDArray::hcat::3D") + @info("NDArray::hcat::3D") check_cat(:hcat, A) - info("NDArray::vcat::3D") + @info("NDArray::vcat::3D") check_cat(:vcat, A) end let A = rand(4, 3, 2, 2) - info("NDArray::hcat::4D") + @info("NDArray::hcat::4D") check_cat(:hcat, A) - info("NDArray::vcat::4D") + @info("NDArray::vcat::4D") check_cat(:vcat, A) end let A = [1, 2, 3, 4] - info("NDArray::cat::3D/1D") + @info("NDArray::cat::3D/1D") check_cat(:vcat, reshape(A, 4, 1, 1), 2A) end end # function test_cat @@ -313,46 +315,45 @@ function test_plus() t2, a2 = rand_tensors(dims) t3, a3 = rand_tensors(dims) - info("NDArray::plus::dims = $dims") + @info("NDArray::plus::dims = $dims") - @test t1 + t2 ≈ copy(a1 + a2) @test t1 .+ t2 ≈ copy(a1 .+ a2) - @test t1 + t2 + t3 ≈ copy(a1 + a2 + a3) + @test t1 .+ t2 .+ t3 ≈ copy(a1 .+ a2 .+ a3) # test inplace += operation a0 = a1 # keep a reference to a1 @mx.inplace a1 += a2 # perform inplace += @test a0 == a1 # make sure they are still the same object @test copy(a0) ≈ copy(a1) - @test copy(a1) ≈ t1 + t2 + @test copy(a1) ≈ t1 .+ t2 # test scalar scalar = rand() - @test t3 + scalar ≈ copy(a3 + scalar) - @test t2 + scalar + t3 ≈ copy(a2 + scalar + a3) + @test t3 .+ scalar ≈ copy(a3 .+ scalar) + @test t2 .+ scalar .+ t3 ≈ copy(a2 .+ scalar .+ a3) # test small and large scalar t4 = zeros(Float32, dims) a4 = copy(t4, mx.cpu()) scalar_small = 1e-8 scalar_large = 1e8 - @test t4 + scalar_small ≈ copy(a4 .+ scalar_small) - @test t4 + scalar_large ≈ copy(a4 .+ scalar_large) + @test t4 .+ scalar_small ≈ copy(a4 .+ scalar_small) + @test t4 .+ scalar_large ≈ copy(a4 .+ scalar_large) t5 = zeros(Float64, dims) a5 = copy(t5, mx.cpu()) scalar_small = 1e-8 scalar_large = 1e8 - @test t5 + scalar_small ≈ copy(a5 .+ scalar_small) - @test t5 + scalar_large ≈ copy(a5 .+ scalar_large) + @test t5 .+ scalar_small ≈ copy(a5 .+ scalar_small) + @test t5 .+ scalar_large ≈ copy(a5 .+ scalar_large) t6 = zeros(Float16, dims) a6 = copy(t6, mx.cpu()) scalar_small = Float16(1e-5) scalar_large = Float16(1e4) - @test t6 + scalar_small ≈ copy(a6 .+ scalar_small) - @test t6 + scalar_large ≈ copy(a6 .+ scalar_large) + @test t6 .+ scalar_small ≈ copy(a6 .+ scalar_small) + @test t6 .+ scalar_large ≈ copy(a6 .+ scalar_large) let x = mx.NDArray([1 2; 3 4]), y = mx.NDArray([1 1; 1 1]) @test copy(42 .+ x) == [43 44; 45 46] @@ -360,7 +361,7 @@ function test_plus() @test copy(0 .+ x .+ y .+ 41) == [43 44; 45 46] end - info("NDArray::plus::scalar::type convert") + @info("NDArray::plus::scalar::type convert") let x = mx.NDArray([1, 2, 3]) y = x .+ 0.5 @test copy(y) == copy(x) @@ -369,7 +370,7 @@ function test_plus() @test copy(y) == [3, 4, 5] end - info("NDArray::broadcast_add") + @info("NDArray::broadcast_add") let A = [1 2 3; 4 5 6] @@ -392,9 +393,8 @@ function test_minus() t1, a1 = rand_tensors(dims) t2, a2 = rand_tensors(dims) - info("NDArray::minus::dims = $dims") + @info("NDArray::minus::dims = $dims") - @test t1 - t2 ≈ copy(a1 - a2) @test t1 .- t2 ≈ copy(a1 .- a2) @test -t1 ≈ copy(-a1) @@ -409,40 +409,40 @@ function test_minus() @test a0 == a1 # make sure they are still the same object @test a0.handle == a1.handle @test copy(a0) ≈ copy(a1) - @test copy(a1) ≈ t1 - t2 + @test copy(a1) ≈ t1 .- t2 # test scalar scalar = rand() - @test t2 - scalar ≈ copy(a2 - scalar) + @test t2 .- scalar ≈ copy(a2 .- scalar) # test small and large scalar t4 = zeros(Float32, dims) a4 = copy(t4, mx.cpu()) scalar_small = 1e-8 scalar_large = 1e8 - @test t4 - scalar_small ≈ copy(a4 .- scalar_small) - @test t4 - scalar_large ≈ copy(a4 .- scalar_large) + @test t4 .- scalar_small ≈ copy(a4 .- scalar_small) + @test t4 .- scalar_large ≈ copy(a4 .- scalar_large) t5 = zeros(Float64, dims) a5 = copy(t5, mx.cpu()) scalar_small = 1e-8 scalar_large = 1e8 - @test t5 - scalar_small ≈ copy(a5 .- scalar_small) - @test t5 - scalar_large ≈ copy(a5 .- scalar_large) + @test t5 .- scalar_small ≈ copy(a5 .- scalar_small) + @test t5 .- scalar_large ≈ copy(a5 .- scalar_large) t6 = zeros(Float16, dims) a6 = copy(t6, mx.cpu()) scalar_small = Float16(1e-5) scalar_large = Float16(1e4) - @test t6 - scalar_small ≈ copy(a6 .- scalar_small) - @test t6 - scalar_large ≈ copy(a6 .- scalar_large) + @test t6 .- scalar_small ≈ copy(a6 .- scalar_small) + @test t6 .- scalar_large ≈ copy(a6 .- scalar_large) - info("NDArray::minus::scalar::type convert") + @info("NDArray::minus::scalar::type convert") let x = mx.NDArray([1, 2, 3]) @test copy(x .- π) ≈ [-2, -1, 0] end - info("NDArray::broadcast_minus") + @info("NDArray::broadcast_minus") let A = [1 2 3; 4 5 6] @@ -458,6 +458,18 @@ function test_minus() # @inplace x .-= y # @test copy(x) == A .- B end + + @info("NDArray::scalar::rminus") + let + A = [1 2 3; + 4 5 6] + B = 10 .- A + + x = NDArray(A) + y = 10 .- x + + @test copy(y) == B + end end function test_mul() @@ -466,9 +478,9 @@ function test_mul() t2, a2 = rand_tensors(dims) t3, a3 = rand_tensors(dims) - info("NDArray::mul::dims = $dims") + @info("NDArray::mul::dims = $dims") - @test t1 .* t2 ≈ copy(a1.*a2) + @test t1 .* t2 ≈ copy(a1 .* a2) # test inplace .*= operation a0 = a1 # keep a reference to a1 @@ -480,7 +492,7 @@ function test_mul() # test scalar scalar = mx.MX_float(rand()) - @test t3 * scalar ≈ copy(a3 .* scalar) + @test t3 .* scalar ≈ copy(a3 .* scalar) # test small and large scalar t4, a4 = rand_tensors(Float32, dims) @@ -499,26 +511,26 @@ function test_mul() scalar_small = Float16(1e-5) @test t6 * scalar_small ≈ copy(a6 .* scalar_small) - info("NDArray::mul::matrix multiplication") + @info("NDArray::mul::matrix multiplication") let x = mx.NDArray([1. 2]) y = x' * x @test copy(y) == [1. 2; 2 4] end - info("NDArray::mul::elementwise::issue 253") + @info("NDArray::mul::elementwise::issue 253") let x = mx.NDArray([1. 2]) y = x .* x @test copy(y) == [1. 4.] end - info("NDArray::mul::scalar::type convert") + @info("NDArray::mul::scalar::type convert") let x = mx.NDArray([1, 2, 3]) y = x .* π @test eltype(x) == Int @test copy(y) == [3, 6, 9] end - info("NDArray::broadcast_mul") + @info("NDArray::broadcast_mul") let A = [1 2 3; 4 5 6] @@ -541,7 +553,7 @@ function test_div() t1, a1 = rand_tensors(dims) t2, a2 = rand_tensors(dims) - info("NDArray::div::dims = $dims") + @info("NDArray::div::dims = $dims") t2 .+= 2 # avoid numerical instability @mx.inplace a2 .+= 2 @@ -576,7 +588,7 @@ function test_div() scalar_large = 1e4 @test t6 ./ scalar_large ≈ copy(a6 ./ scalar_large) - info("NDArray::div::scalar::type convert") + @info("NDArray::div::scalar::type convert") let x = mx.NDArray([1, 2, 3]) y = x ./ 1.1 @test eltype(y) == Int @@ -589,7 +601,7 @@ function test_div() @test_throws AssertionError x ./ 0.5 end - info("NDArray::broadcast_div") + @info("NDArray::broadcast_div") let A = Float32[1 2 3; 4 5 6] @@ -607,37 +619,36 @@ function test_div() end end - function test_rdiv() - info("NDArray::rdiv") + @info("NDArray::rdiv") - info("NDArray::rdiv::Inf16") + @info("NDArray::rdiv::Inf16") let x = 1 ./ mx.zeros(Float16, 4) @test copy(x) == [Inf16, Inf16, Inf16, Inf16] end - info("NDArray::rdiv::Inf32") + @info("NDArray::rdiv::Inf32") let x = 1 ./ mx.zeros(Float32, 4) @test copy(x) == [Inf32, Inf32, Inf32, Inf32] end - info("NDArray::rdiv::Inf64") + @info("NDArray::rdiv::Inf64") let x = 1 ./ mx.zeros(Float64, 4) @test copy(x) == [Inf64, Inf64, Inf64, Inf64] end - info("NDArray::rdiv::Int") + @info("NDArray::rdiv::Int") let x = 1 ./ mx.NDArray([1 2; 3 4]) @test copy(x) == [1 0; 0 0] end - info("NDArray::rdiv::Float32") + @info("NDArray::rdiv::Float32") let x = 1 ./ mx.NDArray(Float32[1 2; 3 4]) y = 1 ./ Float32[1 2; 3 4] @test copy(x) ≈ y end - info("NDArray::rdiv::type convert") + @info("NDArray::rdiv::type convert") let x = mx.NDArray([1, 2, 3]) y = 5.5 ./ x @test eltype(y) == Int # this differs from julia @@ -645,11 +656,10 @@ function test_rdiv() end end # function test_rdiv - function test_mod() - info("NDArray::mod") - const A = [1 2; 3 4] - const B = [1 1; 3 3] + @info("NDArray::mod") + A = [1 2; 3 4] + B = [1 1; 3 3] let x = NDArray(A), y = NDArray(B) C = A .% B @@ -662,21 +672,21 @@ function test_mod() @test copy(z) ≈ D end - info("NDArray::mod::scalar") + @info("NDArray::mod::scalar") let x = NDArray(A) C = A .% 2 y = x .% 2 @test copy(y) ≈ C end - info("NDArray::rmod") + @info("NDArray::rmod") let x = NDArray(A) C = 11 .% A y = 11 .% x @test copy(y) ≈ C end - info("NDArray::mod_from!") + @info("NDArray::mod_from!") let x = NDArray(A) y = NDArray(B) @@ -694,7 +704,7 @@ function test_mod() @test copy(y) ≈ C end - info("NDArray::mod_from!::scalar") + @info("NDArray::mod_from!::scalar") let x = NDArray(A) C = A .% 2 @@ -702,7 +712,7 @@ function test_mod() @test copy(x) ≈ C end - info("NDArray::rmod_from!") + @info("NDArray::rmod_from!") let x = NDArray(A) C = 11 .% A @@ -710,7 +720,7 @@ function test_mod() @test copy(x) ≈ C end - info("NDArray::mod_from!::writable") + @info("NDArray::mod_from!::writable") let x = NDArray(A) y = NDArray(B) @@ -722,7 +732,7 @@ function test_mod() @test_throws AssertionError mx.rmod_from!(2, x) end - info("NDArray::mod::inplace") + @info("NDArray::mod::inplace") let x = NDArray(A) y = NDArray(B) @@ -731,7 +741,7 @@ function test_mod() @test copy(x) ≈ C end - info("NDArray::broadcast_mod") + @info("NDArray::broadcast_mod") let A = [1 2 3; 4 5 6] @@ -749,13 +759,12 @@ function test_mod() end end # function test_mod - function test_gd() dims = rand_dims() tw, aw = rand_tensors(dims) tg, ag = rand_tensors(dims) - info("NDArray::gd::dims = $dims") + @info("NDArray::gd::dims = $dims") lr = rand() wd = rand() @@ -765,10 +774,9 @@ function test_gd() @test copy(aw) ≈ tw end - function test_saveload() n_arrays = 5 - info("NDArray::saveload::n_arrays = $n_arrays") + @info("NDArray::saveload::n_arrays = $n_arrays") fname = tempname() # save and load a single array @@ -807,7 +815,7 @@ end function test_clip() dims = rand_dims() - info("NDArray::clip::dims = $dims") + @info("NDArray::clip::dims = $dims") j_array, nd_array = rand_tensors(dims) clip_up = maximum(abs.(j_array)) / 2 @@ -819,7 +827,7 @@ function test_clip() @test all(clip_down .<= copy(clipped) .<= clip_up) - info("NDArray::clip!") + @info("NDArray::clip!") let x = NDArray(1.0:20) clip!(x, 5, 15) @@ -828,91 +836,91 @@ function test_clip() end function test_power() - info("NDArray::power") + @info("NDArray::power") - info("NDArray::power::Int::x.^n") + @info("NDArray::power::Int::x .^ n") let x = mx.NDArray([1 2; 3 4]) @test eltype(x) == Int - @test copy(x.^-1) == [1 0; 0 0] - @test copy(x.^0) == [1 1; 1 1] - @test copy(x.^1) == [1 2; 3 4] - @test copy(x.^1.1) == [1 2; 3 4] - @test copy(x.^2) == [1 4; 9 16] - @test copy(x.^2.9) == [1 4; 9 16] - @test copy(x.^3) == [1 8; 27 64] + @test copy(x .^ -1) == [1 0; 0 0] + @test copy(x .^ 0) == [1 1; 1 1] + @test copy(x .^ 1) == [1 2; 3 4] + @test copy(x .^ 1.1) == [1 2; 3 4] + @test copy(x .^ 2) == [1 4; 9 16] + @test copy(x .^ 2.9) == [1 4; 9 16] + @test copy(x .^ 3) == [1 8; 27 64] end - info("NDArray::power::Int::n.^x") + @info("NDArray::power::Int::n .^ x") let x = mx.NDArray([1 2; 3 4]) @test eltype(x) == Int - @test copy(0.^x) == [0 0; 0 0] - @test copy(1.^x) == [1 1; 1 1] - @test copy(1.1.^x) == [1 1; 1 1] - @test copy(2.^x) == [2 4; 8 16] - @test copy(2.9.^x) == [2 4; 8 16] - @test copy(3.^x) == [3 9; 27 81] + @test copy(0 .^ x) == [0 0; 0 0] + @test copy(1 .^ x) == [1 1; 1 1] + @test copy(1.1 .^ x) == [1 1; 1 1] + @test copy(2 .^ x) == [2 4; 8 16] + @test copy(2.9 .^ x) == [2 4; 8 16] + @test copy(3 .^ x) == [3 9; 27 81] end - info("NDArray::power::Int::x.^y") + @info("NDArray::power::Int::x .^ y") let x = mx.NDArray([1 2; 3 4]), y = mx.NDArray([2 2; 2 2]) @test eltype(x) == Int @test eltype(y) == Int - @test copy(x.^y) == [1 4; 9 16] - @test copy(y.^x) == [2 4; 8 16] + @test copy(x .^ y) == [1 4; 9 16] + @test copy(y .^ x) == [2 4; 8 16] end - info("NDArray::power::Float32::x.^n") + @info("NDArray::power::Float32::x .^ n") let x = mx.NDArray(Float32[1 2; 3 4]), A = Float32[1 2; 3 4] @test eltype(x) == Float32 - @test copy(x.^0) == Float32[1 1; 1 1] - @test copy(x.^1) == Float32[1 2; 3 4] - @test copy(x.^2) == Float32[1 4; 9 16] - @test copy(x.^3) == Float32[1 8; 27 64] + @test copy(x .^ 0) == Float32[1 1; 1 1] + @test copy(x .^ 1) == Float32[1 2; 3 4] + @test copy(x .^ 2) == Float32[1 4; 9 16] + @test copy(x .^ 3) == Float32[1 8; 27 64] - @test copy(x.^-1) ≈ A.^-1 - @test copy(x.^1.1) ≈ A.^1.1 - @test copy(x.^2.9) ≈ A.^2.9 + @test copy(x .^ -1) ≈ A .^ -1 + @test copy(x .^ 1.1) ≈ A .^ 1.1 + @test copy(x .^ 2.9) ≈ A .^ 2.9 end - info("NDArray::power::Float32::n.^x") + @info("NDArray::power::Float32::n .^ x") let x = mx.NDArray(Float32[1 2; 3 4]), A = Float32[1 2; 3 4] @test eltype(x) == Float32 - @test copy(0.^x) == Float32[0 0; 0 0] - @test copy(1.^x) == Float32[1 1; 1 1] - @test copy(2.^x) == Float32[2 4; 8 16] - @test copy(3.^x) == Float32[3 9; 27 81] + @test copy(0 .^ x) == Float32[0 0; 0 0] + @test copy(1 .^ x) == Float32[1 1; 1 1] + @test copy(2 .^ x) == Float32[2 4; 8 16] + @test copy(3 .^ x) == Float32[3 9; 27 81] - @test copy(1.1.^x) ≈ 1.1.^A - @test copy(2.9.^x) ≈ 2.9.^A + @test copy(1.1 .^ x) ≈ 1.1 .^ A + @test copy(2.9 .^ x) ≈ 2.9 .^ A end - info("NDArray::power::Float32::x.^y") + @info("NDArray::power::Float32::x .^ y") let x = mx.NDArray(Float32[1 2; 3 4]), y = mx.NDArray(Float32[2 2; 2 2]) @test eltype(x) == Float32 @test eltype(y) == Float32 - @test copy(x.^y) == Float32[1 4; 9 16] - @test copy(y.^x) == Float32[2 4; 8 16] + @test copy(x .^ y) == Float32[1 4; 9 16] + @test copy(y .^ x) == Float32[2 4; 8 16] end - info("NDArray::power::e.^x::x.^e") + @info("NDArray::power::ℯ .^ x::x .^ ℯ") let x = mx.zeros(2, 3), A = [1 1 1; 1 1 1] - @test copy(e.^x) ≈ A + @test copy(ℯ .^ x) ≈ A end let A = Float32[1 2; 3 4], x = mx.NDArray(A) - @test copy(e.^x) ≈ e.^A - @test copy(x.^e) ≈ A.^e + @test copy(ℯ .^ x) ≈ ℯ .^ A + @test copy(x .^ ℯ) ≈ A .^ ℯ end - info("NDArray::power::π.^x::x.^π") + @info("NDArray::power::π .^ x::x .^ π") let A = Float32[1 2; 3 4], x = mx.NDArray(A) - @test copy(π.^x) ≈ π.^A - @test copy(x.^π) ≈ A.^π + @test copy(π .^ x) ≈ π .^ A + @test copy(x .^ π) ≈ A .^ π end # TODO: Float64: wait for /~https://github.com/apache/incubator-mxnet/pull/8012 - info("NDArray::broadcast_power") + @info("NDArray::broadcast_power") let A = [1 2 3; 4 5 6] @@ -932,7 +940,7 @@ end # function test_power function test_sqrt() dims = rand_dims() - info("NDArray::sqrt::dims = $dims") + @info("NDArray::sqrt::dims = $dims") j_array, nd_array = rand_tensors(dims) sqrt_ed = sqrt(nd_array) @@ -941,7 +949,7 @@ end function test_nd_as_jl() dims = (2, 3) - info("NDArray::nd_as_jl::dims = $dims") + @info("NDArray::nd_as_jl::dims = $dims") x = mx.zeros(dims) + 5 y = mx.ones(dims) @@ -952,7 +960,7 @@ function test_nd_as_jl() end z[:, 1] = y[:, 1] - y[:] = 0 + y .= 0 end @test sum(copy(y)) == 0 @@ -963,7 +971,7 @@ end function test_dot() dims1 = (2, 3) dims2 = (3, 8) - info("NDArray::dot") + @info("NDArray::dot") x = mx.zeros(dims1) y = mx.zeros(dims2) @@ -974,7 +982,7 @@ function test_dot() y = mx.zeros(1, 2, 3) @test_throws mx.MXError dot(x, y) # dimension mismatch - info("NDArray::matrix mul") + @info("NDArray::matrix mul") let A = [1. 2 3; 4 5 6] B = [-1., -2, -3] @@ -997,7 +1005,7 @@ function test_dot() end function test_eltype() - info("NDArray::eltype") + @info("NDArray::eltype") dims1 = (3,3) x = mx.empty(dims1) @@ -1011,7 +1019,7 @@ function test_eltype() end function test_reshape() - info("NDArray::reshape") + @info("NDArray::reshape") A = rand(2, 3, 4) B = reshape(NDArray(A), 4, 3, 2) @@ -1022,7 +1030,7 @@ function test_reshape() @test size(C) == (4, 3, 2) @test copy(C)[3, 1, 1] == A[1, 2, 1] - info("NDArray::reshape::reverse") + @info("NDArray::reshape::reverse") A = mx.zeros(10, 5, 4) B = reshape(A, -1, 0) @@ -1033,7 +1041,7 @@ function test_reshape() end function test_expand_dims() - info("NDArray::expand_dims") + @info("NDArray::expand_dims") let A = [1, 2, 3, 4], x = NDArray(A) @test size(x) == (4,) @@ -1059,44 +1067,44 @@ function test_expand_dims() end # test_expand_dims function test_sum() - info("NDArray::sum") + @info("NDArray::sum") let A = reshape(1.0:8, 2, 2, 2), X = mx.NDArray(A) - @test copy(sum(X))[] == sum(A) - @test copy(sum(X, 1)) == sum(A, 1) - @test copy(sum(X, 2)) == sum(A, 2) - @test copy(sum(X, 3)) == sum(A, 3) - @test copy(sum(X, [1, 2])) == sum(A, [1, 2]) - @test copy(sum(X, (1, 2))) == sum(A, (1, 2)) + @test copy(sum(X))[] == sum(A) + @test copy(sum(X, dims = 1)) == sum(A, dims = 1) + @test copy(sum(X, dims = 2)) == sum(A, dims = 2) + @test copy(sum(X, dims = 3)) == sum(A, dims = 3) + @test copy(sum(X, dims = [1, 2])) == sum(A, dims = [1, 2]) + @test copy(sum(X, dims = (1, 2))) == sum(A, dims = (1, 2)) end end function test_mean() - info("NDArray::mean") + @info("NDArray::mean") let A = reshape(1.0:8, 2, 2, 2), X = mx.NDArray(A) - @test copy(mean(X))[] == mean(A) - @test copy(mean(X, 1)) == mean(A, 1) - @test copy(mean(X, 2)) == mean(A, 2) - @test copy(mean(X, 3)) == mean(A, 3) - @test copy(mean(X, [1, 2])) == mean(A, [1, 2]) - @test copy(mean(X, (1, 2))) == mean(A, (1, 2)) + @test copy(mean(X))[] == mean(A) + @test copy(mean(X, dims = 1)) == mean(A, dims = 1) + @test copy(mean(X, dims = 2)) == mean(A, dims = 2) + @test copy(mean(X, dims = 3)) == mean(A, dims = 3) + @test copy(mean(X, dims = [1, 2])) == mean(A, dims = [1, 2]) + @test copy(mean(X, dims = (1, 2))) == mean(A, dims = (1, 2)) end end function test_maximum() - info("NDArray::maximum") + @info("NDArray::maximum") let A = reshape(1.0:8, 2, 2, 2), X = mx.NDArray(A) - @test copy(maximum(X))[] == maximum(A) - @test copy(maximum(X, 1)) == maximum(A, 1) - @test copy(maximum(X, 2)) == maximum(A, 2) - @test copy(maximum(X, 3)) == maximum(A, 3) - @test copy(maximum(X, [1, 2])) == maximum(A, [1, 2]) - @test copy(maximum(X, (1, 2))) == maximum(A, (1, 2)) + @test copy(maximum(X))[] == maximum(A) + @test copy(maximum(X, dims = 1)) == maximum(A, dims = 1) + @test copy(maximum(X, dims = 2)) == maximum(A, dims = 2) + @test copy(maximum(X, dims = 3)) == maximum(A, dims = 3) + @test copy(maximum(X, dims = [1, 2])) == maximum(A, dims = [1, 2]) + @test copy(maximum(X, dims = (1, 2))) == maximum(A, dims = (1, 2)) end - info("NDArray::broadcast_maximum") + @info("NDArray::broadcast_maximum") let A = [1 2 3; 4 5 6] @@ -1111,18 +1119,18 @@ function test_maximum() end function test_minimum() - info("NDArray::minimum") + @info("NDArray::minimum") let A = reshape(1.0:8, 2, 2, 2), X = mx.NDArray(A) - @test copy(minimum(X))[] == minimum(A) - @test copy(minimum(X, 1)) == minimum(A, 1) - @test copy(minimum(X, 2)) == minimum(A, 2) - @test copy(minimum(X, 3)) == minimum(A, 3) - @test copy(minimum(X, [1, 2])) == minimum(A, [1, 2]) - @test copy(minimum(X, (1, 2))) == minimum(A, (1, 2)) + @test copy(minimum(X))[] == minimum(A) + @test copy(minimum(X, dims = 1)) == minimum(A, dims = 1) + @test copy(minimum(X, dims = 2)) == minimum(A, dims = 2) + @test copy(minimum(X, dims = 3)) == minimum(A, dims = 3) + @test copy(minimum(X, dims = [1, 2])) == minimum(A, dims = [1, 2]) + @test copy(minimum(X, dims = (1, 2))) == minimum(A, dims = (1, 2)) end - info("NDArray::broadcast_minimum") + @info("NDArray::broadcast_minimum") let A = [1 2 3; 4 5 6] @@ -1137,20 +1145,20 @@ function test_minimum() end function test_prod() - info("NDArray::prod") + @info("NDArray::prod") let A = reshape(1.0:8, 2, 2, 2), X = mx.NDArray(A) - @test copy(prod(X))[] == prod(A) - @test copy(prod(X, 1)) == prod(A, 1) - @test copy(prod(X, 2)) == prod(A, 2) - @test copy(prod(X, 3)) == prod(A, 3) - @test copy(prod(X, [1, 2])) == prod(A, [1, 2]) - @test copy(prod(X, (1, 2))) == prod(A, (1, 2)) + @test copy(prod(X))[] == prod(A) + @test copy(prod(X, dims = 1)) == prod(A, dims = 1) + @test copy(prod(X, dims = 2)) == prod(A, dims = 2) + @test copy(prod(X, dims = 3)) == prod(A, dims = 3) + @test copy(prod(X, dims = [1, 2])) == prod(A, dims = [1, 2]) + @test copy(prod(X, dims = (1, 2))) == prod(A, dims = (1, 2)) end end function test_fill() - info("NDArray::fill") + @info("NDArray::fill") let x = mx.fill(42, 2, 3, 4) @test eltype(x) == Int @@ -1176,7 +1184,7 @@ function test_fill() @test copy(x) ≈ fill(Float32(42), 2, 3, 4) end - info("NDArray::fill!::arr") + @info("NDArray::fill!::arr") let x = fill!(mx.zeros(2, 3, 4), 42) @test eltype(x) == Float32 @test size(x) == (2, 3, 4) @@ -1185,19 +1193,19 @@ function test_fill() end # function test_fill function test_transpose() - info("NDArray::transpose::1D") + @info("NDArray::transpose::1D") let A = rand(Float32, 4), x = NDArray(A) @test size(x) == (4,) @test size(x') == (1, 4) end - info("NDArray::transpose::2D") + @info("NDArray::transpose::2D") let A = rand(Float32, 2, 3), x = mx.NDArray(A) @test size(x) == (2, 3) @test size(x') == (3, 2) end - info("NDArray::permutedims") + @info("NDArray::permutedims") let A = collect(Float32, reshape(1.0:24, 2, 3, 4)), x = mx.NDArray(A) A′ = permutedims(A, [2, 1, 3]) x′ = permutedims(x, [2, 1, 3]) @@ -1207,36 +1215,37 @@ function test_transpose() end function test_show() - info("NDArray::show::REPL") + @info("NDArray::show::REPL") let str = sprint(show, MIME"text/plain"(), mx.NDArray([1 2 3 4])) - @test contains(str, "1×4") - @test contains(str, "mx.NDArray") - @test contains(str, "Int64") - @test contains(str, "CPU") + @test occursin("1×4", str) + @test occursin("NDArray", str) + @test occursin("Int64", str) + @test occursin("CPU", str) @test match(r"1\s+2\s+3\s+4", str) != nothing end - info("NDArray::show") + @info("NDArray::show") let str = sprint(show, mx.NDArray([1 2 3 4])) - @test str == "NDArray [1 2 3 4]" + @test str == "NDArray([1 2 3 4])" end let str = sprint(show, mx.zeros(4)) - @test str == "NDArray Float32[0.0, 0.0, 0.0, 0.0]" + @test str == "NDArray(Float32[0.0, 0.0, 0.0, 0.0])" end end function test_size() - info("NDArray::size") + @info("NDArray::size") let A = [1 2; 3 4; 5 6], x = mx.NDArray(A) @test size(A) == size(x) - @test size(A, 1, 2, 3, 4, 5) == size(x, 1, 2, 3, 4, 5) - @inferred size(x, 1, 2, 3, 4, 5) + dims = (1, 2, 3, 4, 5) + @test map(d -> size(A, d), dims) == map(d -> size(x, d), dims) + @inferred map(d -> size(x, d), dims) end end # function test_size() function check_trigonometric(f) - info("NDArray::$f") + @info("NDArray::$f") let A = [.1 .2; .3 .4], x = mx.NDArray(A) B = f.(A) y = f.(x) @@ -1257,7 +1266,7 @@ function test_trigonometric() end # function test_trigonometric function check_hyperbolic(f, A) - info("NDArray::$f") + @info("NDArray::$f") let x = NDArray(A) B = f.(A) y = f.(x) @@ -1283,10 +1292,10 @@ function test_hyperbolic() end # function test_hyperbolic function test_act_funcs() - info("NDArray::σ/sigmoid") + @info("NDArray::σ/sigmoid") let A = Float32[.1, .2, -.3, -.4] - B = @. 1 / (1 + e^(-A)) + B = @. 1 / (1 + ℯ ^ (-A)) x = NDArray(A) y = σ.(x) @test copy(y) ≈ B @@ -1295,7 +1304,7 @@ function test_act_funcs() @test copy(z) ≈ B end - info("NDArray::relu") + @info("NDArray::relu") let A = [1, 2, -3, -4] B = max.(A, 0) @@ -1304,7 +1313,7 @@ function test_act_funcs() @test copy(y) ≈ B end - info("NDArray::softmax::1D") + @info("NDArray::softmax::1D") let A = Float32[1, 2, 3, 4] B = exp.(A) ./ sum(exp.(A)) @@ -1313,20 +1322,20 @@ function test_act_funcs() @test copy(y) ≈ B end - info("NDArray::softmax::2D") + @info("NDArray::softmax::2D") let A = Float32[1 2; 3 4] - B = exp.(A) ./ sum(exp.(A), 1) + B = exp.(A) ./ sum(exp.(A), dims = 1) x = NDArray(A) y = softmax.(x, 1) @test copy(y) ≈ B - C = exp.(A) ./ sum(exp.(A), 2) + C = exp.(A) ./ sum(exp.(A), dims = 2) z = softmax.(x, 2) @test copy(z) ≈ C end - info("NDArray::log_softmax::1D") + @info("NDArray::log_softmax::1D") let A = Float32[1, 2, 3, 4] B = log.(exp.(A) ./ sum(exp.(A))) @@ -1335,15 +1344,15 @@ function test_act_funcs() @test copy(y) ≈ B end - info("NDArray::log_softmax::2D") + @info("NDArray::log_softmax::2D") let A = Float32[1 2; 3 4] - B = log.(exp.(A) ./ sum(exp.(A), 1)) + B = log.(exp.(A) ./ sum(exp.(A), dims = 1)) x = NDArray(A) y = log_softmax.(x, 1) @test copy(y) ≈ B - C = log.(exp.(A) ./ sum(exp.(A), 2)) + C = log.(exp.(A) ./ sum(exp.(A), dims = 2)) z = log_softmax.(x, 2) @test copy(z) ≈ C end @@ -1369,27 +1378,27 @@ macro check_equal(op) end function test_equal() - info("NDArray::broadcast_equal") + @info("NDArray::broadcast_equal") @check_equal == - info("NDArray::broadcast_not_equal") + @info("NDArray::broadcast_not_equal") @check_equal != - info("NDArray::broadcast_greater") + @info("NDArray::broadcast_greater") @check_equal > - info("NDArray::broadcast_greater_equal") + @info("NDArray::broadcast_greater_equal") @check_equal >= - info("NDArray::broadcast_lesser") + @info("NDArray::broadcast_lesser") @check_equal < - info("NDArray::broadcast_lesser_equal") + @info("NDArray::broadcast_lesser_equal") @check_equal <= end # function test_equal function test_broadcast_to() - info("NDArray::broadcast_to") + @info("NDArray::broadcast_to") A = [1 2 3] x = NDArray(A) @test mx.broadcast_to(x, (1, 3)) |> copy == A @@ -1400,20 +1409,20 @@ function test_broadcast_to() end # function test_broadcast_to function test_broadcast_axis() - info("NDArray::broadcast_axis") + @info("NDArray::broadcast_axis") A = reshape([1, 2, 3], 1, 3, 1) x = NDArray(A) @test mx.broadcast_axis(x, 1, 4) |> copy == [A; A; A; A] - @test mx.broadcast_axis(x, 3, 2) |> copy == cat(3, A, A) + @test mx.broadcast_axis(x, 3, 2) |> copy == cat(A, A, dims = 3) - info("NDArray::broadcast_axes") + @info("NDArray::broadcast_axes") @test mx.broadcast_axes(x, 1, 4) |> copy == [A; A; A; A] - @test mx.broadcast_axes(x, 3, 2) |> copy == cat(3, A, A) + @test mx.broadcast_axes(x, 3, 2) |> copy == cat(A, A, dims = 3) end # function test_broadcast_axis function test_hypot() - info("NDArray::hypot") + @info("NDArray::hypot") A = [3 3 3] B = [4, 4] C = hypot.(A, B) @@ -1436,7 +1445,7 @@ end # function test_hypot test_slice() test_linear_idx() test_first() - test_endof() + test_lastindex() test_cat() test_plus() test_minus() diff --git a/julia/test/unittest/operator.jl b/julia/test/unittest/operator.jl index ed8312d91cc9..345dd0f88daf 100644 --- a/julia/test/unittest/operator.jl +++ b/julia/test/unittest/operator.jl @@ -18,14 +18,14 @@ module TestOperator using MXNet -using Base.Test +using Test using ..Main: rand_dims function test_scalar_op() data = mx.Variable(:data) shape = rand_dims() - info("Operator::scalar_op::dims = $shape") + @info "Operator::scalar_op::dims = $shape" data_jl = 5ones(Float32, shape) arr_data = mx.copy(data_jl, mx.cpu()) @@ -35,7 +35,7 @@ function test_scalar_op() exec_test = mx.bind(test, mx.cpu(), [arr_data], args_grad=[arr_grad]) mx.forward(exec_test) out = copy(exec_test.outputs[1]) - jl_out1 = (4 - ((1+data_jl+1)*2/5) - 0.2) + jl_out1 = @. 4 - ((1+data_jl+1)*2/5) - 0.2 jl_out = 2 ./ jl_out1 @test copy(out) ≈ jl_out diff --git a/julia/test/unittest/optimizer.jl b/julia/test/unittest/optimizer.jl index b068f12fffd7..cd1e7ebb4b77 100644 --- a/julia/test/unittest/optimizer.jl +++ b/julia/test/unittest/optimizer.jl @@ -17,7 +17,7 @@ module TestOptimizer -using Base.Test +using Test using MXNet using MXNet.mx.LearningRate @@ -25,7 +25,7 @@ using MXNet.mx.Momentum function test_fixed_η() - info("Optimizer::LearningRate::Fixed") + @info "Optimizer::LearningRate::Fixed" x = LearningRate.Fixed(.42) @test get(x) == .42 update!(x) @@ -34,7 +34,7 @@ end # function test_fixed_η function check_η_decay(x) - info("Optimizer::LearningRate::$x") + @info "Optimizer::LearningRate::$x" η = get(x) @test η == 1 @@ -55,14 +55,14 @@ test_inv_η() = LearningRate.Inv(1) |> check_η_decay function test_μ_null() - info("Optimizer::Momentum::Null") + @info "Optimizer::Momentum::Null" x = Momentum.Null() @test iszero(get(x)) end function test_μ_fixed() - info("Optimizer::Momentum::Fixed") + @info "Optimizer::Momentum::Fixed" x = Momentum.Fixed(42) @test get(x) == 42 end diff --git a/julia/test/unittest/random.jl b/julia/test/unittest/random.jl index 973a4bc32faa..013e4f609daa 100644 --- a/julia/test/unittest/random.jl +++ b/julia/test/unittest/random.jl @@ -17,18 +17,19 @@ module TestRandom using MXNet -using Base.Test +using Test +using Statistics function test_uniform() dims = (100, 100, 2) - info("random::uniform::dims = $dims") + @info "random::uniform::dims = $dims" low = -10; high = 10 seed = 123 - mx.srand(seed) + mx.seed!(seed) ret1 = mx.rand(dims..., low = low, high = high) - mx.srand(seed) + mx.seed!(seed) ret2 = mx.empty(dims) mx.rand!(ret2, low = low, high = high) @@ -38,14 +39,14 @@ end function test_gaussian() dims = (80, 80, 4) - info("random::gaussian::dims = $dims") + @info "random::gaussian::dims = $dims" μ = 10; σ = 2 seed = 456 - mx.srand(seed) + mx.seed!(seed) ret1 = mx.randn(dims..., μ = μ, σ = σ) - mx.srand(seed) + mx.seed!(seed) ret2 = mx.empty(dims) mx.randn!(ret2, μ = μ, σ = σ) diff --git a/julia/test/unittest/symbolic-node.jl b/julia/test/unittest/symbolic-node.jl index 507af17332f8..07ef05f704db 100644 --- a/julia/test/unittest/symbolic-node.jl +++ b/julia/test/unittest/symbolic-node.jl @@ -18,7 +18,7 @@ module TestSymbolicNode using MXNet -using Base.Test +using Test using ..Main: mlp2, mlpchain, exec @@ -26,7 +26,7 @@ using ..Main: mlp2, mlpchain, exec # Test Implementations ################################################################################ function test_basic() - info("SymbolicNode::basic") + @info("SymbolicNode::basic") model = mlp2() @test mx.list_arguments(model) == [:data,:fc1_weight,:fc1_bias,:fc2_weight,:fc2_bias] @@ -35,7 +35,7 @@ function test_basic() end function test_chain() - info("SymbolicNode::chain") + @info("SymbolicNode::chain") model = mlpchain() @test mx.list_arguments(model) == [:data,:fc1_weight,:fc1_bias,:fc2_weight,:fc2_bias] @@ -57,7 +57,7 @@ function test_chain() end function test_internal() - info("SymbolicNode::internal") + @info("SymbolicNode::internal") data = mx.Variable(:data) oldfc = mx.FullyConnected(data, name=:fc1, num_hidden=10) @@ -71,7 +71,7 @@ function test_internal() end function test_get_children() - info("SymbolicNode::get_children") + @info("SymbolicNode::get_children") let x = mx.Variable(:x), y = mx.Variable(:y) z = x + y @@ -80,7 +80,7 @@ function test_get_children() @test mx.list_outputs(mx.get_children(z)) == [:x, :y] end - info("SymbolicNode::get_children::on leaf") + @info("SymbolicNode::get_children::on leaf") let x = mx.Variable(:x) @test mx.get_children(x) == nothing end @@ -88,7 +88,7 @@ end # test_get_children function test_compose() - info("SymbolicNode::compose") + @info("SymbolicNode::compose") data = mx.Variable(:data) net1 = mx.FullyConnected(data, name=:fc1, num_hidden=10) @@ -104,7 +104,7 @@ function test_compose() end function test_infer_shape() - info("SymbolicNode::infer_shape::mlp2") + @info("SymbolicNode::infer_shape::mlp2") model = mlp2() data_shape = (100, 100) @@ -118,7 +118,7 @@ function test_infer_shape() end function test_infer_shape_error() - info("SymbolicNode::infer_shape::throws") + @info("SymbolicNode::infer_shape::throws") model = mlp2() weight_shape = (100, 1) @@ -127,7 +127,7 @@ function test_infer_shape_error() end function test_saveload() - info("SymbolicNode::saveload::mlp2") + @info("SymbolicNode::saveload::mlp2") model = mlp2() fname = tempname() @@ -139,37 +139,37 @@ function test_saveload() end function test_attrs() - info("SymbolicNode::Attributes") + @info("SymbolicNode::Attributes") data = mx.Variable(:data) @test mx.get_name(data) == :data result = mx.get_attr(data, :test) - @test isnull(result) + @test ismissing(result) mx.set_attr(data, :test, "1.0") result = mx.get_attr(data, :test) - @test !isnull(result) - @test get(result) == "1.0" + @test !ismissing(result) + @test result == "1.0" data2 = mx.Variable(:data2, attrs = Dict(:test => "hallo!")) - @test get(mx.get_attr(data2, :test)) == "hallo!" + @test mx.get_attr(data2, :test) == "hallo!" conv = mx.Convolution(data2, kernel = (1,1), num_filter = 1) - @test isnull(mx.get_attr(conv, :b)) - @test isa(mx.get_name(conv), Symbol) + @test ismissing(mx.get_attr(conv, :b)) + @test mx.get_name(conv) isa Symbol @test_throws MethodError mx.Variable(:data3, attrs = Dict(:test => "1.0", :test2 => 1.0)) @test_throws MethodError mx.Convolution(data2, kernel = (1,1), num_filter = 1, attrs = Dict(:test => "1.0", :test2 => 1.0)) end function test_functions() - info("SymbolicNode::Functions") + @info("SymbolicNode::Functions") data = mx.Variable(:data) typeof(mx.sum(data)) == mx.SymbolicNode end function test_reshape() - info("SymbolicNode::reshape(sym, dim...)") + @info("SymbolicNode::reshape(sym, dim...)") A = mx.NDArray(collect(1:24)) x = mx.Variable(:x) @@ -181,7 +181,7 @@ function test_reshape() @test size(out) == (2, 3, 4) @test copy(out) == reshape(1:24, 2, 3, 4) - info("SymbolicNode::reshape(sym, dim)") + @info("SymbolicNode::reshape(sym, dim)") A = mx.NDArray(collect(1:24)) x = mx.Variable(:x) @@ -193,18 +193,18 @@ function test_reshape() @test size(out) == (2, 3, 4) @test copy(out) == reshape(1:24, 2, 3, 4) - info("SymbolicNode::reshape::reverse") + @info("SymbolicNode::reshape::reverse") A = mx.zeros(10, 5, 4) x = mx.Variable(:x) - y = mx.reshape(x, -1, 0, reverse=true) + y = mx.reshape(x, -1, 0, reverse = true) e = mx.bind(y, mx.cpu(), Dict(:x => A)) mx.forward(e) out = e.outputs[1] @test size(out) == (50, 4) - info("SymbolicNode::reshape::0") + @info("SymbolicNode::reshape::0") A = mx.zeros(2, 3, 4) x = mx.Variable(:x) @@ -215,7 +215,7 @@ function test_reshape() @test size(out) == (4, 3, 2) - info("SymbolicNode::reshape::-1") + @info("SymbolicNode::reshape::-1") A = mx.zeros(2, 3, 4) x = mx.Variable(:x) @@ -226,7 +226,7 @@ function test_reshape() @test size(out) == (6, 1, 4) - info("SymbolicNode::reshape::-2") + @info("SymbolicNode::reshape::-2") A = mx.zeros(2, 3, 4, 2) x = mx.Variable(:x) @@ -237,7 +237,7 @@ function test_reshape() @test size(out) == (3, 2, 4, 2) - info("SymbolicNode::reshape::-3") + @info("SymbolicNode::reshape::-3") A = mx.zeros(2, 3, 4, 5) x = mx.Variable(:x) @@ -248,7 +248,7 @@ function test_reshape() @test size(out) == (6, 20) - info("SymbolicNode::reshape::-4") + @info("SymbolicNode::reshape::-4") A = mx.zeros(2, 3, 4) x = mx.Variable(:x) @@ -261,12 +261,12 @@ function test_reshape() end function test_dot() - info("SymbolicNode::dot") + @info("SymbolicNode::dot") x = mx.Variable(:x) y = mx.Variable(:y) z = mx.dot(x, y) - z_exec = mx.bind(z, context=mx.cpu(), - args=Dict(:x => mx.ones((100, 2)), :y => mx.ones((2, 200)))) + z_exec = mx.bind(z, context = mx.cpu(), + args = Dict(:x => mx.ones((100, 2)), :y => mx.ones((2, 200)))) mx.forward(z_exec) ret = copy(z_exec.outputs[1]) @@ -275,14 +275,14 @@ function test_dot() end function test_print() - info("SymbolicNode::print") + @info("SymbolicNode::print") io = IOBuffer() print(io, mx.Variable(:x)) @test !isempty(String(take!(io))) end function test_misc() - info("SymbolicNode::Miscellaneous") + @info("SymbolicNode::Miscellaneous") # Test for #189 a = mx.Variable("a") b = mx.Variable("b") @@ -290,7 +290,7 @@ function test_misc() end function test_add() - info("SymbolicNode::elementwise add") + @info("SymbolicNode::elementwise add") let x = mx.Variable(:x), A = Float32[1 2; 3 4] let y = exec(x .+ 42; :x => A)[] @test size(y) == size(A) @@ -329,7 +329,7 @@ function test_add() end # function test_add function test_minus() - info("SymbolicNode::elementwise minus") + @info("SymbolicNode::elementwise minus") let x = mx.Variable(:x), A = Float32[1 2; 3 4] let y = exec(x .- 42; :x => A)[] @test size(y) == size(A) @@ -373,7 +373,7 @@ function test_minus() end # function test_minus function test_mul() - info("SymbolicNode::elementwise mul") + @info("SymbolicNode::elementwise mul") let x = mx.Variable(:x), A = Float32[1 2; 3 4] let y = exec(x .* 42; :x => A)[] @test size(y) == size(A) @@ -412,7 +412,7 @@ function test_mul() end # function test_mul function test_div() - info("SymbolicNode::elementwise div") + @info("SymbolicNode::elementwise div") let x = mx.Variable(:x), A = Float32[1 2; 3 4] let y = exec(x ./ 42; :x => A)[] @test size(y) == size(A) @@ -451,16 +451,16 @@ function test_div() end # function test_div function test_power() - info("SymbolicNode::elementwise power") + @info("SymbolicNode::elementwise power") let x = mx.Variable(:x), A = Float32[1 2; 3 4] - let y = exec(x.^42; :x => A)[] + let y = exec(x .^ 42; :x => A)[] @test size(y) == size(A) - @test copy(y) ≈ A.^42 + @test copy(y) ≈ A .^ 42 end - let y = exec(42.^x; :x => A)[] + let y = exec(42 .^ x; :x => A)[] @test size(y) == size(A) - @test copy(y) ≈ 42.^A + @test copy(y) ≈ 42 .^ A end end @@ -468,61 +468,61 @@ function test_power() x = mx.Variable(:x) y = mx.Variable(:y) - let z = x.^y + let z = x .^ y z = exec(z; :x => A, :y => B)[] @test size(z) == size(A) - @test copy(z) ≈ A.^B + @test copy(z) ≈ A .^ B end - let z = y.^x + let z = y .^ x z = exec(z; :x => A, :y => B)[] @test size(z) == size(A) - @test copy(z) ≈ B.^A + @test copy(z) ≈ B .^ A end end - info("SymbolicNode::power::e.^x::x.^e") + @info("SymbolicNode::power::e .^ x::x .^ e") let x = mx.Variable(:x), A = [0 0 0; 0 0 0] - y = exec(e.^x; :x => A)[] - @test copy(y) ≈ ones(A) + y = exec(ℯ .^ x; :x => A)[] + @test copy(y) ≈ fill(1, size(A)) end let x = mx.Variable(:x), A = Float32[1 2; 3 4] - let y = e.^x + let y = ℯ .^ x z = exec(y; :x => A)[] - @test copy(z) ≈ e.^A + @test copy(z) ≈ ℯ .^ A end - let y = x.^e + let y = x .^ ℯ z = exec(y; :x => A)[] - @test copy(z) ≈ A.^e + @test copy(z) ≈ A .^ ℯ end end - info("SymbolicNode::power::π.^x::x.^π") + @info("SymbolicNode::power::π .^ x::x .^ π") let x = mx.Variable(:x), A = Float32[1 2; 3 4] - let y = π.^x + let y = π .^ x z = exec(y; :x => A)[] - @test copy(z) ≈ π.^A + @test copy(z) ≈ π .^ A end - let y = x.^π + let y = x .^ π z = exec(y; :x => A)[] - @test copy(z) ≈ A.^π + @test copy(z) ≈ A .^ π end end end # function test_power function test_get_name() - info("SymbolicNode::get_name::with get_internals") + @info("SymbolicNode::get_name::with get_internals") name = mx.get_name(mx.get_internals(mlp2())) # no error - @test contains(name, "Ptr") + @test occursin("Ptr", name) end # function test_get_name function test_var() - info("SymbolicNode::var") + @info("SymbolicNode::var") x = @mx.var x @test x isa mx.SymbolicNode diff --git a/julia/test/unittest/util.jl b/julia/test/unittest/util.jl index ddd613ca48ea..d7f65a3e8012 100644 --- a/julia/test/unittest/util.jl +++ b/julia/test/unittest/util.jl @@ -17,19 +17,18 @@ module TestUtil -using Base.Test - using MXNet +using Test function test_getdocdefine() - info("Util::_getdocdefine") - @test contains(mx._getdocdefine("sgd_update"), "Defined in") + @info("Util::_getdocdefine") + @test occursin("Defined in", mx._getdocdefine("sgd_update")) end # function test_getdocdefine function test_firstarg() - info("Util::_firstarg") + @info("Util::_firstarg") @test mx._firstarg(:(f(x, y))) == :x @test mx._firstarg(:(f(x::mx.NDArray, y))) == :x @test mx._firstarg(:(f(x::mx.NDArray, y::mx.NDArray))) == :x diff --git a/julia/test/unittest/visualize.jl b/julia/test/unittest/visualize.jl index 58d111b0fe14..a5a4f722e6e2 100644 --- a/julia/test/unittest/visualize.jl +++ b/julia/test/unittest/visualize.jl @@ -17,7 +17,7 @@ module TestVisualize using MXNet -using Base.Test +using Test using ..Main: mlp2 @@ -26,7 +26,7 @@ using ..Main: mlp2 ################################################################################ function test_basic() - info("Visualize::basic") + @info("Visualize::basic") mlp = mlp2()