diff --git a/amalgamation/prep_nnvm.sh b/amalgamation/prep_nnvm.sh index 8e30481d9ebf..a8f63b6b4b1a 100755 --- a/amalgamation/prep_nnvm.sh +++ b/amalgamation/prep_nnvm.sh @@ -40,7 +40,6 @@ echo '#define MSHADOW_FORCE_STREAM #include "mshadow/tensor.h" #include "mxnet/base.h" #include "dmlc/json.h" -#include "nnvm/tuple.h" #include "mxnet/tensor_blob.h"' > temp cat nnvm.cc >> temp mv temp ../../../../amalgamation/nnvm.cc diff --git a/docs/architecture/overview.md b/docs/architecture/overview.md index fefa1e8a0a0c..e2e9ce2bd3eb 100644 --- a/docs/architecture/overview.md +++ b/docs/architecture/overview.md @@ -301,9 +301,9 @@ The `OperatorProperty` interface consists of: * **InferShape:** ```c++ - virtual bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const = 0; + virtual bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const = 0; ``` This interface has two purposes: @@ -322,9 +322,9 @@ MXNet defines two interfaces to achieve this: ```c++ virtual std::vector ForwardResource( - const std::vector &in_shape) const; + const mxnet::ShapeVector &in_shape) const; virtual std::vector BackwardResource( - const std::vector &in_shape) const; + const mxnet::ShapeVector &in_shape) const; ``` The `ResourceRequest` structure (in `resource.h`) currently contains only a type flag: @@ -473,7 +473,7 @@ To do so, you could define a `ConvolutionParam` structure, as follows: ```c++ #include struct ConvolutionParam : public dmlc::Parameter { - TShape kernel, stride, pad; + mxnet::TShape kernel, stride, pad; uint32_t num_filter, num_group, workspace; bool no_bias; }; @@ -582,10 +582,10 @@ must be provided before any calculation occurs. let's check input data shape consistency and provide output shape. ```cpp - typedef TShape (*UnaryShapeFunction)(const TShape& src, + typedef mxnet::TShape (*UnaryShapeFunction)(const mxnet::TShape& src, const EnvArguments& env); - typedef TShape (*BinaryShapeFunction)(const TShape& lhs, - const TShape& rhs, + typedef mxnet::TShape (*BinaryShapeFunction)(const mxnet::TShape& lhs, + const mxnet::TShape& rhs, const EnvArguments& env); ``` You can use `mshadow::TShape` to check input data shape and designate output data shape. @@ -611,9 +611,9 @@ In our smooth l1 loss example, it's okay to use the default behavior whereby the Written explicitly, it is: ```cpp - inline TShape SmoothL1Shape_(const TShape& src, + inline mxnet::TShape SmoothL1Shape_(const mxnet::TShape& src, const EnvArguments& env) { - return TShape(src); + return mxnet::TShape(src); } ``` diff --git a/docs/faq/add_op_in_backend.md b/docs/faq/add_op_in_backend.md index 0e734d62bce2..15f4ed9fbab4 100644 --- a/docs/faq/add_op_in_backend.md +++ b/docs/faq/add_op_in_backend.md @@ -175,8 +175,8 @@ element-wise multiplication and addition. For our `quadratic` operator, shape inference possesses quite similar logic. ```cpp inline bool QuadraticOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); @@ -216,8 +216,8 @@ The function `QuadraticOpShape` posted here is for the purpose of illustration o ```cpp template inline bool ElemwiseShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs); + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs); ``` The same logic goes for data type inference. We will leave the analysis of diff --git a/docs/faq/new_op.md b/docs/faq/new_op.md index 4d51eaf8059d..4c10708b944d 100644 --- a/docs/faq/new_op.md +++ b/docs/faq/new_op.md @@ -258,7 +258,7 @@ can add argument descriptions in bulk with `.add_arguments(ActivationParam::__FI #### FInferShape or TIsBackward (for Backward Only Ops) -Normally operators need to have `FInferShape` with prototype `bool(const nnvm::NodeAttrs& attrs, std::vector *in_attrs, std::vector *out_attrs)`. `FInferShape` fills unknown shapes (`shape.ndim() == 0`) in in_attrs/out_attrs based on known shapes in in_attrs/out_attrs. Use `ElemwiseShape` for simple operators with uniform shapes. +Normally operators need to have `FInferShape` with prototype `bool(const nnvm::NodeAttrs& attrs, mxnet::ShapeVector *in_attrs, mxnet::ShapeVector *out_attrs)`. `FInferShape` fills unknown shapes (`shape.ndim() == 0`) in in_attrs/out_attrs based on known shapes in in_attrs/out_attrs. Use `ElemwiseShape` for simple operators with uniform shapes. Operators that are only used for a backward pass can instead register `.set_attr("TIsBackward", true)` and their shapes with be copied from the corresponding forward operators. diff --git a/include/mxnet/base.h b/include/mxnet/base.h index 2ea6ebbdf3d7..b239cb1f7302 100644 --- a/include/mxnet/base.h +++ b/include/mxnet/base.h @@ -33,9 +33,9 @@ #include "mshadow/tensor.h" // nnvm headers for symbolic construction. #include "nnvm/op.h" -#include "nnvm/tuple.h" #include "nnvm/symbolic.h" #include "libinfo.h" +#include "tuple.h" /*! @@ -95,8 +95,6 @@ typedef mshadow::gpu gpu; typedef mshadow::index_t index_t; /*! \brief data type that will be used to store ndarray */ typedef mshadow::default_real_t real_t; -/*! \brief Shape data structure used to record shape information */ -using TShape = nnvm::TShape; /*! \brief operator structure from NNVM */ using Op = nnvm::Op; diff --git a/include/mxnet/executor.h b/include/mxnet/executor.h index aec10091a540..24b23ed783f3 100644 --- a/include/mxnet/executor.h +++ b/include/mxnet/executor.h @@ -121,7 +121,7 @@ class Executor { const bool allow_up_sizing, const Context& default_ctx, const std::map& ctx_map, - const std::unordered_map& + const std::unordered_map& provided_arg_shapes, std::vector* in_args, std::vector* arg_grads, @@ -155,7 +155,7 @@ class Executor { const std::vector& in_arg_ctxes, const std::vector& arg_grad_ctxes, const std::vector& aux_state_ctxes, - const std::unordered_map& arg_shape_map, + const std::unordered_map& arg_shape_map, const std::unordered_map& arg_dtype_map, const std::unordered_map& arg_stype_map, const std::vector& grad_req_types, diff --git a/include/mxnet/ndarray.h b/include/mxnet/ndarray.h index 5de42e19a657..feb562aa76fa 100644 --- a/include/mxnet/ndarray.h +++ b/include/mxnet/ndarray.h @@ -91,7 +91,7 @@ class NDArray { * \param delay_alloc whether delay the allocation * \param dtype data type of this ndarray */ - NDArray(const TShape &shape, Context ctx, + NDArray(const mxnet::TShape &shape, Context ctx, bool delay_alloc = false, int dtype = mshadow::default_type_flag) : ptr_(std::make_shared(shape, ctx, delay_alloc, dtype)), shape_(shape), dtype_(dtype), storage_type_(kDefaultStorage), @@ -99,10 +99,10 @@ class NDArray { } /*! \brief constructor for NDArray with storage type */ - NDArray(const NDArrayStorageType stype, const TShape &shape, Context ctx, + NDArray(const NDArrayStorageType stype, const mxnet::TShape &shape, Context ctx, bool delay_alloc = true, int dtype = mshadow::default_type_flag, - std::vector aux_types = {}, std::vector aux_shapes = {}, - TShape storage_shape = TShape(mshadow::Shape1(0))); + std::vector aux_types = {}, mxnet::ShapeVector aux_shapes = {}, + mxnet::TShape storage_shape = mxnet::TShape(mshadow::Shape1(0))); /*! * \brief constructs a new dynamic NDArray whose shape is unknown, * hence the NDArray is inherently lazily created @@ -110,7 +110,7 @@ class NDArray { * \param dtype data type of this ndarray */ explicit NDArray(Context ctx, int dtype = mshadow::default_type_flag) { - ptr_ = std::make_shared(TShape(mshadow::Shape1(0)), ctx, true, dtype); + ptr_ = std::make_shared(mxnet::TShape(mshadow::Shape1(0)), ctx, true, dtype); dtype_ = dtype; storage_type_ = kDefaultStorage; entry_ = {nullptr, 0, 0}; @@ -148,7 +148,7 @@ class NDArray { } /*! \brief create ndarray from shared memory */ - NDArray(int shared_pid, int shared_id, const TShape& shape, int dtype) + NDArray(int shared_pid, int shared_id, const mxnet::TShape& shape, int dtype) : ptr_(std::make_shared(shared_pid, shared_id, shape, dtype)), shape_(shape), dtype_(dtype), storage_type_(kDefaultStorage), entry_({nullptr, 0, 0}) { } @@ -163,7 +163,7 @@ class NDArray { * \param aux_data the memory content of static aux data * \param dev_id the device id this tensor sits at */ - NDArray(const NDArrayStorageType stype, const TShape &shape, + NDArray(const NDArrayStorageType stype, const mxnet::TShape &shape, const TBlob &data, const std::vector &aux_data, int dev_id) : ptr_(std::make_shared(stype, data, aux_data, dev_id)), shape_(shape), dtype_(data.type_flag_), storage_type_(stype), entry_({nullptr, 0, 0}) { @@ -172,7 +172,7 @@ class NDArray { * \brief initialize the NDArray, assuming it is not assigned a meaningful shape before * \param shape the shape of the NDArray */ - void Init(const TShape &shape) { + void Init(const mxnet::TShape &shape) { ptr_->Init(shape, this->dtype_); this->shape_ = shape; } @@ -210,7 +210,7 @@ class NDArray { /*! * \return the shape of current NDArray. */ - inline const TShape& shape() const { + inline const mxnet::TShape& shape() const { return shape_; } /*! @@ -218,7 +218,7 @@ class NDArray { * It is only intended for non-default storage. For row-sparse storage, it is the shape of * the tensor which stores the non-zero values. */ - inline const TShape &storage_shape() const { + inline const mxnet::TShape &storage_shape() const { CHECK(ptr_ != nullptr); CHECK_NE(storage_type(), kDefaultStorage) << "storage_shape() is not intended for kDefaultStorage."; @@ -230,14 +230,14 @@ class NDArray { * \param index the index of the aux data * \return the shape of aux data at given index */ - inline const TShape& aux_shape(size_t index) const { + inline const mxnet::TShape& aux_shape(size_t index) const { CHECK_NE(storage_type(), kDefaultStorage) << "aux_shape() is not intended for kDefaultStorage."; return ptr_->aux_shapes[index]; } /* \return the shapes of all aux data */ - const std::vector& aux_shapes() const { + const mxnet::ShapeVector& aux_shapes() const { CHECK_NE(storage_type(), kDefaultStorage) << "aux_shapes() is not intended for kDefaultStorage."; return ptr_->aux_shapes; @@ -257,7 +257,7 @@ class NDArray { * for the final result. After the operation is done, the exact size of * the shape is known and need to be reset using this function. */ - inline void set_aux_shape(size_t index, const TShape& shape) const { + inline void set_aux_shape(size_t index, const mxnet::TShape& shape) const { CHECK_NE(storage_type(), kDefaultStorage) << "set_aux_shape() is not intended for kDefaultStorage."; ptr_->set_aux_shape(index, shape); @@ -552,7 +552,7 @@ class NDArray { * \param dtype The data type. * \return NDArray in new shape and type. */ - inline NDArray AsArray(const TShape &shape, int dtype) const { + inline NDArray AsArray(const mxnet::TShape &shape, int dtype) const { CHECK_EQ(storage_type(), kDefaultStorage) << "AsArray is intended only for kDefaultStorage."; CHECK_GE(ptr_->shandle.size, @@ -628,13 +628,13 @@ class NDArray { * \param shape new shape * \return NDArray in new shape */ - NDArray Reshape(const TShape &shape) const; + NDArray Reshape(const mxnet::TShape &shape) const; /*! * \brief Get an reshaped NDArray. Supports autograd recording * \param shape new shape * \return NDArray in new shape */ - NDArray ReshapeWithRecord(const TShape &shape); + NDArray ReshapeWithRecord(const mxnet::TShape &shape); /*! * \brief Return a copy of this NDArray without autograd history */ @@ -660,10 +660,10 @@ class NDArray { * This function can only be called by ndarray of default * storage type and effectively changes the ndarray's shape_. * Note: This function is named as this to avoid overload conflict - * with CheckAndAlloc(const std::vector &aux_shapes), since - * TShape tmp = some_shape is equivalent to TShape tmp = {some_shape}. + * with CheckAndAlloc(const mxnet::ShapeVector &aux_shapes), since + * mxnet::TShape tmp = some_shape is equivalent to mxnet::TShape tmp = {some_shape}. */ - void ReshapeAndAlloc(const TShape& shape) { + void ReshapeAndAlloc(const mxnet::TShape& shape) { CHECK_EQ(storage_type(), kDefaultStorage); CHECK(!is_none()); shape_ = shape; @@ -674,17 +674,17 @@ class NDArray { * \brief Alloc memory for non-default storage * aux_shape is only known at run time */ - inline void CheckAndAlloc(const std::vector &aux_shapes) const { + inline void CheckAndAlloc(const mxnet::ShapeVector &aux_shapes) const { CHECK_NE(storage_type(), kDefaultStorage) << "CheckAndAlloc(aux_shapes) is not intended for kDefaultStorage"; ptr_->CheckAndAlloc(shape_, aux_shapes, dtype_); } - inline void CheckAndAllocData(const TShape &storage_shape) const { + inline void CheckAndAllocData(const mxnet::TShape &storage_shape) const { CHECK_NE(storage_type(), kDefaultStorage) << "CheckAndAllocData is not intended for kDefaultStorage"; ptr_->CheckAndAllocData(storage_shape, dtype_); } - inline void CheckAndAllocAuxData(size_t i, const TShape &aux_shape) const { + inline void CheckAndAllocAuxData(size_t i, const mxnet::TShape &aux_shape) const { CHECK_NE(storage_type(), kDefaultStorage) << "CheckAndAllocAuxData is not intended for kDefaultStorage"; ptr_->CheckAndAllocAuxData(i, aux_shape); @@ -775,7 +775,7 @@ class NDArray { * which can be expensive. * It's used by FullyConnected right now. */ - NDArray MKLDNNDataReshape(const TShape &shape) const; + NDArray MKLDNNDataReshape(const mxnet::TShape &shape) const; /*! * \ Fix mkldnn memory descriptor mismatch from NDArray. @@ -844,16 +844,16 @@ class NDArray { // The shape of the chunk data. // This might not be the same shape as the NDArray, since the storage may be sparse. // The default value for storage_shape is {0} when an empty non-default NDArray is created. - TShape storage_shape; + mxnet::TShape storage_shape; // The shape of aux data. The default value for the shape depends on the type of storage. // If aux_shapes[i].Size() is zero, aux data i is empty. - std::vector aux_shapes; + mxnet::ShapeVector aux_shapes; /*! \brief default cosntructor */ Chunk() : static_data(true), delay_alloc(false) {} /*! \brief construct a new chunk */ - Chunk(TShape shape, Context ctx_, bool delay_alloc_, int dtype) + Chunk(mxnet::TShape shape, Context ctx_, bool delay_alloc_, int dtype) : static_data(false), delay_alloc(true), ctx(ctx_) { auto size = shape.Size(); storage_shape = shape; @@ -880,7 +880,7 @@ class NDArray { storage_shape = data.shape_; } - Chunk(int shared_pid, int shared_id, const TShape& shape, int dtype) + Chunk(int shared_pid, int shared_id, const mxnet::TShape& shape, int dtype) : static_data(false), delay_alloc(false) { var = Engine::Get()->NewVariable(); ctx = Context::CPUShared(0); @@ -892,9 +892,9 @@ class NDArray { storage_shape = shape; } // Constructor for a non-default storage chunk - Chunk(NDArrayStorageType storage_type_, const TShape &storage_shape_, Context ctx_, + Chunk(NDArrayStorageType storage_type_, const mxnet::TShape &storage_shape_, Context ctx_, bool delay_alloc_, int dtype, const std::vector &aux_types_, - const std::vector &aux_shapes_) + const mxnet::ShapeVector &aux_shapes_) : static_data(false), delay_alloc(delay_alloc_), storage_type(storage_type_), aux_types(aux_types_), ctx(ctx_), storage_shape(storage_shape_), aux_shapes(aux_shapes_) { @@ -944,7 +944,7 @@ class NDArray { } /*! \brief set the shape for ith aux data, and update storage shape if necessary */ - inline void set_aux_shape(const size_t i, const TShape& shape) { + inline void set_aux_shape(const size_t i, const mxnet::TShape& shape) { aux_shapes[i] = shape; if (storage_shape.ndim() > 0) { if (storage_type == kRowSparseStorage && i == rowsparse::kIdx) { @@ -989,20 +989,20 @@ class NDArray { } } /*! \brief initialize the shape and dtype, assuming it is not initialized before. */ - void Init(const TShape &shape, int dtype) { + void Init(const mxnet::TShape &shape, int dtype) { auto size = shape.Size(); storage_shape = shape; shandle.size = size * mshadow::mshadow_sizeof(dtype); this->CheckAndAlloc(); } - inline void CheckAndAlloc(const TShape &shape, const std::vector &aux_shapes, + inline void CheckAndAlloc(const mxnet::TShape &shape, const mxnet::ShapeVector &aux_shapes, int dtype) { // calculate size, perform allocation if (kRowSparseStorage == storage_type) { // For row sparse, aux_shape indicates the number of rows to allocate auto aux_shape = aux_shapes[rowsparse::kIdx]; CheckAndAllocAuxData(rowsparse::kIdx, aux_shape); - TShape storage_shape(shape); + mxnet::TShape storage_shape(shape); storage_shape[0] = aux_shape[0]; CheckAndAllocData(storage_shape, dtype); } else if (kCSRStorage == storage_type) { @@ -1017,12 +1017,12 @@ class NDArray { // storage shape is also updated // if data is already allocated, try reuse the storage. Otherwise, free the current one // and allocate new storage - void CheckAndAllocData(const TShape &shape, int dtype); + void CheckAndAllocData(const mxnet::TShape &shape, int dtype); #if MXNET_USE_MKLDNN == 1 // Have MKL memory reference to the data in the default storage // or create memory for MKLDNN. - void SetMKLMem(const TShape &shape, int dtype); + void SetMKLMem(const mxnet::TShape &shape, int dtype); // If the data is stored in MKLDNN layout, we reorder data in mkl_mem_ and // save the result in shandle. void Reorder2Default(); @@ -1037,7 +1037,7 @@ class NDArray { // aux shape is also updated // if aux data is already allocated, try reuse the storage. Otherwise, free the current one // and allocate new storage - inline void CheckAndAllocAuxData(size_t i, const TShape &shape) { + inline void CheckAndAllocAuxData(size_t i, const mxnet::TShape &shape) { CHECK_EQ(shape.ndim(), 1) << "shape must be 1D in CheckAndAllocAuxData"; CHECK_NE(storage_type, kUndefinedStorage) << "storage type cannot be kUndefinedStorage in CheckAndAllocAuxData"; @@ -1065,7 +1065,7 @@ class NDArray { /*! \brief internal data of NDArray */ std::shared_ptr ptr_{nullptr}; /*! \brief shape of current NDArray */ - TShape shape_; + mxnet::TShape shape_; /*! \brief byte offset in chunk */ size_t byte_offset_ = 0; /*! \brief type of data */ diff --git a/include/mxnet/op_attr_types.h b/include/mxnet/op_attr_types.h index 22bba301221d..889b5028a460 100644 --- a/include/mxnet/op_attr_types.h +++ b/include/mxnet/op_attr_types.h @@ -206,7 +206,7 @@ class OpStatePtr { */ using FCreateOpState = std::function& in_shape, + const mxnet::ShapeVector& in_shape, const std::vector& in_type)>; /*! * \brief Execution mode of this operator. diff --git a/include/mxnet/operator.h b/include/mxnet/operator.h index cfa162780495..1dc04244f673 100644 --- a/include/mxnet/operator.h +++ b/include/mxnet/operator.h @@ -50,7 +50,7 @@ namespace mxnet { * To add new operator(aka. layers of neural nets) to mxnet, developer need to create * a new OperatorProperty and its corresponding Operator. * - * \sa TBlob, TShape, OperatorProperty + * \sa TBlob, mxnet::TShape, OperatorProperty */ class Operator { public: @@ -192,15 +192,15 @@ class OperatorProperty { * common practice: set the shape of data input, and usually weight's shape can be inferred * * \param out_shape the shape of outputs of the operator - * InferShape will modify the vector to fill output TShape + * InferShape will modify the vector to fill output mxnet::TShape * \param aux_shape the shape of auxiliary states of the operator - * InferShape will modify the vector to fill output TShape + * InferShape will modify the vector to fill output mxnet::TShape * \return true if the shape inference is successful, false if there is not enough information. * \throws dmlc::Error if the known arg_shapes are inconsistent. */ - virtual bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const = 0; + virtual bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const = 0; /*! * \brief infer the data types of outputs and unknown input arguments * \param in_type the type of input arguments of the operator @@ -255,10 +255,10 @@ class OperatorProperty { * \param in_type dtype of the input ndarrays * \return the created operator */ - virtual Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + virtual Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { std::vector out_type, aux_type; - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; out_type.resize(this->ListOutputs().size()); out_shape.resize(this->ListOutputs().size()); aux_type.resize(this->ListAuxiliaryStates().size()); @@ -284,7 +284,7 @@ class OperatorProperty { * \return Additional resource request */ virtual std::vector ForwardResource( - const std::vector &in_shape) const { + const mxnet::ShapeVector &in_shape) const { return std::vector(); } /*! @@ -295,7 +295,7 @@ class OperatorProperty { * \return Additional resource request */ virtual std::vector BackwardResource( - const std::vector &in_shape) const { + const mxnet::ShapeVector &in_shape) const { return std::vector(); } /*! diff --git a/include/mxnet/operator_util.h b/include/mxnet/operator_util.h index bebe3f13ae45..941e76e6d70b 100644 --- a/include/mxnet/operator_util.h +++ b/include/mxnet/operator_util.h @@ -97,7 +97,7 @@ typedef void (*SourceFunction)(const EnvArguments& env, * \param env The Environment arguments. * \return The inferred result shape. */ -typedef TShape (*SourceShapeFunction)(const EnvArguments& env); +typedef mxnet::TShape (*SourceShapeFunction)(const EnvArguments& env); /*! * \brief Unary function that takes a src and save result to ret. @@ -119,7 +119,7 @@ typedef void (*UnaryFunction)(const TBlob& src, * \param env The Environment arguments. * \return The inferred result shape. */ -typedef TShape (*UnaryShapeFunction)(const TShape& src, +typedef mxnet::TShape (*UnaryShapeFunction)(const mxnet::TShape& src, const EnvArguments& env); /*! @@ -189,8 +189,8 @@ typedef void (*BinaryFunction)(const TBlob& lhs, * \param env The Environment arguments. * \return The inferred result shape. */ -typedef TShape (*BinaryShapeFunction)(const TShape& lhs, - const TShape& rhs, +typedef mxnet::TShape (*BinaryShapeFunction)(const mxnet::TShape& lhs, + const mxnet::TShape& rhs, const EnvArguments& env); /*! * \brief Gradient function that takes only output gradient and computes gradient wrt to input. diff --git a/include/mxnet/tensor_blob.h b/include/mxnet/tensor_blob.h index 412877a58218..7d059025b03e 100755 --- a/include/mxnet/tensor_blob.h +++ b/include/mxnet/tensor_blob.h @@ -69,7 +69,7 @@ class TBlob { /*! \brief pointer to the data */ void *dptr_; /*! \brief shape of the tensor */ - TShape shape_; + mxnet::TShape shape_; /*! \brief type flag of the tensor blob */ int type_flag_; @@ -87,7 +87,7 @@ class TBlob { * \param dev_id the device id */ template - TBlob(DType *dptr, const TShape &shape, int dev_mask, int dev_id = -1) + TBlob(DType *dptr, const mxnet::TShape &shape, int dev_mask, int dev_id = -1) : dptr_(dptr), shape_(shape), type_flag_(mshadow::DataType::kFlag) { SetDLTensor(dev_mask, dev_id); @@ -100,7 +100,7 @@ class TBlob { * \param type_flag the type flag. Can be one of enum mshadow::dtype * \param dev_id the device id */ - TBlob(void *dptr, const TShape &shape, int dev_mask, int type_flag, int dev_id = -1) + TBlob(void *dptr, const mxnet::TShape &shape, int dev_mask, int type_flag, int dev_id = -1) : dptr_(dptr), shape_(shape), type_flag_(type_flag) { SetDLTensor(dev_mask, dev_id); } @@ -110,7 +110,7 @@ class TBlob { */ explicit TBlob(const DLTensor &dltensor) : dptr_(dltensor.data), - shape_(TShape(dltensor.shape, dltensor.shape + dltensor.ndim)), + shape_(mxnet::TShape(dltensor.shape, dltensor.shape + dltensor.ndim)), type_flag_(DLDataTypeTransform(dltensor.dtype)), dltensor_(dltensor) { // compactness check for DLTensor @@ -175,7 +175,7 @@ class TBlob { * \param shape desired shape * \return reshaped blob */ - inline TBlob reshape(const TShape& shape) const { + inline TBlob reshape(const mxnet::TShape& shape) const { CHECK_EQ(this->shape_.Size(), shape.Size()) << "Shape size mismatch " << this->shape_.Size() << " v.s. " << shape.Size(); TBlob ret(this->dptr_, shape, this->dev_mask(), this->type_flag_, this->dev_id()); @@ -417,7 +417,7 @@ class TBlob { } // namespace mxnet namespace dmlc { -// Add a few patches to support TShape in dmlc/parameter. +// Add a few patches to support mxnet::TShape in dmlc/parameter. DMLC_DECLARE_TYPE_NAME(mxnet::TShape, "Shape(tuple)"); DMLC_DECLARE_TYPE_NAME(nnvm::Tuple, "Shape(tuple)"); DMLC_DECLARE_TYPE_NAME(nnvm::Tuple>, "Shape(tuple)"); diff --git a/include/mxnet/tuple.h b/include/mxnet/tuple.h new file mode 100644 index 000000000000..7c1367333630 --- /dev/null +++ b/include/mxnet/tuple.h @@ -0,0 +1,682 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ +/*! + * Copyright (c) 2016 by Contributors + * \file mxnet/tuple.h + * \brief Data structure Tuple and TShape to store dynamic sized shapes. + */ +#ifndef MXNET_TUPLE_H_ +#define MXNET_TUPLE_H_ + +#include +#include +#include +#include +#include +#include +#include "nnvm/op_attr_types.h" +#include "nnvm/graph_attr_types.h" +#include "nnvm/graph.h" +#include "nnvm/pass.h" + +namespace mxnet { + +/*! + * \brief A dynamic sized array data structure that is optimized for storing + * small number of elements with same type. + * + * Data will be stored in stack when number of elements is small. + * It is suitable to hold shape of Tensor. + * + * \tparam ValueType The type of data stored inside tuple. + * \sa TShape + */ +template +class Tuple { + public: + /*! \brief default constructor */ + Tuple() = default; + /*! \brief destructor */ + inline ~Tuple() { + delete [] data_heap_; + } + /*! + * \brief copy constructor from another tuple + * \param s the source tuple + */ + inline Tuple(const Tuple& s) { + this->assign(s.begin(), s.end()); + } + /*! + * \brief constructor from initializer list + * \param init the initializer_list + */ + inline Tuple(std::initializer_list init) { + this->assign(init.begin(), init.end()); + } + /*! + * \brief constructor from vector + * \param init the vector + */ + inline Tuple(std::vector init) { // NOLINT(runtime/explicit) + this->assign(init.begin(), init.end()); + } + /*! + * \brief move constructor from Tuple + * \param src the source shape + */ + + inline Tuple(Tuple&& src) { // NOLINT(runtime/explicit) + this->swap(src); + } + /*! + * \brief construct the Tuple from content of iterator + * \param begin the beginning of iterator + * \param end end the end of the iterator + * \tparam RandomAccessIterator iterator type + */ + template + inline Tuple(RandomAccessIterator begin, + RandomAccessIterator end) { + this->assign(begin, end); + } + /*! + * \brief Assign content to tuple from iterator. + * \param begin the beginning of iterator + * \param end end the end of the iterator + * \tparam RandomAccessIterator iterator type + */ + template + inline void assign(RandomAccessIterator begin, + RandomAccessIterator end) { + this->SetDim(end - begin); + std::copy(begin, end, this->begin()); + } + /*! + * \brief Swap current object with other + * \param other another object to be swapped. + */ + inline void swap(Tuple& other) { // NOLINT(*) + std::swap(ndim_, other.ndim_); + std::swap(num_heap_allocated_, other.num_heap_allocated_); + std::swap(data_stack_, other.data_stack_); + std::swap(data_heap_, other.data_heap_); + } + /*! + * \brief assignment from another tuple. + * \param src source tuple + * \return reference of self + */ + inline Tuple& operator=(const Tuple& src) { + this->assign(src.begin(), src.end()); + return *this; + } + /*! + * \brief assignment from rvalue of another tuple. + * \param src source tuple + * \return reference of self + */ + inline Tuple& operator=(Tuple&& src) { + Tuple(std::move(src)).swap(*this); + return *this; + } + /*! + * \brief assignment from initializer list + * \param init the source initializer list + * \return reference of self + */ + inline Tuple &operator=(std::initializer_list init) { + this->assign(init.begin(), init.end()); + return *this; + } + /*! + * \return whether two tuple equals + * \param s the tuple to compare against + */ + inline bool operator==(const Tuple &s) const { + if (ndim_ != s.ndim_) return false; + return std::equal(begin(), end(), s.begin()); + } + /*! + * \return whether two tuple not equal + * \param s the tuple to compare against + */ + inline bool operator!=(const Tuple &s) const { + return !(*this == s); + } + /*! \return the begin data pointer to content of the tuple */ + inline const ValueType *begin() const { + return ndim_ <= kStackCache ? data_stack_ : data_heap_; + } + /*! \return the begin data pointer to content of the tuple */ + inline ValueType *begin() { + return ndim_ <= kStackCache ? data_stack_ : data_heap_; + } + /*! \return the data pointer to end of the tuple */ + inline const ValueType* end() const { + return ndim_ <= kStackCache ? (data_stack_ + ndim_): (data_heap_ + ndim_); + } + /*! \return the data pointer to end the tuple */ + inline ValueType* end() { + return ndim_ <= kStackCache ? (data_stack_ + ndim_): (data_heap_ + ndim_); + } + /*! \return number of dimension of the tuple */ + inline uint32_t ndim() const { + return ndim_; + } + /*! + * \brief get corresponding index + * \param i dimension index + * \return the corresponding dimension size + */ + inline ValueType& operator[](size_t i) { + return begin()[i]; + } + /*! + * \brief get corresponding index + * \param i dimension index + * \return the corresponding dimension size + */ + inline const ValueType& operator[](size_t i) const { + return begin()[i]; + } + /*! + * \brief Save Tuple to JSON. + * \param writer JSONWriter + */ + inline void Save(dmlc::JSONWriter* writer) const { + std::vector tmp(begin(), end()); + writer->Write(tmp); + } + /*! + * \brief Load Tuple from JSON. + * \param reader JSONReader + */ + inline void Load(dmlc::JSONReader* reader) { + std::vector tmp; + reader->Read(&tmp); + this->assign(tmp.begin(), tmp.end()); + } + /*! + * \brief allow output string of tuple to ostream + * \param os the output stream + * \param t the tuple + * \return the ostream + */ + friend std::ostream &operator<<(std::ostream &os, const Tuple &t) { + os << '['; + const ValueType* begin = t.begin(); + const ValueType* end = t.end(); + for (const ValueType* it = begin; it != end; ++it) { + if (it != begin) os << ','; + os << *it; + } + os << ']'; + return os; + } + /*! + * \brief read tuple from the istream + * \param is the input stream + * \param t The tuple + * \return the istream + */ + friend std::istream &operator>>(std::istream &is, Tuple &t) { + // get ( + while (true) { + char ch = is.peek(); + if (isdigit(ch) || ch == '-') { + ValueType idx; + if (is >> idx) { + t.assign(&idx, &idx + 1); + } + return is; + } + is.get(); + if (ch == '(' || ch == '[') break; + if (!isspace(ch)) { + is.setstate(std::ios::failbit); + return is; + } + } + // Handle empty tuple + while (isspace(is.peek())) { + is.get(); + } + if (is.peek() == ')' || is.peek() == ']') { + is.get(); + return is; + } + // Handle non-empty tuple + ValueType idx; + std::vector tmp; + while (is >> idx) { + tmp.push_back(idx); + char ch; + do { + ch = is.get(); + } while (isspace(ch)); + if (std::is_integral::value && ch == 'L') { + ch = is.get(); + } + if (ch == ',') { + while (true) { + ch = is.peek(); + if (isspace(ch)) { + is.get(); continue; + } + if (ch == ')' || ch == ']') { + is.get(); break; + } + break; + } + if (ch == ')' || ch == ']') break; + } else if (ch == ')' || ch == ']') { + break; + } else { + is.setstate(std::ios::failbit); + return is; + } + } + t.assign(tmp.begin(), tmp.end()); + return is; + } + /*! + * \brief save the content into binary stream + * \param strm the output stream + * \tparam DType data type that save to + * \tparam TStream any stream type that have write + */ + template + inline void Save(TStream *strm) const; + /*! + * \brief load the content from binary stream + * \param strm the output stream + * \tparam DType data type that load from + * \tparam TStream any stream type that have write + * \return whether the load is successful + */ + template + inline bool Load(TStream *strm); + + protected: + // stack cache size + static const uint32_t kStackCache = 4; + /*! \brief number of dimension of the tuple */ + uint32_t ndim_{0}; + /*! \brief number of cells allocated in data_heap_ */ + uint32_t num_heap_allocated_{0}; + /*! \brief in stack space used to store shape when it is small */ + ValueType data_stack_[kStackCache]; + /*! \brief space to store shape when dimension is big*/ + ValueType* data_heap_{nullptr}; + // internal function to change the dimension + inline void SetDim(uint32_t ndim) { + if (ndim > kStackCache && + ndim > num_heap_allocated_) { + delete [] data_heap_; + data_heap_ = new ValueType[ndim]; + num_heap_allocated_ = ndim; + } + ndim_ = ndim; + } +}; + +/*! + * \brief A Shape class that is used to represent shape of each tensor. + */ +class TShape : public Tuple { + public: + /*! \brief default constructor */ + TShape() = default; + /*! + * constructor to construct a shape with all 1. + * \param ndim the number of dimension + */ + inline TShape(uint32_t ndim) { // NOLINT(*) + this->SetDim(ndim); + std::fill_n(begin(), ndim, 1); + } + /*! + * \brief copy constructor of TShape + * \param s source shape. + */ + inline TShape(const Tuple& s) { // NOLINT(*) + this->assign(s.begin(), s.end()); + } + /*! + * \brief constructor from initializer list + * \param init the initializer_list + */ + inline TShape(std::initializer_list init) { + this->assign(init.begin(), init.end()); + } + /*! + * \brief move constructor. + * \param s source shape. + */ + inline TShape(Tuple&& s) { // NOLINT(*) + this->swap(s); + } + /*! + * \brief construct the Tuple from content of iterator + * \param begin the beginning of iterator + * \param end end the end of the iterator + * \tparam RandomAccessIterator iterator type + */ + template + inline TShape(RandomAccessIterator begin, + RandomAccessIterator end) { + this->assign(begin, end); + } + /*! + * \brief assignment function from tshape + * \param src source shape. + * \return self. + */ + inline TShape& operator=(const Tuple& src) { + this->assign(src.begin(), src.end()); + return *this; + } + /*! + * \brief move assignment function from tshape + * \param src source shape. + * \return self. + */ + inline TShape& operator=(Tuple&& src) { // NOLINT(*) + TShape(std::move(src)).swap(*this); // NOLINT(*) + return *this; + } + /*! \return total number of elements in the shape */ + inline size_t Size() const { + dim_t size = 1; + const dim_t* start = begin(), *fin = end(); + for (const dim_t* it = start; it != fin; ++it) { + size *= *it; + } + return size; + } + /*! + * \return product shape in [dimstart,dimend) + * \param dimstart start dimension + * \param dimend end dimension + */ + inline size_t ProdShape(int dimstart, int dimend) const { + dim_t num = 1; + const dim_t *d = this->data(); + for (int i = dimstart; i < dimend; ++i) { + num *= d[i]; + } + return num; + } + /*! \return the begin data pointer to content of the tuple */ + inline const dim_t *data() const { + return begin(); + } + /*! \return the begin data pointer to content of the tuple */ + inline dim_t *data() { + return begin(); + } +#ifdef MSHADOW_XINLINE + template + inline TShape(const mshadow::Shape &s) {// NOLINT(*) + this->assign(s.shape_, s.shape_ + dim); + } + + template + inline TShape(mshadow::Shape &&s) {// NOLINT(*) + this->assign(s.shape_, s.shape_ + dim); + } + /*! + * \brief assignment from shape + * \param shape source shape + * \tparam dim shape dimension + * \return reference of self + */ + template + inline TShape &operator=(const mshadow::Shape &shape) { + this->assign(shape.shape_, shape.shape_ + dim); + return *this; + } + /*! + * \brief get the shape of tensor specifying dim + * \return the shape requested + * \tparam dim dimension of the tensor + */ + template + inline mshadow::Shape get() const { + CHECK_EQ(dim, static_cast(ndim())) + << "dimension do not match target dimension " << dim << " vs " << ndim(); + const dim_t *d = this->data(); + mshadow::Shape s; + for (int i = 0; i < dim; ++i) { + s[i] = d[i]; + } + return s; + } + /*! + * flatten the higher dimension to second dimension, return a 2D shape + * \return the flat 2d shape + */ + inline mshadow::Shape<2> FlatTo2D(void) const { + mshadow::Shape<2> s; + if (ndim() == 0) return mshadow::Shape2(0, 0); + const dim_t *d = this->data(); + s.shape_[1] = d[ndim() - 1]; + dim_t ymax = 1; + for (size_t i = 1; i < ndim(); ++i) { + ymax *= d[i - 1]; + } + s.shape_[0] = ymax; + return s; + } + /*! + * flatten the shape into three parts: [0, axis_begin), [axis_begin, axis_end], (axis_end, ndim) + * \param axis_begin The beginning axis specified. + * \param axis_end The ending axis specified. + * \return the flat 3d shape + */ + inline mshadow::Shape<3> FlatTo3D(size_t axis_begin, size_t axis_end) const { + CHECK(axis_end >= axis_begin); + mshadow::Shape<3> s; + if (ndim() == 0) return mshadow::Shape3(0, 0, 0); + const dim_t *d = this->data(); + s.shape_[0] = 1; + s.shape_[1] = 1; + s.shape_[2] = 1; + + for (size_t i = 0; i < axis_begin; ++i) { + s.shape_[0] *= d[i]; + } + for (size_t i = axis_begin; i <= axis_end; ++i) { + s.shape_[1] *= d[i]; + } + for (size_t i = axis_end + 1; i < ndim(); ++i) { + s.shape_[2] *= d[i]; + } + return s; + } + /*! + * flatten the axis before and after the specified axis, so it becomes 3D tensor + * \param axis The axis specified. + * \return the flat 3d shape + */ + inline mshadow::Shape<3> FlatTo3D(size_t axis) const { + return FlatTo3D(axis, axis); + } + inline bool operator==(const TShape &s) const { + if (ndim() != s.ndim()) return false; + return std::equal(begin(), end(), s.begin()); + } + inline bool operator!=(const TShape &s) const { + return !(*this == s); + } + /*! + * \return whether two shape equals + * \param s the shape to compare against + * \tparam dim dimension of the shape + */ + template + inline bool operator==(const mshadow::Shape &s) const { + if (ndim_ != dim) return false; + const dim_t *d = dim <= kStackCache ? data_stack_ : data_heap_; + for (size_t i = 0; i < dim; ++i) { + if (d[i] != s.shape_[i]) return false; + } + return true; + } + /*! + * \return whether two shape not equals + * \param s the shape to compare against + * \tparam dim dimension of the shape + */ + template + inline bool operator!=(const mshadow::Shape &s) const { + return !(*this == s); + } +#endif +}; + +/*! \brief helper function to cast type of container elements */ +template +inline DstIter ShapeTypeCast(const SrcIter begin, + const SrcIter end, + DstIter dst_begin) { + typedef typename std::iterator_traits::value_type SrcDType; + typedef typename std::iterator_traits::value_type DstDType; + auto cast = [](const SrcDType& dim) { return static_cast(dim); }; + return std::transform(begin, end, dst_begin, cast); +} + +/*! \brief helper function to transform a container to TShape with type cast */ +template +inline TShape ShapeTypeCast(const SrcIter begin, const SrcIter end) { + size_t ndim = std::distance(begin, end); + TShape res(ndim); + ShapeTypeCast(begin, end, res.begin()); + return res; +} + +/*! \tparam ValueType The type of data stored inside tuple. */ +template +template +inline void Tuple::Save(TStream *strm) const { + strm->Write(&ndim_, sizeof(ndim_)); + if (typeid(DType) == typeid(ValueType)) { + strm->Write(begin(), sizeof(ValueType) * ndim_); + } else { + std::vector buffer(ndim_); + ShapeTypeCast(begin(), end(), buffer.data()); + strm->Write(buffer.data(), sizeof(DType) * ndim_); + } +} + +/*! \tparam ValueType The type of data stored inside tuple. */ +template +template +inline bool Tuple::Load(TStream *strm) { + if (strm->Read(&ndim_, sizeof(ndim_)) != sizeof(ndim_)) return false; + this->SetDim(ndim_); + size_t nread = sizeof(DType) * ndim_; + if (typeid(DType) == typeid(ValueType)) { + if (strm->Read(begin(), nread) != nread) return false; + } else { + std::vector buffer(ndim_); + if (strm->Read(buffer.data(), nread) != nread) return false; + ShapeTypeCast(buffer.begin(), buffer.end(), begin()); + } + return true; +} + +} // namespace mxnet + +namespace std { +/*! \brief hash function for Tuple. */ +template +struct hash > { + /*! \brief hash a Tuple into unsigned int */ + size_t operator()(const mxnet::Tuple& val) const { + std::hash hash_uint; + size_t res = hash_uint(val.ndim()); + for (uint32_t i = 0; i < val.ndim(); ++i) { + res = dmlc::HashCombine(res, val[i]); + } + return res; + } +}; + +/*! \brief hash function for TShape. */ +template<> +struct hash { + /*! \brief hash a TShape into unsigned int */ + size_t operator()(const mxnet::TShape& val) const { + std::hash hash_uint; + size_t res = hash_uint(val.ndim()); + for (uint32_t i = 0; i < val.ndim(); ++i) { + res = dmlc::HashCombine(res, val[i]); + } + return res; + } +}; +} // namespace std + +namespace dmlc { +/*! \brief description for optional TShape */ +DMLC_DECLARE_TYPE_NAME(optional, "Shape or None"); +// avoid low version of MSVC +#if !defined(_MSC_VER) +template +struct type_name_helper > { + static inline std::string value() { + return "tuple of <" + type_name() + ">"; + } +}; +#endif +} // namespace dmlc + +namespace mxnet { +/*! + * \brief The result holder of shape of each NodeEntry in the graph. + * \note Stored under graph.attrs["shape"], provided by Pass "InferShape" + * + * \code + * Graph g = ApplyPass(src_graph, "InferShape"); + * const ShapeVector& shapes = g.GetAttr("shape"); + * // get shape by entry id + * TShape entry_shape = shapes[g.indexed_graph().entry_id(my_entry)]; + * \endcode + * + * \sa FInferShape + */ +using ShapeVector = std::vector; + +/*! + * \brief Shape inference function. + * Update the shapes given the input shape information. + * TShape.ndim() == -1 means the shape is still unknown. + * + * \note Register under "FInferShape", + * by default do not update any shapes. + * + * FInferShape is needed by shape inference + */ +using FInferShape = nnvm::FInferNodeEntryAttr; + +} // namespace mxnet + +#endif // MXNET_TUPLE_H_ diff --git a/plugin/caffe/caffe_blob.cc b/plugin/caffe/caffe_blob.cc index 4d655f32dd01..6a75439f3e4e 100644 --- a/plugin/caffe/caffe_blob.cc +++ b/plugin/caffe/caffe_blob.cc @@ -72,7 +72,7 @@ void SetDataGradToBlob(caffeMemoryTypes memType, MXCAFFEBLOB(*blob, double)->set_gpu_diff(data_ptr); } -TShape Vector2TShape(const std::vector &vec_int) { +mxnet::TShape Vector2TShape(const std::vector &vec_int) { std::vector vec; for (uint32_t i = 0; i < vec_int.size(); ++i) vec.push_back(vec_int[i]); @@ -82,7 +82,7 @@ TShape Vector2TShape(const std::vector &vec_int) { return {vec.begin(), vec.end()}; } -std::vector TShape2Vector(const TShape &tshape) { +std::vector TShape2Vector(const mxnet::TShape &tshape) { std::vector s; for (uint32_t i =0 ; i < tshape.ndim(); ++i) s.push_back(tshape[i]); diff --git a/plugin/caffe/caffe_blob.h b/plugin/caffe/caffe_blob.h index a54c5c81ff47..6243b5dc8c88 100644 --- a/plugin/caffe/caffe_blob.h +++ b/plugin/caffe/caffe_blob.h @@ -39,8 +39,8 @@ namespace caffe { // Declare Memory Type for Caffe blob enum caffeMemoryTypes {Data, Grad, Non}; -TShape Vector2TShape(const std::vector &vec_int); -std::vector TShape2Vector(const TShape &tshape); +mxnet::TShape Vector2TShape(const std::vector &vec_int); +std::vector TShape2Vector(const mxnet::TShape &tshape); // implementation of tensor to blob, called by TensorToBlob template diff --git a/plugin/caffe/caffe_loss-inl.h b/plugin/caffe/caffe_loss-inl.h index 60b03b1d923b..98c714612dca 100644 --- a/plugin/caffe/caffe_loss-inl.h +++ b/plugin/caffe/caffe_loss-inl.h @@ -222,9 +222,9 @@ class CaffeLossProp : public OperatorProperty { } /*brief Set up caffeop to infer output shape*/ - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; using ::caffe::Blob; using std::vector; @@ -236,7 +236,7 @@ class CaffeLossProp : public OperatorProperty { vector *> bot_blobs, top_blobs; for (int i = 0; i < param_.num_data; ++i) { - TShape tshape = (*in_shape)[i]; + mxnet::TShape tshape = (*in_shape)[i]; if (tshape.ndim() == 0) return false; auto blob_ptr = new Blob(); blob_ptr->Reshape(caffe::TShape2Vector(tshape)); @@ -251,7 +251,7 @@ class CaffeLossProp : public OperatorProperty { // Initialize out shapes out_shape->clear(); for (auto blob : top_blobs) { - TShape tshape = caffe::Vector2TShape(blob->shape()); + mxnet::TShape tshape = caffe::Vector2TShape(blob->shape()); out_shape->push_back(tshape); } @@ -288,7 +288,7 @@ class CaffeLossProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; diff --git a/plugin/caffe/caffe_loss.cc b/plugin/caffe/caffe_loss.cc index 5ce8bb247e86..47424d1cad80 100644 --- a/plugin/caffe/caffe_loss.cc +++ b/plugin/caffe/caffe_loss.cc @@ -47,10 +47,10 @@ Operator *CreateOp(CaffeLossParam param, int dtype) { } // DO_BIND_DISPATCH comes from static_operator_common.h -Operator *CaffeLossProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *CaffeLossProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { std::vector out_type, aux_type; - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; out_type.resize(this->ListOutputs().size()); out_shape.resize(this->ListOutputs().size()); aux_type.resize(this->ListAuxiliaryStates().size()); diff --git a/plugin/caffe/caffe_op-inl.h b/plugin/caffe/caffe_op-inl.h index 2c1c9bac170a..b4ab0926199c 100644 --- a/plugin/caffe/caffe_op-inl.h +++ b/plugin/caffe/caffe_op-inl.h @@ -274,9 +274,9 @@ class CaffeOpProp : public OperatorProperty { * \brief Set up caffeOp_ to infer weights & output shape * \brief Initialize param_'s in & out dims */ - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { if (caffeOp_ == NULL) caffeOp_ = caffe::LayerRegistry::CreateLayer(param_.prototxt); using namespace mshadow; @@ -287,7 +287,7 @@ class CaffeOpProp : public OperatorProperty { vector *> bot_blobs, top_blobs; for (int i = 0; i < param_.num_data; ++i) { - TShape tshape = (*in_shape)[i]; + mxnet::TShape tshape = (*in_shape)[i]; if (tshape.ndim() == 0) return false; auto blob_ptr = new Blob(); blob_ptr->Reshape(caffe::TShape2Vector(tshape)); @@ -302,13 +302,13 @@ class CaffeOpProp : public OperatorProperty { // Set weight shape CHECK_EQ(param_.num_weight, caffeOp_->blobs().size()); for (int i = 0; i < param_.num_weight ; ++i) { - TShape tshape = caffe::Vector2TShape(caffeOp_->blobs()[i]->shape()); + mxnet::TShape tshape = caffe::Vector2mxnet::TShape(caffeOp_->blobs()[i]->shape()); SHAPE_ASSIGN_CHECK(*in_shape, i + param_.num_data, tshape); } // Initialize out shapes out_shape->clear(); for (auto blob : top_blobs) { - TShape tshape = caffe::Vector2TShape(blob->shape()); + mxnet::TShape tshape = caffe::Vector2mxnet::TShape(blob->shape()); out_shape->push_back(tshape); } @@ -334,7 +334,7 @@ class CaffeOpProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/plugin/caffe/caffe_op.cc b/plugin/caffe/caffe_op.cc index 9db9df04068d..715ae0b82d8e 100644 --- a/plugin/caffe/caffe_op.cc +++ b/plugin/caffe/caffe_op.cc @@ -47,10 +47,10 @@ Operator* CreateOp(CaffeOpParam param, int dtype) { } // DO_BIND_DISPATCH comes from static_operator_common.h -Operator *CaffeOpProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *CaffeOpProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { std::vector out_type, aux_type; - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; out_type.resize(this->ListOutputs().size()); out_shape.resize(this->ListOutputs().size()); aux_type.resize(this->ListAuxiliaryStates().size()); diff --git a/plugin/opencv/cv_api.cc b/plugin/opencv/cv_api.cc index 53eb8524c7cf..b0915fd40579 100644 --- a/plugin/opencv/cv_api.cc +++ b/plugin/opencv/cv_api.cc @@ -93,7 +93,7 @@ MXNET_DLL int MXCVImdecode(const unsigned char *img, const mx_uint len, } else { LOG(FATAL) << "Only supports png and jpg."; } - NDArray ndout(TShape(dims, dims+3), Context::CPU(), true, mshadow::kUint8); + NDArray ndout(mxnet::TShape(dims, dims+3), Context::CPU(), true, mshadow::kUint8); unsigned char *img_cpy = new unsigned char[len]; memcpy(img_cpy, img, sizeof(unsigned char)*len); Engine::Get()->PushSync([=](RunContext ctx){ @@ -124,7 +124,7 @@ MXNET_DLL int MXCVResize(NDArrayHandle src, const mx_uint w, const mx_uint h, CHECK_EQ(ndsrc.dtype(), mshadow::kUint8); mx_uint dims[3] = {h, w, ndsrc.shape()[2]}; - NDArray ndout(TShape(dims, dims+3), Context::CPU(), true, mshadow::kUint8); + NDArray ndout(mxnet::TShape(dims, dims+3), Context::CPU(), true, mshadow::kUint8); Engine::Get()->PushSync([=](RunContext ctx){ ndout.CheckAndAlloc(); @@ -156,7 +156,7 @@ MXNET_DLL int MXCVcopyMakeBorder(NDArrayHandle src, int h = ndsrc.shape()[0], w = ndsrc.shape()[1], c = ndsrc.shape()[2]; mx_uint dims[3] = {top+h+bot, left+w+right, c}; - NDArray ndout(TShape(dims, dims+3), Context::CPU(), true, mshadow::kUint8); + NDArray ndout(mxnet::TShape(dims, dims+3), Context::CPU(), true, mshadow::kUint8); Engine::Get()->PushSync([=](RunContext ctx){ ndout.CheckAndAlloc(); diff --git a/plugin/sframe/iter_sframe.cc b/plugin/sframe/iter_sframe.cc index 9f09916b8166..6a6b03f9c2fb 100644 --- a/plugin/sframe/iter_sframe.cc +++ b/plugin/sframe/iter_sframe.cc @@ -50,8 +50,8 @@ struct SFrameParam : public dmlc::Parameter { std::string path_sframe; std::string data_field; std::string label_field; - TShape data_shape; - TShape label_shape; + mxnet::TShape data_shape; + mxnet::TShape label_shape; DMLC_DECLARE_PARAMETER(SFrameParam) { DMLC_DECLARE_FIELD(path_sframe).set_default("") .describe("Dataset Param: path to image dataset sframe"); diff --git a/plugin/torch/torch_criterion-inl.h b/plugin/torch/torch_criterion-inl.h index e0687ab39bff..2138bd8f1335 100644 --- a/plugin/torch/torch_criterion-inl.h +++ b/plugin/torch/torch_criterion-inl.h @@ -42,13 +42,13 @@ namespace mxnet { namespace op { struct TorchCriterionParam : public dmlc::Parameter { std::string lua_string; - TShape label_shape; + mxnet::TShape label_shape; float grad_scale; DMLC_DECLARE_PARAMETER(TorchCriterionParam) { DMLC_DECLARE_FIELD(lua_string) .describe("lua string that is called to generate the torch criterion object"); DMLC_DECLARE_FIELD(label_shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .enforce_nonzero() .describe("Shape of label (without batch size)."); DMLC_DECLARE_FIELD(grad_scale) @@ -183,18 +183,18 @@ class TorchCriterionProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 2); - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; std::vector lshape; lshape.push_back(dshape[0]); lshape.insert(lshape.end(), param_.label_shape.data(), param_.label_shape.data() + param_.label_shape.ndim()); - TShape shape(lshape.begin(), lshape.end()); + mxnet::TShape shape(lshape.begin(), lshape.end()); SHAPE_ASSIGN_CHECK(*in_shape, 1, shape); out_shape->clear(); out_shape->push_back(Shape1(dshape[0])); diff --git a/plugin/torch/torch_module-inl.h b/plugin/torch/torch_module-inl.h index 7fb0440aa575..386f0e31fb43 100644 --- a/plugin/torch/torch_module-inl.h +++ b/plugin/torch/torch_module-inl.h @@ -347,9 +347,9 @@ class TorchModuleProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { if (torchState_ == nullptr) { this->InitTorchState(); } @@ -397,7 +397,7 @@ class TorchModuleProp : public OperatorProperty { THFloatTensor* param = reinterpret_cast(luaT_toudata(L, -1, TorchTensor::TensorType(mshadow::cpu::kDevMask))); long int* size = param->size; // NOLINT(*) - (*in_shape)[index++] = TShape(size, size + THFloatTensor_nDimension(param)); + (*in_shape)[index++] = mxnet::TShape(size, size + THFloatTensor_nDimension(param)); lua_pop(L, 1); } lua_pop(L, 2); @@ -408,7 +408,7 @@ class TorchModuleProp : public OperatorProperty { THFloatTensor* output = reinterpret_cast(luaT_toudata(L, -1, TorchTensor::TensorType(mshadow::cpu::kDevMask))); long int* size = output->size; // NOLINT(*) - (*out_shape)[0] = TShape(size, size + THFloatTensor_nDimension(output)); + (*out_shape)[0] = mxnet::TShape(size, size + THFloatTensor_nDimension(output)); } else { for (uint32_t data_index = 0; data_index < param_.num_outputs; ++data_index) { lua_pushnil(L); @@ -417,7 +417,7 @@ class TorchModuleProp : public OperatorProperty { THFloatTensor* out = reinterpret_cast(luaT_toudata(L, -1, TorchTensor::TensorType(mshadow::cpu::kDevMask))); long int* size = out->size; // NOLINT(*) - (*out_shape)[index++] = TShape(size, size + THFloatTensor_nDimension(out)); + (*out_shape)[index++] = mxnet::TShape(size, size + THFloatTensor_nDimension(out)); } } } diff --git a/plugin/warpctc/warpctc-inl.h b/plugin/warpctc/warpctc-inl.h index 5a540c57940a..37677d21fd14 100644 --- a/plugin/warpctc/warpctc-inl.h +++ b/plugin/warpctc/warpctc-inl.h @@ -247,14 +247,14 @@ class WarpCTCProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 2) << "Input:[data, label]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; - TShape label_shape(dshape.ndim() - 1); + mxnet::TShape label_shape(dshape.ndim() - 1); label_shape[0] = param_.label_length * (dshape[0] / param_.input_length); SHAPE_ASSIGN_CHECK(*in_shape, warpctc_enum::kLabel, label_shape); @@ -276,7 +276,7 @@ class WarpCTCProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } diff --git a/src/c_api/c_api.cc b/src/c_api/c_api.cc index 7e03acccdfae..5a7329acaeab 100644 --- a/src/c_api/c_api.cc +++ b/src/c_api/c_api.cc @@ -170,7 +170,7 @@ int MXNDArrayCreate(const mx_uint *shape, NDArrayHandle *out) { API_BEGIN(); *out = new NDArray( - TShape(shape, shape + ndim), + mxnet::TShape(shape, shape + ndim), Context::Create(static_cast(dev_type), dev_id), delay_alloc != 0); API_END(); @@ -185,7 +185,7 @@ int MXNDArrayCreateEx(const mx_uint *shape, NDArrayHandle *out) { API_BEGIN(); *out = new NDArray( - TShape(shape, shape + ndim), + mxnet::TShape(shape, shape + ndim), Context::Create(static_cast(dev_type), dev_id), delay_alloc != 0, dtype); @@ -206,7 +206,7 @@ int MXNDArrayCreateSparseEx(int storage_type, NDArrayHandle *out) { API_BEGIN(); std::vector aux_types; - std::vector aux_shapes; + mxnet::ShapeVector aux_shapes; auto shape_start = aux_shape; for (size_t i = 0; i < num_aux; i++) { // types @@ -217,7 +217,7 @@ int MXNDArrayCreateSparseEx(int storage_type, } *out = new NDArray( NDArrayStorageType(storage_type), - TShape(shape, shape + ndim), + mxnet::TShape(shape, shape + ndim), Context::Create(static_cast(dev_type), dev_id), delay_alloc != 0, dtype, aux_types, aux_shapes); @@ -433,7 +433,7 @@ MXNET_DLL int MXNDArrayReshape(NDArrayHandle handle, NDArray *ptr = new NDArray(); API_BEGIN(); NDArray *arr = static_cast(handle); - TShape new_shape(dims, dims+ndim); + mxnet::TShape new_shape(dims, dims+ndim); int size = 1; int pos = -1; for (int i = 0; i < ndim; ++i) { @@ -473,7 +473,7 @@ MXNET_DLL int MXNDArrayReshape64(NDArrayHandle handle, nnvm::Tuple shape(dims, dims+ndim); CHECK_GT(arr->shape().Size(), 0) << "Source ndarray's shape is undefined. Input shape: " << arr->shape(); - TShape new_shape = mxnet::op::InferReshapeShape(shape, arr->shape(), reverse); + mxnet::TShape new_shape = mxnet::op::InferReshapeShape(shape, arr->shape(), reverse); *ptr = arr->ReshapeWithRecord(new_shape); *out = ptr; API_END_HANDLE_ERROR(delete ptr); @@ -498,7 +498,7 @@ int MXNDArrayGetShape(NDArrayHandle handle, API_BEGIN(); NDArray *arr = static_cast(handle); if (!arr->is_none()) { - const TShape &s = arr->shape(); + const mxnet::TShape &s = arr->shape(); *out_dim = s.ndim(); std::vector& buffer = ret->arg_shape_buffer; buffer.resize(s.ndim()); @@ -789,7 +789,7 @@ int MXDataIterGetLabel(DataIterHandle handle, NDArrayHandle *out) { NDArray* pndarray = new NDArray(); // temp hack to make label 1D // TODO(tianjun) make label 1D when label_width=0 - TShape shape = db.data[1].shape(); + mxnet::TShape shape = db.data[1].shape(); if (shape[1] == 1) { *pndarray = db.data[1].Reshape(mshadow::Shape1(shape[0])); } else { @@ -1397,6 +1397,6 @@ int MXNDArrayGetSharedMemHandle(NDArrayHandle handle, int* shared_pid, int* shar int MXNDArrayCreateFromSharedMem(int shared_pid, int shared_id, const mx_uint *shape, mx_uint ndim, int dtype, NDArrayHandle *out) { API_BEGIN(); - *out = new NDArray(shared_pid, shared_id, TShape(shape, shape + ndim), dtype); + *out = new NDArray(shared_pid, shared_id, mxnet::TShape(shape, shape + ndim), dtype); API_END(); } diff --git a/src/c_api/c_api_common.h b/src/c_api/c_api_common.h index ecb05bc78ca4..b5adfa37eca9 100644 --- a/src/c_api/c_api_common.h +++ b/src/c_api/c_api_common.h @@ -68,7 +68,7 @@ struct MXAPIThreadLocalEntry { /*! \brief holder for NDArray handles */ std::vector ndinputs, ndoutputs; /*! \brief result holder for returning shapes */ - std::vector arg_shapes, out_shapes, aux_shapes; + mxnet::ShapeVector arg_shapes, out_shapes, aux_shapes; /*! \brief result holder for returning type flags */ std::vector arg_types, out_types, aux_types; /*! \brief result holder for returning storage types */ @@ -83,7 +83,7 @@ struct MXAPIThreadLocalEntry { std::vector save_inputs, save_outputs; // helper function to setup return value of shape array inline static void SetupShapeArrayReturnWithBuffer( - const std::vector &shapes, + const mxnet::ShapeVector &shapes, std::vector *ndim, std::vector *data, std::vector *buffer) { diff --git a/src/c_api/c_api_executor.cc b/src/c_api/c_api_executor.cc index 66566ed703eb..a2e8bb810e6f 100644 --- a/src/c_api/c_api_executor.cc +++ b/src/c_api/c_api_executor.cc @@ -408,10 +408,10 @@ int MXExecutorSimpleBind(SymbolHandle symbol_handle, } // create shape map for in_args and aux_states - std::unordered_map arg_shape_map(num_provided_arg_shapes); + std::unordered_map arg_shape_map(num_provided_arg_shapes); for (mx_uint i = 0; i < num_provided_arg_shapes; ++i) { auto p = arg_shape_map.emplace(provided_arg_shape_names[i], - TShape(provided_arg_shape_data+provided_arg_shape_idx[i], + mxnet::TShape(provided_arg_shape_data+provided_arg_shape_idx[i], provided_arg_shape_data+provided_arg_shape_idx[i+1])); CHECK(p.second) << "Duplicate shapes are provided for argument " << provided_arg_shape_names[i] << " in simple_bind"; @@ -562,10 +562,10 @@ int MXExecutorReshape(int partial_shaping, API_BEGIN(); *out = nullptr; // ensure we can know whether to free executor on early abort // create shape map for in_args and aux_states - std::unordered_map kwargs(num_provided_arg_shapes); + std::unordered_map kwargs(num_provided_arg_shapes); for (mx_uint i = 0; i < num_provided_arg_shapes; ++i) { auto p = kwargs.emplace(provided_arg_shape_names[i], - TShape(provided_arg_shape_data+provided_arg_shape_idx[i], + mxnet::TShape(provided_arg_shape_data+provided_arg_shape_idx[i], provided_arg_shape_data+provided_arg_shape_idx[i+1])); CHECK(p.second) << "Duplicate shapes are provided for argument " << provided_arg_shape_names[i] << " in reshape of executor"; diff --git a/src/c_api/c_api_function.cc b/src/c_api/c_api_function.cc index 7091be2e72c5..50f9b32d6e47 100644 --- a/src/c_api/c_api_function.cc +++ b/src/c_api/c_api_function.cc @@ -37,7 +37,7 @@ namespace custom_function { struct CustomFunctionParam { size_t num_args, num_outs; std::shared_ptr info; - std::vector out_shapes; + std::vector out_shapes; std::vector out_dtypes; }; @@ -64,7 +64,7 @@ std::vector Gradient( OpStatePtr CreateState(const nnvm::NodeAttrs& attrs, Context ctx, - const std::vector& ishape, + const mxnet::ShapeVector& ishape, const std::vector& itype) { LOG(FATAL) << "Not reached"; return OpStatePtr::Create(nullptr); @@ -141,9 +141,9 @@ NNVM_REGISTER_OP(_CustomFunction) const CustomFunctionParam& params = nnvm::get(attrs.parsed); return params.num_outs; }) -.set_attr("FInferShape", - [](const NodeAttrs& attrs, std::vector *in_shape, - std::vector *out_shape) { +.set_attr("FInferShape", + [](const NodeAttrs& attrs, mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { const CustomFunctionParam& params = nnvm::get(attrs.parsed); *out_shape = params.out_shapes; return true; diff --git a/src/c_api/c_api_symbolic.cc b/src/c_api/c_api_symbolic.cc index 9f0d2834fcce..e07716267288 100644 --- a/src/c_api/c_api_symbolic.cc +++ b/src/c_api/c_api_symbolic.cc @@ -520,18 +520,18 @@ int MXSymbolInferShape(SymbolHandle sym, MXAPIThreadLocalEntry *ret = MXAPIThreadLocalStore::Get(); API_BEGIN(); nnvm::Graph g = Symbol2Graph(*s); - nnvm::ShapeVector arg_shapes(g.indexed_graph().input_nodes().size(), TShape()); + mxnet::ShapeVector arg_shapes(g.indexed_graph().input_nodes().size(), mxnet::TShape()); if (keys == nullptr && num_args != 0) { std::vector read_only_args = mxnet::ReadOnlyArgIndices(g.indexed_graph()); CHECK_LE(num_args, read_only_args.size()); for (mx_uint i = 0; i < num_args; ++i) { - arg_shapes[read_only_args[i]] = nnvm::ShapeTypeCast( + arg_shapes[read_only_args[i]] = mxnet::ShapeTypeCast( arg_shape_data + arg_ind_ptr[i], arg_shape_data + arg_ind_ptr[i+1]); } } else { - std::unordered_map kwargs; + std::unordered_map kwargs; for (mx_uint i = 0; i < num_args; ++i) { - kwargs[keys[i]] = nnvm::ShapeTypeCast( + kwargs[keys[i]] = mxnet::ShapeTypeCast( arg_shape_data + arg_ind_ptr[i], arg_shape_data + arg_ind_ptr[i+1]); } mxnet::MatchArguments(g.indexed_graph(), kwargs, &arg_shapes, "InferShape"); @@ -544,7 +544,7 @@ int MXSymbolInferShape(SymbolHandle sym, } // copy back - CopyAttr(g.indexed_graph(), g.GetAttr("shape"), + CopyAttr(g.indexed_graph(), g.GetAttr("shape"), &(ret->arg_shapes), &(ret->out_shapes), &(ret->aux_shapes)); // copy data back diff --git a/src/c_api/c_predict_api.cc b/src/c_api/c_predict_api.cc index bd599e0b6423..3b9f43d86079 100644 --- a/src/c_api/c_predict_api.cc +++ b/src/c_api/c_predict_api.cc @@ -46,7 +46,7 @@ struct MXAPIPredictor { // auxiliary arrays std::vector aux_arrays; // output shapes - std::vector out_shapes; + mxnet::ShapeVector out_shapes; // uint32_t buffer for output shapes std::vector out_shapes_buffer; // key to arguments @@ -61,7 +61,7 @@ struct MXAPIPredictor { struct MXAPINDList { std::vector keys; - std::vector shapes; + mxnet::ShapeVector shapes; std::vector shapes_buffer; std::vector indptr; std::vector data; @@ -168,17 +168,17 @@ int _CreatePartialOut(const char* symbol_json_str, } // shape inference and bind - std::unordered_map known_shape; + std::unordered_map known_shape; for (mx_uint i = 0; i < num_input_nodes; ++i) { known_shape[std::string(input_keys[i])] = - TShape(input_shape_data + input_shape_indptr[i], + mxnet::TShape(input_shape_data + input_shape_indptr[i], input_shape_data + input_shape_indptr[i + 1]); } std::vector arg_names = sym.ListInputNames(Symbol::kReadOnlyArgs); std::vector aux_names = sym.ListInputNames(Symbol::kAuxiliaryStates); - std::vector out_shapes(sym.ListOutputNames().size()); - std::vector aux_shapes(aux_names.size()); - std::vector arg_shapes; + mxnet::ShapeVector out_shapes(sym.ListOutputNames().size()); + mxnet::ShapeVector aux_shapes(aux_names.size()); + mxnet::ShapeVector arg_shapes; std::unordered_map key2arg; for (size_t i = 0; i < arg_names.size(); ++i) { std::string key = arg_names[i]; @@ -186,7 +186,7 @@ int _CreatePartialOut(const char* symbol_json_str, } try { - std::vector in_shapes; + mxnet::ShapeVector in_shapes; for (std::string key : sym.ListInputNames(Symbol::kAll)) { if (known_shape.count(key) != 0) { in_shapes.push_back(known_shape[key]); @@ -200,7 +200,7 @@ int _CreatePartialOut(const char* symbol_json_str, CHECK(infer_complete) << "The shape information of is not enough to get the shapes"; CopyAttr(g.indexed_graph(), - g.GetAttr("shape"), + g.GetAttr("shape"), &arg_shapes, &out_shapes, &aux_shapes); } catch (const mxnet::op::InferShapeError &err) { throw dmlc::Error(err.msg); @@ -348,22 +348,22 @@ int MXPredReshape(mx_uint num_input_nodes, API_BEGIN(); // shape inference - std::unordered_map new_shape; + std::unordered_map new_shape; for (mx_uint i = 0; i < num_input_nodes; ++i) { new_shape[std::string(input_keys[i])] = - TShape(input_shape_data + input_shape_indptr[i], + mxnet::TShape(input_shape_data + input_shape_indptr[i], input_shape_data + input_shape_indptr[i + 1]); } ret->sym = p->sym; std::vector arg_names = ret->sym.ListInputNames(Symbol::kReadOnlyArgs); std::vector aux_names = ret->sym.ListInputNames(Symbol::kAuxiliaryStates); - std::vector out_shapes(ret->sym.ListOutputNames().size()); - std::vector aux_shapes(aux_names.size()); - std::vector arg_shapes; + mxnet::ShapeVector out_shapes(ret->sym.ListOutputNames().size()); + mxnet::ShapeVector aux_shapes(aux_names.size()); + mxnet::ShapeVector arg_shapes; ret->key2arg = p->key2arg; try { - std::vector in_shapes; + mxnet::ShapeVector in_shapes; in_shapes.reserve(arg_names.size()); for (std::string key : ret->sym.ListInputNames(Symbol::kAll)) { if (new_shape.count(key) != 0) { @@ -378,7 +378,7 @@ int MXPredReshape(mx_uint num_input_nodes, CHECK(infer_complete) << "The shape information of is not enough to get the shapes"; CopyAttr(g.indexed_graph(), - g.GetAttr("shape"), + g.GetAttr("shape"), &arg_shapes, &out_shapes, &aux_shapes); } catch (const mxnet::op::InferShapeError &err) { throw dmlc::Error(err.msg); @@ -387,7 +387,7 @@ int MXPredReshape(mx_uint num_input_nodes, ret->arg_arrays = p->arg_arrays; ret->ctx = p->ctx; for (size_t i=0; i < arg_names.size(); ++i) { - TShape newShape = arg_shapes[i]; + mxnet::TShape newShape = arg_shapes[i]; NDArray &arr = p->arg_arrays[i]; if (new_shape.count(arg_names[i]) != 0) { ret->arg_arrays[i].ReshapeAndAlloc(newShape); @@ -399,7 +399,7 @@ int MXPredReshape(mx_uint num_input_nodes, } for (size_t i=0; i < aux_names.size(); ++i) { - TShape newShape = aux_shapes[i]; + mxnet::TShape newShape = aux_shapes[i]; NDArray &arr = p->aux_arrays[i]; CHECK_EQ(newShape.Size(), arr.shape().Size()) << "aux " << aux_names[i] @@ -435,7 +435,7 @@ int MXPredGetOutputShape(PredictorHandle handle, CHECK_LT(out_index, p->out_arrays.size()) << "Index exceed number of outputs"; - const TShape& s = p->out_shapes[out_index]; + const mxnet::TShape& s = p->out_shapes[out_index]; p->out_shapes_buffer.resize(s.ndim()); nnvm::ShapeTypeCast(s.begin(), s.end(), p->out_shapes_buffer.data()); *shape_data = p->out_shapes_buffer.data(); @@ -509,7 +509,7 @@ int MXNDListCreate(const char* nd_file_bytes, } ret->indptr.push_back(0); for (auto &array : arrays) { - TShape shape = array.shape(); + mxnet::TShape shape = array.shape(); size_t begin = ret->data.size(); size_t size = shape.Size(); ret->shapes.push_back(shape); @@ -534,7 +534,7 @@ int MXNDListGet(NDListHandle handle, << "Index out of range"; *out_key = p->keys[index].c_str(); *out_data = dmlc::BeginPtr(p->data) + p->indptr[index]; - const TShape& s = p->shapes[index]; + const mxnet::TShape& s = p->shapes[index]; p->shapes_buffer.resize(s.ndim()); nnvm::ShapeTypeCast(s.begin(), s.end(), p->shapes_buffer.data()); *out_shape = p->shapes_buffer.data(); diff --git a/src/common/exec_utils.h b/src/common/exec_utils.h index 8de6f65253aa..279ecbd67f09 100644 --- a/src/common/exec_utils.h +++ b/src/common/exec_utils.h @@ -284,7 +284,7 @@ inline std::string storage_str(int storage_id) { */ inline void LogMemoryPlan(const nnvm::Graph& g) { const auto &idx = g.indexed_graph(); - const auto& vshape = g.GetAttr("shape"); + const auto& vshape = g.GetAttr("shape"); const auto& vtype = g.GetAttr("dtype"); const auto& vstorage = g.GetAttr("storage_id"); // find node range @@ -373,13 +373,13 @@ inline void LogInferStorage(const nnvm::Graph& g) { // prints a helpful message after shape inference errors in executor. inline void HandleInferShapeError(const size_t num_forward_inputs, const nnvm::IndexedGraph& idx, - const nnvm::ShapeVector& inferred_shapes) { + const mxnet::ShapeVector& inferred_shapes) { int cnt = 10; std::ostringstream oss; for (size_t i = 0; i < num_forward_inputs; ++i) { const uint32_t nid = idx.input_nodes().at(i); const uint32_t eid = idx.entry_id(nid, 0); - const TShape& inferred_shape = inferred_shapes[eid]; + const mxnet::TShape& inferred_shape = inferred_shapes[eid]; if (inferred_shape.ndim() == 0 || inferred_shape.Size() == 0U) { const std::string& arg_name = idx[nid].source->attrs.name; oss << arg_name << ": " << inferred_shape << ", "; @@ -451,7 +451,7 @@ inline void HandleInferStorageTypeError(const size_t num_forward_inputs, * if enable_row_sparse_sharing is `True`, otherwise default storage only. */ inline NDArray ReshapeOrCreate(const std::string& name, - const TShape& dest_arg_shape, + const mxnet::TShape& dest_arg_shape, const int dest_arg_dtype, const NDArrayStorageType dest_arg_stype, const Context& ctx, diff --git a/src/common/serialization.h b/src/common/serialization.h index 8a1bcc6e6ed2..8192ee210a1c 100644 --- a/src/common/serialization.h +++ b/src/common/serialization.h @@ -30,7 +30,6 @@ #include #include #include -#include #include #include diff --git a/src/common/utils.h b/src/common/utils.h index b902b38b90ce..8e6966952890 100644 --- a/src/common/utils.h +++ b/src/common/utils.h @@ -118,10 +118,10 @@ void CheckFormatCSRImpl(const RunContext &rctx, const NDArray &input, using namespace op::mxnet_op; CHECK_EQ(input.storage_type(), kCSRStorage) << "CheckFormatCSRImpl is for CSRNDArray"; - const TShape shape = input.shape(); - const TShape idx_shape = input.aux_shape(csr::kIdx); - const TShape indptr_shape = input.aux_shape(csr::kIndPtr); - const TShape storage_shape = input.storage_shape(); + const mxnet::TShape shape = input.shape(); + const mxnet::TShape idx_shape = input.aux_shape(csr::kIdx); + const mxnet::TShape indptr_shape = input.aux_shape(csr::kIndPtr); + const mxnet::TShape storage_shape = input.storage_shape(); if ((shape.ndim() != 2) || (idx_shape.ndim() != 1 || indptr_shape.ndim() != 1 || storage_shape.ndim() != 1) || (indptr_shape[0] != shape[0] + 1) || @@ -172,7 +172,7 @@ void CheckFormatRSPImpl(const RunContext &rctx, const NDArray &input, using namespace op::mxnet_op; CHECK_EQ(input.storage_type(), kRowSparseStorage) << "CheckFormatRSPImpl is for RSPNDArray"; - const TShape idx_shape = input.aux_shape(rowsparse::kIdx); + const mxnet::TShape idx_shape = input.aux_shape(rowsparse::kIdx); if (idx_shape[0] != input.storage_shape()[0]) { MSHADOW_TYPE_SWITCH(err_cpu.type_flag_, DType, { DType* err = err_cpu.dptr(); @@ -689,7 +689,7 @@ MSHADOW_XINLINE int ilog2ui(unsigned int a) { /*! * \brief Return an NDArray of all zeros. */ -inline NDArray InitZeros(const NDArrayStorageType stype, const TShape &shape, +inline NDArray InitZeros(const NDArrayStorageType stype, const mxnet::TShape &shape, const Context &ctx, const int dtype) { // NDArray with default storage if (stype == kDefaultStorage) { @@ -704,7 +704,7 @@ inline NDArray InitZeros(const NDArrayStorageType stype, const TShape &shape, /*! * \brief Helper to add a NDArray of zeros to a std::vector. */ -inline void EmplaceBackZeros(const NDArrayStorageType stype, const TShape &shape, +inline void EmplaceBackZeros(const NDArrayStorageType stype, const mxnet::TShape &shape, const Context &ctx, const int dtype, std::vector *vec) { // NDArray with default storage diff --git a/src/executor/attach_op_execs_pass.cc b/src/executor/attach_op_execs_pass.cc index fe3a6bd3d09f..b04d132ee9f6 100644 --- a/src/executor/attach_op_execs_pass.cc +++ b/src/executor/attach_op_execs_pass.cc @@ -263,7 +263,7 @@ class FComputeExExecutor : public OpExecutor { void CreateOpExecs(const Graph& g, OpExecVector* p_ret, size_t i) { using nnvm::DTypeVector; - using nnvm::ShapeVector; + using mxnet::ShapeVector; using nnvm::FMutateInputs; static auto& fcreate_op_state = nnvm::Op::GetAttr("FCreateOpState"); @@ -272,7 +272,7 @@ void CreateOpExecs(const Graph& g, OpExecVector* p_ret, size_t i) { static auto& is_layer_backward = nnvm::Op::GetAttr("TIsLayerOpBackward"); const auto& vdtype = g.GetAttr("dtype"); - const auto& vshape = g.GetAttr("shape"); + const auto& vshape = g.GetAttr("shape"); const auto& vctx = g.GetAttr("context"); const auto& dispatch_modes = g.GetAttr("dispatch_mode"); // get the graph @@ -293,7 +293,7 @@ void CreateOpExecs(const Graph& g, OpExecVector* p_ret, size_t i) { } CHECK(dispatch_modes[i] != DispatchMode::kUndefined); if (fcreate_op_state.count(op)) { - std::vector ishape; + mxnet::ShapeVector ishape; std::vector itype; for (const auto& e : inode.inputs) { ishape.emplace_back(vshape[idx.entry_id(e)]); diff --git a/src/executor/exec_pass.h b/src/executor/exec_pass.h index 52f7c790c77e..dd4132301346 100644 --- a/src/executor/exec_pass.h +++ b/src/executor/exec_pass.h @@ -173,7 +173,7 @@ Graph DetectInplaceAddTo(Graph g); * The index of ShapeVector is given by graph.indexed_graph().entry_id. */ Graph InferShape(Graph&& graph, - nnvm::ShapeVector&& shape_inputs = nnvm::ShapeVector(), + mxnet::ShapeVector&& shape_inputs = mxnet::ShapeVector(), const std::string& shape_attr_key = ""); /*! @@ -217,4 +217,55 @@ std::vector> GetTrtCompatibleSubsets(const Graph } // namespace exec } // namespace mxnet +namespace nnvm { +namespace pass { +/*! + * \brief Get the gradient graph whose outputs are gradients of xs wrt to ys. + * \param graph The input graph. + * \param ys The entries we want to take gradient from. + * \param xs The input to take gradient with respect to. + * \param ys_out_grad The symbol for additional gradient to be propagate back to y. + * \param aggregate_fun Aggregation function applied to aggregate the inputs. + * \param mirror_fun Optional mirror function to do mirror optimization and save memory. + * \param attr_hint_fun Optional, hint function to output a node that like src, but its attr is same as like. + * \param zero_ops Optional, list of operators that outputs a single zero array. The first one + * must be zeros_like. + * \param copy_op_str Optional, name of the copy operation required to handle duplicates + * on the edge of the graph + * \return A new graph, whose outputs correspond to inputs of xs. + */ +inline Graph MXGradient( + Graph graph, + std::vector ys, + std::vector xs, + std::vector ys_out_grad, + std::function&& inputs)> aggregate_fun = nullptr, + std::function mirror_fun = nullptr, + std::function + attr_hint_fun = nullptr, + std::vector zero_ops = std::vector(), + std::string copy_op_str = std::string()) { + graph.attrs["grad_ys"] = std::make_shared(std::move(ys)); + graph.attrs["grad_xs"] = std::make_shared(std::move(xs)); + graph.attrs["grad_ys_out_grad"] = std::make_shared(std::move(ys_out_grad)); + if (aggregate_fun != nullptr) { + graph.attrs["grad_aggregate_fun"] = std::make_shared(aggregate_fun); + } + if (mirror_fun != nullptr) { + graph.attrs["grad_mirror_fun"] = std::make_shared(mirror_fun); + } + if (attr_hint_fun != nullptr) { + graph.attrs["attr_hint_fun"] = std::make_shared(attr_hint_fun); + } + if (zero_ops.size()) { + graph.attrs["zero_ops"] = std::make_shared(std::move(zero_ops)); + } + if (copy_op_str != std::string()) { + graph.attrs["copy_op"] = std::make_shared(std::move(copy_op_str)); + } + return ApplyPass(std::move(graph), "MXGradient"); +} +} // namespace pass +} // namespace nnvm + #endif // MXNET_EXECUTOR_EXEC_PASS_H_ diff --git a/src/executor/graph_executor.cc b/src/executor/graph_executor.cc index 8302dc133c64..ca2cea093c5d 100644 --- a/src/executor/graph_executor.cc +++ b/src/executor/graph_executor.cc @@ -279,7 +279,7 @@ nnvm::Graph GraphExecutor::InitFullGraph(nnvm::Symbol symbol, zero_ops.push_back(nnvm::Op::Get("_zeros")); // take gradient - nnvm::Graph g_grad = nnvm::pass::Gradient( + nnvm::Graph g_grad = nnvm::pass::MXGradient( g, symbol.outputs, xs, head_grad_entry_, AggregateGradient, need_mirror, nullptr, zero_ops, "_copy"); @@ -325,7 +325,7 @@ void GraphExecutor::Init(nnvm::Symbol symbol, const auto& mutable_nodes = idx.mutable_input_nodes(); size_t arg_top = 0, aux_top = 0; data_entry_.resize(idx.num_node_entries()); - nnvm::ShapeVector arg_shapes; + mxnet::ShapeVector arg_shapes; nnvm::DTypeVector arg_dtypes; StorageTypeVector arg_stypes(idx.num_node_entries(), -1); for (size_t i = 0; i < num_forward_inputs_; ++i) { @@ -367,11 +367,11 @@ void GraphExecutor::Init(nnvm::Symbol symbol, } // expand arg_shapes and arg_dtypes to contain backward inputs - arg_shapes.resize(idx.input_nodes().size(), TShape()); + arg_shapes.resize(idx.input_nodes().size(), mxnet::TShape()); g = InferShape(std::move(g), std::move(arg_shapes), "__shape__"); if (g.GetAttr("shape_num_unknown_nodes") != 0U) { HandleInferShapeError(num_forward_inputs_, g.indexed_graph(), - g.GetAttr("shape")); + g.GetAttr("shape")); } arg_dtypes.resize(idx.input_nodes().size(), -1); @@ -401,7 +401,7 @@ void GraphExecutor::Init(nnvm::Symbol symbol, * shared data arrays are provided. */ void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, - const nnvm::ShapeVector& inferred_shapes, + const mxnet::ShapeVector& inferred_shapes, const nnvm::DTypeVector& inferred_dtypes, const StorageTypeVector& inferred_stypes, const std::vector& in_arg_ctxes, @@ -419,7 +419,7 @@ void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, for (size_t i = 0; i < num_forward_inputs_; ++i) { const uint32_t nid = idx.input_nodes().at(i); const uint32_t eid = idx.entry_id(nid, 0); - const TShape& inferred_shape = inferred_shapes[eid]; + const mxnet::TShape& inferred_shape = inferred_shapes[eid]; const int inferred_dtype = inferred_dtypes[eid]; const NDArrayStorageType inferred_stype = (NDArrayStorageType) inferred_stypes[eid]; const std::string& arg_name = idx[nid].source->attrs.name; @@ -471,7 +471,7 @@ void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, * and shared_exec if available. */ void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, - const nnvm::ShapeVector& inferred_shapes, + const mxnet::ShapeVector& inferred_shapes, const nnvm::DTypeVector& inferred_dtypes, const StorageTypeVector& inferred_stypes, const std::vector& in_arg_ctxes, @@ -491,7 +491,7 @@ void GraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, for (size_t i = 0; i < num_forward_inputs_; ++i) { const uint32_t nid = idx.input_nodes().at(i); const uint32_t eid = idx.entry_id(nid, 0); - const TShape& inferred_shape = inferred_shapes[eid]; + const mxnet::TShape& inferred_shape = inferred_shapes[eid]; const int inferred_dtype = inferred_dtypes[eid]; const NDArrayStorageType inferred_stype = (NDArrayStorageType) inferred_stypes[eid]; const std::string& arg_name = idx[nid].source->attrs.name; @@ -635,7 +635,7 @@ void GraphExecutor::FinishInitGraph(nnvm::Symbol symbol, if (vstorage_type[i] != kDefaultStorage) arg_storage_id[i] = kDynamicStorageID; } g.attrs["storage"] = std::make_shared(std::move(arg_storage_id)); - g = nnvm::ApplyPass(g, "PlanMemory"); + g = nnvm::ApplyPass(g, "MXPlanMemory"); } g = DetectInplaceAddTo(g); @@ -694,7 +694,7 @@ void GraphExecutor::Init(nnvm::Symbol symbol, const std::vector& in_arg_ctxes, const std::vector& arg_grad_ctxes, const std::vector& aux_state_ctxes, - const std::unordered_map& arg_shape_map, + const std::unordered_map& arg_shape_map, const std::unordered_map& arg_dtype_map, const std::unordered_map& arg_stype_map, const std::vector& grad_req_types, @@ -714,7 +714,7 @@ void GraphExecutor::Init(nnvm::Symbol symbol, // Initialize arg_shapes and arg_dtypes for shape and type inferences. // It contains all in_args and aux_states' shapes and types in a certain order. const nnvm::IndexedGraph& idx = g.indexed_graph(); - nnvm::ShapeVector arg_shapes(idx.input_nodes().size(), TShape()); + mxnet::ShapeVector arg_shapes(idx.input_nodes().size(), mxnet::TShape()); nnvm::DTypeVector arg_dtypes(idx.input_nodes().size(), -1); StorageTypeVector arg_stypes(idx.input_nodes().size(), kUndefinedStorage); for (size_t i = 0; i < num_forward_inputs_; ++i) { @@ -736,7 +736,7 @@ void GraphExecutor::Init(nnvm::Symbol symbol, g = InferShape(std::move(g), std::move(arg_shapes), "__shape__"); if (g.GetAttr("shape_num_unknown_nodes") != 0U) { HandleInferShapeError(num_forward_inputs_, g.indexed_graph(), - g.GetAttr("shape")); + g.GetAttr("shape")); } g = InferType(std::move(g), std::move(arg_dtypes), "__dtype__"); @@ -754,13 +754,13 @@ void GraphExecutor::Init(nnvm::Symbol symbol, // Create in_args, arg_grads, and aux_states using // the inferred shapes and dtypes. if (nullptr == shared_buffer) { // regular simple bind - InitArguments(idx, g.GetAttr("shape"), + InitArguments(idx, g.GetAttr("shape"), g.GetAttr("dtype"), g.GetAttr("storage_type"), in_arg_ctxes, arg_grad_ctxes, aux_state_ctxes, grad_req_types, in_arg_vec, arg_grad_vec, aux_state_vec); } else { // simple bind using shared data arrays and shared_exec - InitArguments(idx, g.GetAttr("shape"), + InitArguments(idx, g.GetAttr("shape"), g.GetAttr("dtype"), g.GetAttr("storage_type"), in_arg_ctxes, arg_grad_ctxes, aux_state_ctxes, @@ -788,7 +788,7 @@ Executor* GraphExecutor::Reshape(const bool partial_shaping, const bool allow_up_sizing, const Context& default_ctx, const std::map& ctx_map, - const std::unordered_map& + const std::unordered_map& provided_arg_shapes, std::vector* in_args, std::vector* arg_grads, @@ -799,7 +799,7 @@ Executor* GraphExecutor::Reshape(const bool partial_shaping, nnvm::Symbol symbol; symbol.outputs = g.outputs; const nnvm::IndexedGraph& idx = g.indexed_graph(); - nnvm::ShapeVector arg_shapes(idx.input_nodes().size(), TShape()); + mxnet::ShapeVector arg_shapes(idx.input_nodes().size(), mxnet::TShape()); for (size_t i = 0; i < num_forward_inputs_; ++i) { const uint32_t nid = idx.input_nodes().at(i); const std::string& name = idx[nid].source->attrs.name; @@ -811,9 +811,9 @@ Executor* GraphExecutor::Reshape(const bool partial_shaping, g = InferShape(std::move(g), std::move(arg_shapes), "__shape__"); if (g.GetAttr("shape_num_unknown_nodes") != 0U) { HandleInferShapeError(num_forward_inputs_, g.indexed_graph(), - g.GetAttr("shape")); + g.GetAttr("shape")); } - const nnvm::ShapeVector& shape_vec = g.GetAttr("shape"); + const mxnet::ShapeVector& shape_vec = g.GetAttr("shape"); std::vector grad_req_types; size_t grad_top = 0; const size_t num_args = in_arg_map_.size(); @@ -824,7 +824,7 @@ Executor* GraphExecutor::Reshape(const bool partial_shaping, aux_states->reserve(num_aux); for (uint32_t nid : idx.input_nodes()) { std::string name = idx[nid].source->attrs.name; - const TShape& new_shape = shape_vec[idx.entry_id(nid, 0)]; + const mxnet::TShape& new_shape = shape_vec[idx.entry_id(nid, 0)]; if (idx.mutable_input_nodes().count(nid) == 0) { NDArray& arr = in_arg_map_.at(name); auto it = arg_grad_map_.find(name); @@ -927,13 +927,13 @@ Graph GraphExecutor::InitGraph(nnvm::Symbol symbol, // initialize the memory of each entries void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { using nnvm::DTypeVector; - using nnvm::ShapeVector; + using mxnet::ShapeVector; using nnvm::StorageVector; // get the graph const auto& idx = graph_.indexed_graph(); // get the storage const auto& vdtype = graph_.GetAttr("dtype"); - const auto& vshape = graph_.GetAttr("shape"); + const auto& vshape = graph_.GetAttr("shape"); const auto& vstorage = graph_.GetAttr("storage_id"); const auto& vstorage_type = graph_.GetAttr("storage_type"); const auto& vctx = graph_.GetAttr("context"); @@ -1036,7 +1036,7 @@ void GraphExecutor::InitDataEntryMemory(std::vector* shared_pool) { size_t nword = (bytes + 3) / 4; CHECK_LE(nword, std::numeric_limits::max()); // allocate float arrays - TShape shape{static_cast(nword)}; + mxnet::TShape shape{static_cast(nword)}; // TODO(junwu): adding delay_alloc=true to create nd // is a temporary solution. NDArray nd(shape, ctx, true); @@ -1467,7 +1467,7 @@ GraphExecutor::CachedSegOpr GraphExecutor::CreateCachedSegOpr(size_t topo_start, // Infer shapes, dtypes, stypes, contexts for the forward graph static nnvm::Graph InferForwardAttrs(nnvm::Graph g, - nnvm::ShapeVector arg_shapes, + mxnet::ShapeVector arg_shapes, nnvm::DTypeVector arg_dtypes, StorageTypeVector arg_stypes, const Context& default_ctx, @@ -1481,7 +1481,7 @@ static nnvm::Graph InferForwardAttrs(nnvm::Graph g, g = InferShape(std::move(g), std::move(arg_shapes), "__shape__"); if (g.GetAttr("shape_num_unknown_nodes") != 0U) { HandleInferShapeError(num_forward_inputs, indexed_graph, - g.GetAttr("shape")); + g.GetAttr("shape")); } g = InferType(std::move(g), std::move(arg_dtypes), "__dtype__"); if (g.GetAttr("dtype_num_unknown_nodes") != 0U) { @@ -1500,7 +1500,7 @@ static nnvm::Graph InferForwardAttrs(nnvm::Graph g, // This is a common function for bind and simple_bind flows. static nnvm::Symbol PartitionGraph(const nnvm::Symbol& src, const std::string& prop_name, - const nnvm::ShapeVector& arg_shapes, + const mxnet::ShapeVector& arg_shapes, const nnvm::DTypeVector& arg_dtypes, const StorageTypeVector& arg_stypes, const Context& default_ctx, @@ -1532,7 +1532,8 @@ static nnvm::Symbol PartitionGraph(const nnvm::Symbol& src, // This is for simple_bind flow. static nnvm::Symbol PartitionGraph(const nnvm::Symbol& src, const std::string& prop_name, - const std::unordered_map& arg_shape_map, + const std::unordered_map + & arg_shape_map, const std::unordered_map& arg_dtype_map, const std::unordered_map& arg_stype_map, const Context& default_ctx, @@ -1540,7 +1541,7 @@ static nnvm::Symbol PartitionGraph(const nnvm::Symbol& src, const std::vector& in_arg_ctxes, const std::vector& aux_state_ctxes) { const std::vector input_names = src.ListInputNames(Symbol::kAll); - nnvm::ShapeVector arg_shapes(input_names.size(), TShape()); + mxnet::ShapeVector arg_shapes(input_names.size(), mxnet::TShape()); nnvm::DTypeVector arg_dtypes(input_names.size(), -1); StorageTypeVector arg_stypes(input_names.size(), kUndefinedStorage); for (size_t i = 0; i < input_names.size(); ++i) { @@ -1574,7 +1575,7 @@ static nnvm::Symbol PartitionGraph(const nnvm::Symbol& src, const std::vector aux_names = src.ListInputNames(nnvm::Symbol::kAuxiliaryStates); CHECK_EQ(arg_names.size(), in_args->size()); CHECK_EQ(aux_names.size(), aux_states.size()); - nnvm::ShapeVector arg_shapes; // all input shapes + mxnet::ShapeVector arg_shapes; // all input shapes arg_shapes.reserve(input_names.size()); nnvm::DTypeVector arg_dtypes; // all input dtypes arg_dtypes.reserve(input_names.size()); @@ -1629,7 +1630,7 @@ Executor *Executor::SimpleBind(nnvm::Symbol symbol, const std::vector& in_arg_ctxes, const std::vector& arg_grad_ctxes, const std::vector& aux_state_ctxes, - const std::unordered_map& arg_shape_map, + const std::unordered_map& arg_shape_map, const std::unordered_map& arg_dtype_map, const std::unordered_map& arg_stype_map, const std::vector& grad_req_types, diff --git a/src/executor/graph_executor.h b/src/executor/graph_executor.h index c899a6f5b463..ed49e5bc8bc9 100644 --- a/src/executor/graph_executor.h +++ b/src/executor/graph_executor.h @@ -94,7 +94,7 @@ class GraphExecutor : public Executor { const std::vector& in_arg_ctxes, const std::vector& arg_grad_ctxes, const std::vector& aux_state_ctxes, - const std::unordered_map& arg_shape_map, + const std::unordered_map& arg_shape_map, const std::unordered_map& arg_dtype_map, const std::unordered_map& arg_stype_map, const std::vector& grad_req_types, @@ -111,7 +111,7 @@ class GraphExecutor : public Executor { const bool allow_up_sizing, const Context& default_ctx, const std::map& ctx_map, - const std::unordered_map& + const std::unordered_map& provided_arg_shapes, std::vector* in_args, std::vector* arg_grads, @@ -153,7 +153,7 @@ class GraphExecutor : public Executor { }; // Initialize in_args, arg_grads, and aux_states void InitArguments(const nnvm::IndexedGraph& idx, - const nnvm::ShapeVector& inferred_shapes, + const mxnet::ShapeVector& inferred_shapes, const nnvm::DTypeVector& inferred_dtypes, const StorageTypeVector& inferred_stypes, const std::vector& in_arg_ctxes, @@ -166,7 +166,7 @@ class GraphExecutor : public Executor { // Initialize in_args, arg_grads and aux_states with // shared_buffer and shared_exec virtual void InitArguments(const nnvm::IndexedGraph& idx, - const nnvm::ShapeVector& inferred_shapes, + const mxnet::ShapeVector& inferred_shapes, const nnvm::DTypeVector& inferred_dtypes, const StorageTypeVector& inferred_stypes, const std::vector& in_arg_ctxes, diff --git a/src/executor/infer_graph_attr_pass.cc b/src/executor/infer_graph_attr_pass.cc index e4dd3f6677e4..af8094ad92af 100644 --- a/src/executor/infer_graph_attr_pass.cc +++ b/src/executor/infer_graph_attr_pass.cc @@ -589,7 +589,7 @@ nnvm::Graph InferShapeAttr(nnvm::Graph &&ret, } nnvm::Graph InferShape(nnvm::Graph&& graph, - nnvm::ShapeVector&& shape_inputs, + mxnet::ShapeVector&& shape_inputs, const std::string& shape_attr_key) { using dmlc::any; if (shape_inputs.size() != 0) { @@ -598,11 +598,11 @@ nnvm::Graph InferShape(nnvm::Graph&& graph, if (shape_attr_key.length() != 0) { graph.attrs["shape_attr_key"] = std::make_shared(shape_attr_key); } - return InferShapeAttr( - std::move(graph), nnvm::TShape(), + return InferAttr( + std::move(graph), mxnet::TShape(), "FInferShape", "shape_inputs", "shape_attr_key", "shape", "shape_num_unknown_nodes", - [](const nnvm::TShape& s) { return s.ndim() == 0 || s.Size() == 0; }, + [](const mxnet::TShape& s) { return s.ndim() == 0 || s.Size() == 0; }, nullptr, true, nullptr); } diff --git a/src/executor/tensorrt_pass.cc b/src/executor/tensorrt_pass.cc index 762dc0de9db5..f847d59a1298 100644 --- a/src/executor/tensorrt_pass.cc +++ b/src/executor/tensorrt_pass.cc @@ -343,17 +343,17 @@ Graph UpdateSubgraphAttrs(Graph&& subgraph, const Graph& g, const auto& idx = g.indexed_graph(); const auto& sub_idx = subgraph.indexed_graph(); - const auto& shape = g.GetAttr("shape"); + const auto& shape = g.GetAttr("shape"); const auto& dtype = g.GetAttr("dtype"); const auto& storage_type = g.GetAttr("storage_type"); - const auto& shape_inputs = g.GetAttr("shape_inputs"); + const auto& shape_inputs = g.GetAttr("shape_inputs"); const auto& dtype_inputs = g.GetAttr("dtype_inputs"); const auto& storage_type_inputs = g.GetAttr("storage_type_inputs"); - nnvm::ShapeVector sub_shape(sub_idx.num_node_entries()); + mxnet::ShapeVector sub_shape(sub_idx.num_node_entries()); nnvm::DTypeVector sub_dtype(sub_idx.num_node_entries()); StorageTypeVector sub_storage_type(sub_idx.num_node_entries()); - nnvm::ShapeVector sub_shape_inputs(sub_idx.input_nodes().size()); + mxnet::ShapeVector sub_shape_inputs(sub_idx.input_nodes().size()); nnvm::DTypeVector sub_dtype_inputs(sub_idx.input_nodes().size()); StorageTypeVector sub_storage_type_inputs(sub_idx.input_nodes().size()); diff --git a/src/executor/trt_graph_executor.cc b/src/executor/trt_graph_executor.cc index 85ce16885c88..c923922d5184 100644 --- a/src/executor/trt_graph_executor.cc +++ b/src/executor/trt_graph_executor.cc @@ -60,7 +60,7 @@ void TrtGraphExecutor::Init(nnvm::Symbol symbol, std::vector *in_arg_ctxes, std::vector *arg_grad_ctxes, std::vector *aux_state_ctxes, - std::unordered_map *arg_shape_map, + std::unordered_map *arg_shape_map, std::unordered_map *arg_dtype_map, std::unordered_map *arg_stype_map, std::vector *grad_req_types, @@ -95,7 +95,7 @@ void TrtGraphExecutor::Init(nnvm::Symbol symbol, // Initialize arg_shapes and arg_dtypes for shape and type inferences. // It contains all in_args and aux_states' shapes and types in a certain order. const nnvm::IndexedGraph& idx = g.indexed_graph(); - nnvm::ShapeVector arg_shapes(idx.input_nodes().size(), TShape()); + mxnet::ShapeVector arg_shapes(idx.input_nodes().size(), mxnet::TShape()); nnvm::DTypeVector arg_dtypes(idx.input_nodes().size(), -1); StorageTypeVector arg_stypes(idx.input_nodes().size(), kUndefinedStorage); for (size_t i = 0; i < num_forward_inputs_; ++i) { @@ -117,7 +117,7 @@ void TrtGraphExecutor::Init(nnvm::Symbol symbol, g = InferShape(std::move(g), std::move(arg_shapes), "__shape__"); if (g.GetAttr("shape_num_unknown_nodes") != 0U) { HandleInferShapeError(num_forward_inputs_, g.indexed_graph(), - g.GetAttr("shape")); + g.GetAttr("shape")); } g = InferType(std::move(g), std::move(arg_dtypes), "__dtype__"); @@ -142,7 +142,7 @@ void TrtGraphExecutor::Init(nnvm::Symbol symbol, } } - InitArguments(g.indexed_graph(), g.GetAttr("shape"), + InitArguments(g.indexed_graph(), g.GetAttr("shape"), g.GetAttr("dtype"), g.GetAttr("storage_type"), *in_arg_ctxes, *arg_grad_ctxes, *aux_state_ctxes, @@ -165,7 +165,7 @@ void TrtGraphExecutor::Init(nnvm::Symbol symbol, * and shared_exec if available. */ void TrtGraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, - const nnvm::ShapeVector& inferred_shapes, + const mxnet::ShapeVector& inferred_shapes, const nnvm::DTypeVector& inferred_dtypes, const StorageTypeVector& inferred_stypes, const std::vector& in_arg_ctxes, @@ -185,7 +185,7 @@ void TrtGraphExecutor::InitArguments(const nnvm::IndexedGraph& idx, for (size_t i = 0; i < num_forward_inputs_; ++i) { const uint32_t nid = idx.input_nodes().at(i); const uint32_t eid = idx.entry_id(nid, 0); - const TShape& inferred_shape = inferred_shapes[eid]; + const mxnet::TShape& inferred_shape = inferred_shapes[eid]; const int inferred_dtype = inferred_dtypes[eid]; const auto inferred_stype = (NDArrayStorageType) inferred_stypes[eid]; const std::string& arg_name = idx[nid].source->attrs.name; @@ -319,7 +319,7 @@ Graph TrtGraphExecutor::ReinitGraph(Graph&& g, const Context &default_ctx, std::vector *arg_grad_ctxes, std::vector *aux_state_ctxes, std::vector *grad_req_types, - std::unordered_map *arg_shape_map, + std::unordered_map *arg_shape_map, std::unordered_map *arg_dtype_map, std::unordered_map *arg_stype_map, std::unordered_map *params_map) { @@ -356,7 +356,7 @@ Graph TrtGraphExecutor::ReinitGraph(Graph&& g, const Context &default_ctx, num_forward_nodes_ = std::max( num_forward_nodes_, static_cast(idx.outputs()[i].node_id + 1)); } - nnvm::ShapeVector arg_shapes(idx.input_nodes().size(), TShape()); + mxnet::ShapeVector arg_shapes(idx.input_nodes().size(), mxnet::TShape()); nnvm::DTypeVector arg_dtypes(idx.input_nodes().size(), -1); StorageTypeVector arg_stypes(idx.input_nodes().size(), kUndefinedStorage); for (size_t i = 0; i < num_forward_inputs_; ++i) { @@ -378,7 +378,7 @@ Graph TrtGraphExecutor::ReinitGraph(Graph&& g, const Context &default_ctx, g = InferShape(std::move(g), std::move(arg_shapes), "__shape__"); if (g.GetAttr("shape_num_unknown_nodes") != 0U) { HandleInferShapeError(num_forward_inputs_, g.indexed_graph(), - g.GetAttr("shape")); + g.GetAttr("shape")); } g = InferType(std::move(g), std::move(arg_dtypes), "__dtype__"); @@ -415,7 +415,8 @@ Executor *TrtGraphExecutor::TensorRTBind(nnvm::Symbol symbol, std::vector *in_arg_ctxes, std::vector *arg_grad_ctxes, std::vector *aux_state_ctxes, - std::unordered_map *arg_shape_map, + std::unordered_map + *arg_shape_map, std::unordered_map *arg_dtype_map, std::unordered_map *arg_stype_map, std::vector *grad_req_types, diff --git a/src/executor/trt_graph_executor.h b/src/executor/trt_graph_executor.h index 96ac4426270a..a4ec5bf657ae 100644 --- a/src/executor/trt_graph_executor.h +++ b/src/executor/trt_graph_executor.h @@ -40,7 +40,7 @@ class TrtGraphExecutor : public GraphExecutor { std::vector *in_arg_ctxes, std::vector* arg_grad_ctxes, std::vector* aux_state_ctxes, - std::unordered_map* arg_shape_map, + std::unordered_map* arg_shape_map, std::unordered_map* arg_dtype_map, std::unordered_map* arg_stype_map, std::vector* grad_req_types, @@ -58,7 +58,7 @@ class TrtGraphExecutor : public GraphExecutor { std::vector *in_arg_ctxes, std::vector *arg_grad_ctxes, std::vector *aux_state_ctxes, - std::unordered_map *arg_shape_map, + std::unordered_map *arg_shape_map, std::unordered_map *arg_dtype_map, std::unordered_map *arg_stype_map, std::vector *grad_req_types, @@ -81,13 +81,13 @@ class TrtGraphExecutor : public GraphExecutor { std::vector *arg_grad_ctxes, std::vector *aux_state_ctxes, std::vector *grad_req_types, - std::unordered_map *arg_shape_map, + std::unordered_map *arg_shape_map, std::unordered_map *arg_dtype_map, std::unordered_map *arg_stype_map, std::unordered_map *params_map); void InitArguments(const nnvm::IndexedGraph& idx, - const nnvm::ShapeVector& inferred_shapes, + const mxnet::ShapeVector& inferred_shapes, const nnvm::DTypeVector& inferred_dtypes, const StorageTypeVector& inferred_stypes, const std::vector& in_arg_ctxes, diff --git a/src/imperative/cached_op.cc b/src/imperative/cached_op.cc index 8dd0a4deaac3..9db235bca532 100644 --- a/src/imperative/cached_op.cc +++ b/src/imperative/cached_op.cc @@ -175,7 +175,7 @@ CachedOp::CachedOp( CHECK_GT(xs.size(), 0) << "There are no inputs in computation graph that require gradients."; - grad_graph_ = pass::Gradient( + grad_graph_ = pass::MXGradient( fwd_graph_, fwd_graph_.outputs, xs, ograd_entries_, exec::AggregateGradient, nullptr, nullptr, zero_ops, "_copy"); @@ -405,8 +405,8 @@ bool CachedOp::SetBackwardGraph( g.attrs["backward_ref_count"] = std::make_shared(std::move(ref_count)); } - auto shapes = info->fwd_graph.GetAttr("shape"); - shapes.resize(idx.num_node_entries(), TShape()); + auto shapes = info->fwd_graph.GetAttr("shape"); + shapes.resize(idx.num_node_entries(), mxnet::TShape()); auto dtypes = info->fwd_graph.GetAttr("dtype"); dtypes.resize(idx.num_node_entries(), -1); auto stypes = info->fwd_graph.GetAttr("storage_type"); @@ -624,7 +624,7 @@ void CachedOp::StaticRunOps( const auto& op_execs = state.execs; std::vector ndinputs, ndoutputs; - nnvm::ShapeVector arg_shapes; + mxnet::ShapeVector arg_shapes; nnvm::DTypeVector arg_dtypes; std::vector req; @@ -739,7 +739,7 @@ OpStatePtr CachedOp::StaticForward( } const auto& dtypes = g.GetAttr("dtype"); - const auto& shapes = g.GetAttr("shape"); + const auto& shapes = g.GetAttr("shape"); const auto& stypes = g.GetAttr("storage_type"); for (size_t i = 0; i < outputs.size(); ++i) { @@ -816,7 +816,7 @@ OpStatePtr CachedOp::DynamicForward( mem_plan, arrays, &array_reqs); const auto& dtypes = g.GetAttr("dtype"); - const auto& shapes = g.GetAttr("shape"); + const auto& shapes = g.GetAttr("shape"); const auto& stypes = g.GetAttr("storage_type"); for (size_t i = 0; i < outputs.size(); ++i) { @@ -1230,7 +1230,7 @@ void CachedOpBackward(const OpStatePtr& state_ptr, OpStatePtr CreateCachedOpState(const NodeAttrs& attrs, Context ctx, - const std::vector& in_shapes, + const mxnet::ShapeVector& in_shapes, const std::vector& in_types) { const CachedOpPtr& op = nnvm::get(attrs.parsed); return OpStatePtr::Create(op); @@ -1335,10 +1335,10 @@ NNVM_REGISTER_OP(_CachedOp) return op->ListForwardOutputNames(); }) .set_attr("FCreateOpState", CreateCachedOpState) -.set_attr("FInferShape", +.set_attr("FInferShape", [](const nnvm::NodeAttrs& attrs, - std::vector *in_shapes, - std::vector *out_shapes) { + mxnet::ShapeVector *in_shapes, + mxnet::ShapeVector *out_shapes) { const CachedOpPtr& op = nnvm::get(attrs.parsed); return op::DefaultSubgraphOpShapeHelper(op->GetForwardSym(), in_shapes, out_shapes); }) diff --git a/src/imperative/imperative.cc b/src/imperative/imperative.cc index a381b2384113..8d1f65518565 100644 --- a/src/imperative/imperative.cc +++ b/src/imperative/imperative.cc @@ -351,7 +351,7 @@ std::vector Imperative::Backward( << "There are no inputs in computation graph that require gradients."; } - Graph g_graph = pass::Gradient( + Graph g_graph = pass::MXGradient( graph, graph.outputs, xs, ograd_entries, exec::AggregateGradient, nullptr, nullptr, zero_ops, "_copy"); @@ -479,7 +479,7 @@ std::vector Imperative::Backward( array_reqs[eid] = x_reqs[i - num_forward_outputs]; } - const auto& shapes = graph.GetAttr("shape"); + const auto& shapes = graph.GetAttr("shape"); const auto& dtypes = graph.GetAttr("dtype"); const auto& stypes = graph.GetAttr("storage_type"); const auto& dispatch_modes = graph.GetAttr("dispatch_mode"); diff --git a/src/imperative/imperative_utils.h b/src/imperative/imperative_utils.h index a8db4810f7c1..5eecfe8c6f23 100644 --- a/src/imperative/imperative_utils.h +++ b/src/imperative/imperative_utils.h @@ -100,18 +100,18 @@ inline void SetShapeType(const Context& ctx, const std::vector& inputs, const std::vector& outputs, DispatchMode* dispatch_mode) { - static auto& infershape = nnvm::Op::GetAttr("FInferShape"); + static auto& infershape = nnvm::Op::GetAttr("FInferShape"); static auto& infertype = nnvm::Op::GetAttr("FInferType"); static auto& inferstorage = nnvm::Op::GetAttr("FInferStorageType"); MXAPIThreadLocalEntry *ret = MXAPIThreadLocalStore::Get(); // infer shape - std::vector& in_shapes = ret->arg_shapes; + mxnet::ShapeVector& in_shapes = ret->arg_shapes; in_shapes.clear(); in_shapes.reserve(inputs.size()); for (auto& i : inputs) { in_shapes.push_back(i->shape()); } - std::vector& out_shapes = ret->out_shapes; + mxnet::ShapeVector& out_shapes = ret->out_shapes; out_shapes.clear(); out_shapes.reserve(outputs.size()); for (auto& i : outputs) { @@ -563,7 +563,7 @@ inline void PushOperator(const OpStatePtr& state, } } -inline bool CheckAndInferShape(nnvm::Graph* p_g, nnvm::ShapeVector&& shapes, +inline bool CheckAndInferShape(nnvm::Graph* p_g, mxnet::ShapeVector&& shapes, bool use_inputs, std::pair node_range = {0, 0}, std::pair entry_range = {0, 0}, @@ -575,9 +575,9 @@ inline bool CheckAndInferShape(nnvm::Graph* p_g, nnvm::ShapeVector&& shapes, nnvm::Graph& g = *p_g; if (use_inputs) { if (g.attrs.count("shape_inputs") && - g.GetAttr("shape_inputs") == shapes) return true; + g.GetAttr("shape_inputs") == shapes) return true; } else if (g.attrs.count("shape")) { - const auto& prev_shapes = g.GetAttr("shape"); + const auto& prev_shapes = g.GetAttr("shape"); CHECK_EQ(prev_shapes.size(), shapes.size()); bool match = true; for (size_t i = 0; i < shapes.size(); ++i) { @@ -773,11 +773,11 @@ inline MemoryPlanVector PlanMemory( } g.attrs["ref_count"] = std::make_shared(ref_count); g.attrs["storage"] = std::make_shared(std::move(storage)); - g = nnvm::ApplyPass(g, "PlanMemory"); + g = nnvm::ApplyPass(g, "MXPlanMemory"); if (detect_inplace_addto) g = exec::DetectInplaceAddTo(g); const auto& dtypes = g.GetAttr("dtype"); - const auto& shapes = g.GetAttr("shape"); + const auto& shapes = g.GetAttr("shape"); const auto& storage_inplace = g.GetAttr >("storage_inplace_index"); const auto& storage_ids = g.GetAttr("storage_id"); uint32_t entry_start = entry_range.first; @@ -818,7 +818,7 @@ inline std::multimap AllocateMemory( std::multimap&& pool = std::multimap()) { using namespace nnvm; const auto& dtypes = g.GetAttr("dtype"); - const auto& shapes = g.GetAttr("shape"); + const auto& shapes = g.GetAttr("shape"); const auto& stypes = g.GetAttr("storage_type"); std::multimap new_pool; @@ -840,7 +840,7 @@ inline std::multimap AllocateMemory( new_pool.insert(*iter); pool.erase(iter); } else { - NDArray buff(TShape({static_cast(mem_plan[i].size)}), + NDArray buff(mxnet::TShape({static_cast(mem_plan[i].size)}), default_ctx, true, mshadow::kUint8); *arrays[i] = buff.AsArray(shapes[i], dtypes[i]); new_pool.insert({mem_plan[i].size, buff}); diff --git a/src/io/image_aug_default.cc b/src/io/image_aug_default.cc index cd06de2b2ad1..5fb0b0f21e7e 100644 --- a/src/io/image_aug_default.cc +++ b/src/io/image_aug_default.cc @@ -96,7 +96,7 @@ struct DefaultImageAugmentParam : public dmlc::Parameter #include #include -#include #include #include @@ -189,7 +188,7 @@ void Imdecode(const nnvm::NodeAttrs& attrs, size_t len = inputs[0].shape().Size(); CHECK(len > 0) << "Input cannot be an empty buffer"; - TShape oshape(3); + mxnet::TShape oshape(3); oshape[2] = param.flag == 0 ? 1 : 3; if (get_jpeg_size(str_img, len, &oshape[1], &oshape[0])) { } else if (get_png_size(str_img, len, &oshape[1], &oshape[0])) { @@ -229,7 +228,7 @@ void Imread(const nnvm::NodeAttrs& attrs, CHECK(file.good()) << "Failed reading image file: '" << param.filename << "' " << strerror(errno); - TShape oshape(3); + mxnet::TShape oshape(3); oshape[2] = param.flag == 0 ? 1 : 3; if (get_jpeg_size(buff.get(), fsize, &oshape[1], &oshape[0])) { } else if (get_png_size(buff.get(), fsize, &oshape[1], &oshape[0])) { @@ -271,8 +270,8 @@ struct ResizeParam : public dmlc::Parameter { DMLC_REGISTER_PARAMETER(ResizeParam); inline bool ResizeShape(const nnvm::NodeAttrs& attrs, - std::vector *ishape, - std::vector *oshape) { + mxnet::ShapeVector *ishape, + mxnet::ShapeVector *oshape) { const auto& param = nnvm::get(attrs.parsed); if (ishape->size() != 1 || (*ishape)[0].ndim() != 3) return false; @@ -319,8 +318,8 @@ struct MakeBorderParam : public dmlc::Parameter { DMLC_REGISTER_PARAMETER(MakeBorderParam); inline bool MakeBorderShape(const nnvm::NodeAttrs& attrs, - std::vector *ishape, - std::vector *oshape) { + mxnet::ShapeVector *ishape, + mxnet::ShapeVector *oshape) { const auto& param = nnvm::get(attrs.parsed); if (ishape->size() != 1 || (*ishape)[0].ndim() != 3) return false; @@ -382,7 +381,7 @@ NNVM_REGISTER_OP(_cvimresize) .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(op::ParamParser) -.set_attr("FInferShape", ResizeShape) +.set_attr("FInferShape", ResizeShape) .set_attr("FInferType", op::ElemwiseType<1, 1>) .set_attr("FCompute", Imresize) .add_argument("src", "NDArray", "source image") @@ -393,7 +392,7 @@ NNVM_REGISTER_OP(_cvcopyMakeBorder) .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(op::ParamParser) -.set_attr("FInferShape", MakeBorderShape) +.set_attr("FInferShape", MakeBorderShape) .set_attr("FInferType", op::ElemwiseType<1, 1>) .set_attr("FCompute", copyMakeBorder) .add_argument("src", "NDArray", "source image") diff --git a/src/io/image_iter_common.h b/src/io/image_iter_common.h index 10cd8ab4e5de..4bbcb9d21f9a 100644 --- a/src/io/image_iter_common.h +++ b/src/io/image_iter_common.h @@ -118,7 +118,7 @@ struct ImageRecParserParam : public dmlc::Parameter { /*! \brief label-width */ int label_width; /*! \brief input shape */ - TShape data_shape; + mxnet::TShape data_shape; /*! \brief number of threads */ int preprocess_threads; /*! \brief whether to remain silent */ diff --git a/src/io/inst_vector.h b/src/io/inst_vector.h index f06a4e4aabe9..91106e788cdd 100644 --- a/src/io/inst_vector.h +++ b/src/io/inst_vector.h @@ -187,7 +187,7 @@ class TBlobContainer : public TBlob { release(); } } - void resize(const TShape &shape, int type_flag) { + void resize(const mxnet::TShape &shape, int type_flag) { if (tensor_container_) { CHECK_EQ(this->type_flag_, type_flag); this->shape_ = shape; diff --git a/src/io/iter_batchloader.h b/src/io/iter_batchloader.h index be911f695c8e..69eb05f7d729 100644 --- a/src/io/iter_batchloader.h +++ b/src/io/iter_batchloader.h @@ -146,7 +146,7 @@ class BatchLoader : public IIterator { /*! \brief base iterator */ IIterator *base_; /*! \brief data shape */ - std::vector shape_; + mxnet::ShapeVector shape_; /*! \brief unit size */ std::vector unit_size_; // initialize the data holder by using from the first batch. @@ -155,7 +155,7 @@ class BatchLoader : public IIterator { data_.resize(first_batch.data.size()); unit_size_.resize(first_batch.data.size()); for (size_t i = 0; i < first_batch.data.size(); ++i) { - TShape src_shape = first_batch.data[i].shape_; + mxnet::TShape src_shape = first_batch.data[i].shape_; int src_type_flag = first_batch.data[i].type_flag_; // init object attributes std::vector shape_vec; @@ -163,7 +163,7 @@ class BatchLoader : public IIterator { for (index_t dim = 0; dim < src_shape.ndim(); ++dim) { shape_vec.push_back(src_shape[dim]); } - TShape dst_shape(shape_vec.begin(), shape_vec.end()); + mxnet::TShape dst_shape(shape_vec.begin(), shape_vec.end()); shape_[i] = dst_shape; data_[i].resize(mshadow::Shape1(dst_shape.Size()), src_type_flag); unit_size_[i] = src_shape.Size(); diff --git a/src/io/iter_csv.cc b/src/io/iter_csv.cc index 5fd149535be2..0c1b82355410 100644 --- a/src/io/iter_csv.cc +++ b/src/io/iter_csv.cc @@ -37,11 +37,11 @@ struct CSVIterParam : public dmlc::Parameter { /*! \brief path to data csv file */ std::string data_csv; /*! \brief data shape */ - TShape data_shape; + mxnet::TShape data_shape; /*! \brief path to label csv file */ std::string label_csv; /*! \brief label shape */ - TShape label_shape; + mxnet::TShape label_shape; // declare parameters DMLC_DECLARE_PARAMETER(CSVIterParam) { DMLC_DECLARE_FIELD(data_csv) @@ -52,7 +52,7 @@ struct CSVIterParam : public dmlc::Parameter { .describe("The input CSV file or a directory path. " "If NULL, all labels will be returned as 0."); index_t shape1[] = {1}; - DMLC_DECLARE_FIELD(label_shape).set_default(TShape(shape1, shape1 + 1)) + DMLC_DECLARE_FIELD(label_shape).set_default(mxnet::TShape(shape1, shape1 + 1)) .describe("The shape of one label."); } }; @@ -148,7 +148,7 @@ class CSVIterTyped: public CSVIterBase { } private: - inline TBlob AsTBlob(const dmlc::Row& row, const TShape& shape) { + inline TBlob AsTBlob(const dmlc::Row& row, const mxnet::TShape& shape) { CHECK_EQ(row.length, shape.Size()) << "The data size in CSV do not match size of shape: " << "specified shape=" << shape << ", the csv row-length=" << row.length; diff --git a/src/io/iter_image_det_recordio.cc b/src/io/iter_image_det_recordio.cc index 8bfded75f098..876c07520f52 100644 --- a/src/io/iter_image_det_recordio.cc +++ b/src/io/iter_image_det_recordio.cc @@ -151,7 +151,7 @@ struct ImageDetRecParserParam : public dmlc::Parameter { /*! \brief label-width, use -1 for variable width */ int label_width; /*! \brief input shape */ - TShape data_shape; + mxnet::TShape data_shape; /*! \brief number of threads */ int preprocess_threads; /*! \brief whether to remain silent */ diff --git a/src/io/iter_image_recordio_2.cc b/src/io/iter_image_recordio_2.cc index 00c38198659f..5d5261b22611 100644 --- a/src/io/iter_image_recordio_2.cc +++ b/src/io/iter_image_recordio_2.cc @@ -278,12 +278,12 @@ inline bool ImageRecordIOParser2::ParseNext(DataBatch *out) { for (index_t dim = 0; dim < param_.data_shape.ndim(); ++dim) { shape_vec.push_back(param_.data_shape[dim]); } - TShape data_shape(shape_vec.begin(), shape_vec.end()); + mxnet::TShape data_shape(shape_vec.begin(), shape_vec.end()); shape_vec.clear(); shape_vec.push_back(batch_param_.batch_size); shape_vec.push_back(param_.label_width); - TShape label_shape(shape_vec.begin(), shape_vec.end()); + mxnet::TShape label_shape(shape_vec.begin(), shape_vec.end()); auto ctx = Context::CPU(0); auto dev_id = param_.device_id; diff --git a/src/io/iter_libsvm.cc b/src/io/iter_libsvm.cc index 8abb768ad4c8..3decc7b33e04 100644 --- a/src/io/iter_libsvm.cc +++ b/src/io/iter_libsvm.cc @@ -36,11 +36,11 @@ struct LibSVMIterParam : public dmlc::Parameter { /*! \brief path to data libsvm file */ std::string data_libsvm; /*! \brief data shape */ - TShape data_shape; + mxnet::TShape data_shape; /*! \brief path to label libsvm file */ std::string label_libsvm; /*! \brief label shape */ - TShape label_shape; + mxnet::TShape label_shape; /*! \brief partition the data into multiple parts */ int num_parts; /*! \brief the index of the part will read*/ @@ -55,7 +55,7 @@ struct LibSVMIterParam : public dmlc::Parameter { .describe("The input LibSVM label file or a directory path. " "If NULL, all labels will be read from ``data_libsvm``."); index_t shape1[] = {1}; - DMLC_DECLARE_FIELD(label_shape).set_default(TShape(shape1, shape1 + 1)) + DMLC_DECLARE_FIELD(label_shape).set_default(mxnet::TShape(shape1, shape1 + 1)) .describe("The shape of one label."); DMLC_DECLARE_FIELD(num_parts).set_default(1) .describe("partition the data into multiple parts"); @@ -153,7 +153,7 @@ class LibSVMIter: public SparseIIterator { return param_.label_shape.Size() > 1 ? kCSRStorage : kDefaultStorage; } - virtual const TShape GetShape(bool is_data) const { + virtual const mxnet::TShape GetShape(bool is_data) const { if (is_data) return param_.data_shape; return param_.label_shape; } @@ -161,13 +161,13 @@ class LibSVMIter: public SparseIIterator { private: inline TBlob AsDataBlob(const dmlc::Row& row) { const real_t* ptr = row.value; - TShape shape(mshadow::Shape1(row.length)); + mxnet::TShape shape(mshadow::Shape1(row.length)); return TBlob((real_t*) ptr, shape, cpu::kDevMask); // NOLINT(*) } inline TBlob AsIdxBlob(const dmlc::Row& row) { const uint64_t* ptr = row.index; - TShape shape(mshadow::Shape1(row.length)); + mxnet::TShape shape(mshadow::Shape1(row.length)); return TBlob((int64_t*) ptr, shape, cpu::kDevMask, mshadow::kInt64); // NOLINT(*) } diff --git a/src/io/iter_mnist.cc b/src/io/iter_mnist.cc index 139cf47d63ed..0163a62400f7 100644 --- a/src/io/iter_mnist.cc +++ b/src/io/iter_mnist.cc @@ -104,7 +104,7 @@ class MNISTIter: public IIterator { out_.batch_size = param_.batch_size; if (param_.shuffle) this->Shuffle(); if (param_.silent == 0) { - TShape s; + mxnet::TShape s; s = batch_data_.shape_; if (param_.flat) { LOG(INFO) << "MNISTIter: load " << (unsigned)img_.size(0) << " images, shuffle=" diff --git a/src/io/iter_sparse.h b/src/io/iter_sparse.h index beaf5c682998..22b1836be419 100644 --- a/src/io/iter_sparse.h +++ b/src/io/iter_sparse.h @@ -38,7 +38,7 @@ class SparseIIterator : public IIterator { /*! \brief storage type of the data or label */ virtual const NDArrayStorageType GetStorageType(bool is_data) const = 0; /*! \brief shape of the data or label */ - virtual const TShape GetShape(bool is_data) const = 0; + virtual const mxnet::TShape GetShape(bool is_data) const = 0; }; // class SparseIIterator } // namespace mxnet diff --git a/src/io/iter_sparse_batchloader.h b/src/io/iter_sparse_batchloader.h index 398d6e00fe7b..17c509a0f56b 100644 --- a/src/io/iter_sparse_batchloader.h +++ b/src/io/iter_sparse_batchloader.h @@ -108,14 +108,14 @@ class SparseBatchLoader : public BatchLoader, public SparseIIterator return sparse_base_->GetStorageType(is_data); } - virtual const TShape GetShape(bool is_data) const { - TShape inst_shape = sparse_base_->GetShape(is_data); + virtual const mxnet::TShape GetShape(bool is_data) const { + mxnet::TShape inst_shape = sparse_base_->GetShape(is_data); std::vector shape_vec; shape_vec.push_back(param_.batch_size); for (index_t dim = 0; dim < inst_shape.ndim(); ++dim) { shape_vec.push_back(inst_shape[dim]); } - return TShape(shape_vec.begin(), shape_vec.end()); + return mxnet::TShape(shape_vec.begin(), shape_vec.end()); } private: @@ -186,7 +186,7 @@ class SparseBatchLoader : public BatchLoader, public SparseIIterator // allocate buffer for (size_t i = 0; i < num_arrays; ++i) { // init object attributes - TShape dst_shape(mshadow::Shape1(buff_sizes[i])); + mxnet::TShape dst_shape(mshadow::Shape1(buff_sizes[i])); data_[i].resize(mshadow::Shape1(buff_sizes[i]), dtypes_[i]); CHECK(data_[i].dptr_ != nullptr); } diff --git a/src/io/iter_sparse_prefetcher.h b/src/io/iter_sparse_prefetcher.h index 3908f9bd3826..3f06052b0292 100644 --- a/src/io/iter_sparse_prefetcher.h +++ b/src/io/iter_sparse_prefetcher.h @@ -134,7 +134,7 @@ class SparsePrefetcherIter : public PrefetcherIter { return sparse_loader_->GetStorageType(is_data); } - virtual const TShape GetShape(bool is_data) const { + virtual const mxnet::TShape GetShape(bool is_data) const { return sparse_loader_->GetShape(is_data); } diff --git a/src/kvstore/comm.h b/src/kvstore/comm.h index 08f6155cb5b4..88e363b5de7d 100644 --- a/src/kvstore/comm.h +++ b/src/kvstore/comm.h @@ -50,7 +50,7 @@ class Comm { * \brief init key with the data shape and storage shape */ virtual void Init(int key, const NDArrayStorageType stype, - const TShape& shape, int dtype = mshadow::kFloat32) = 0; + const mxnet::TShape& shape, int dtype = mshadow::kFloat32) = 0; /** * \brief returns src[0] + .. + src[src.size()-1] */ @@ -110,7 +110,7 @@ class CommCPU : public Comm { } virtual ~CommCPU() { } - void Init(int key, const NDArrayStorageType stype, const TShape& shape, + void Init(int key, const NDArrayStorageType stype, const mxnet::TShape& shape, int type = mshadow::kFloat32) override { // Delayed allocation - the dense merged buffer might not be used at all if push() // only sees sparse arrays @@ -456,7 +456,7 @@ class CommDevice : public Comm { virtual ~CommDevice() { } - void Init(int key, const NDArrayStorageType stype, const TShape& shape, + void Init(int key, const NDArrayStorageType stype, const mxnet::TShape& shape, int dtype = mshadow::kFloat32) override { sorted_key_attrs_.emplace_back(key, shape, dtype); inited_ = false; @@ -568,9 +568,9 @@ class CommDevice : public Comm { false, buf.merged.dtype()); buf.residual[i] = 0; int64_t small_size = gc_->GetCompressedSize(buf.merged.shape().Size()); - buf.compressed_recv_buf[i] = NDArray(TShape{small_size}, buf.merged.ctx(), + buf.compressed_recv_buf[i] = NDArray(mxnet::TShape{small_size}, buf.merged.ctx(), false, buf.merged.dtype()); - buf.compressed_send_buf[i] = NDArray(TShape{small_size}, src[i].ctx(), + buf.compressed_send_buf[i] = NDArray(mxnet::TShape{small_size}, src[i].ctx(), false, buf.merged.dtype()); } } @@ -673,7 +673,7 @@ class CommDevice : public Comm { } } - using KeyAttrs = std::tuple; + using KeyAttrs = std::tuple; // try to allocate buff on device evenly void InitMergeBuffer(const std::vector& devs) { std::sort(sorted_key_attrs_.begin(), sorted_key_attrs_.end(), []( @@ -688,7 +688,7 @@ class CommDevice : public Comm { for (auto& sorted_key_attr : sorted_key_attrs_) { const int key = std::get<0>(sorted_key_attr); - const TShape& shape = std::get<1>(sorted_key_attr); + const mxnet::TShape& shape = std::get<1>(sorted_key_attr); const int type = std::get<2>(sorted_key_attr); auto& buf = merge_buf_[key]; Context ctx; diff --git a/src/kvstore/comm_tree.h b/src/kvstore/comm_tree.h index 11d99c021917..11ca2d6528be 100644 --- a/src/kvstore/comm_tree.h +++ b/src/kvstore/comm_tree.h @@ -58,7 +58,7 @@ class CommDeviceTree : public CommDevice { virtual ~CommDeviceTree() { } - void Init(int key, const NDArrayStorageType stype, const TShape& shape, + void Init(int key, const NDArrayStorageType stype, const mxnet::TShape& shape, int dtype = mshadow::kFloat32) override { tree_sorted_key_attrs_.emplace_back(key, shape, dtype); sorted_key_attrs_.emplace_back(key, shape, dtype); @@ -385,7 +385,7 @@ class CommDeviceTree : public CommDevice { #endif } - using KeyAttrs = std::tuple; + using KeyAttrs = std::tuple; // try to allocate buff on device evenly void InitMergeBufferTree() { LOG(INFO) << "Using Tree"; @@ -402,7 +402,7 @@ class CommDeviceTree : public CommDevice { for (auto& tree_sorted_key_attr : tree_sorted_key_attrs_) { const int key = std::get<0>(tree_sorted_key_attr); - const TShape& shape = std::get<1>(tree_sorted_key_attr); + const mxnet::TShape& shape = std::get<1>(tree_sorted_key_attr); const int type = std::get<2>(tree_sorted_key_attr); if (key_dist.find(shape.Size()) == key_dist.end()) @@ -444,7 +444,7 @@ class CommDeviceTree : public CommDevice { // buf.merged enforces that we only visit each GPU once if (buf.merged.empty()) { - TShape shape_copy = shape; + mxnet::TShape shape_copy = shape; int total_size = shape.Size(); unsigned first_size = shape[0]; if (total_size > gpuarray_bound_ && first_size >= 2*devs_.size()) { diff --git a/src/kvstore/kvstore_dist.h b/src/kvstore/kvstore_dist.h index 23fbf67474ee..9fe41c51a2c6 100644 --- a/src/kvstore/kvstore_dist.h +++ b/src/kvstore/kvstore_dist.h @@ -383,8 +383,9 @@ class KVStoreDist : public KVStoreLocal { // Init the small buffer and residual_ buffer for quantize if (small_buf.is_none()) { - small_buf = NDArray(TShape{pskv.size}, comm_buf.ctx(), false, dtype); - res_buf = NDArray(TShape{static_cast(original_size)}, comm_buf.ctx(), false, dtype); + small_buf = NDArray(mxnet::TShape{pskv.size}, comm_buf.ctx(), false, dtype); + res_buf = NDArray(mxnet::TShape{static_cast(original_size)}, + comm_buf.ctx(), false, dtype); res_buf = 0; } gradient_compression_->Quantize(comm_buf, &small_buf, &res_buf, priority); diff --git a/src/kvstore/kvstore_dist_server.h b/src/kvstore/kvstore_dist_server.h index 372b58dbbf3d..0cb1a11e3fcc 100644 --- a/src/kvstore/kvstore_dist_server.h +++ b/src/kvstore/kvstore_dist_server.h @@ -459,7 +459,7 @@ class KVStoreDistServer { auto unit_len = req_data.lens[1] / num_bytes; CHECK_GT(unit_len, 0); size_t ds[] = {num_rows, (size_t) unit_len}; - TShape dshape(ds, ds + 2); + mxnet::TShape dshape(ds, ds + 2); CHECK_EQ(req_data.vals.size(), num_rows * unit_len * num_bytes); TBlob recv_blob; MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { @@ -546,7 +546,7 @@ class KVStoreDistServer { // data TBlob idx_blob(indices.data(), mshadow::Shape1(num_rows), cpu::kDevMask); size_t ds[] = {(size_t) num_rows, (size_t) unit_len}; - TShape dshape(ds, ds + 2); + mxnet::TShape dshape(ds, ds + 2); TBlob recv_blob; MSHADOW_REAL_TYPE_SWITCH(type.dtype, DType, { recv_blob = TBlob(reinterpret_cast(req_data.vals.data()), @@ -620,12 +620,12 @@ class KVStoreDistServer { auto& stored = store_[key]; size_t ds[] = {(size_t)req_data.lens[1] / mshadow::mshadow_sizeof(type.dtype)}; - TShape dshape(ds, ds + 1); + mxnet::TShape dshape(ds, ds + 1); TBlob recv_blob(reinterpret_cast(req_data.vals.data()), dshape, cpu::kDevMask); NDArray recved = NDArray(recv_blob, 0); NDArray decomp_buf = decomp_buf_[key]; - dshape = TShape{(int64_t) original_size}; + dshape = mxnet::TShape{(int64_t) original_size}; if (decomp_buf.is_none()) { decomp_buf = NDArray(dshape, Context()); @@ -684,7 +684,7 @@ class KVStoreDistServer { // the operators with \a NDArray are actually finished if (req_meta.push) { size_t ds[] = {(size_t) req_data.lens[0] / mshadow::mshadow_sizeof(type.dtype)}; - TShape dshape(ds, ds + 1); + mxnet::TShape dshape(ds, ds + 1); TBlob recv_blob; MSHADOW_REAL_TYPE_SWITCH(type.dtype, DType, { recv_blob = TBlob(reinterpret_cast(req_data.vals.data()), dshape, cpu::kDevMask); diff --git a/src/kvstore/kvstore_nccl.h b/src/kvstore/kvstore_nccl.h index a4ba533917b8..0c1411002e7f 100644 --- a/src/kvstore/kvstore_nccl.h +++ b/src/kvstore/kvstore_nccl.h @@ -443,7 +443,7 @@ class KVStoreNCCL : public KVStoreLocal { } // Initialize single key - void InitKey(int key, const NDArrayStorageType stype, const TShape& shape, + void InitKey(int key, const NDArrayStorageType stype, const mxnet::TShape& shape, int dtype = mshadow::kFloat32) { if (stype == kDefaultStorage) { key_attrs_.push_back(std::make_tuple(key, shape, dtype)); @@ -492,11 +492,11 @@ class KVStoreNCCL : public KVStoreLocal { } } - using KeyAttrs = std::tuple; + using KeyAttrs = std::tuple; void InitMergeBuffer(const std::vector& devs) { for (size_t i = 0; i < key_attrs_.size(); ++i) { int key = std::get<0>(key_attrs_[i]); - TShape s = std::get<1>(key_attrs_[i]); + mxnet::TShape s = std::get<1>(key_attrs_[i]); int type = std::get<2>(key_attrs_[i]); auto& buf = merge_buf_[key]; // always use devs[0] as root diff --git a/src/ndarray/ndarray.cc b/src/ndarray/ndarray.cc index 648f9584618c..b09d38aa1863 100644 --- a/src/ndarray/ndarray.cc +++ b/src/ndarray/ndarray.cc @@ -50,9 +50,9 @@ DMLC_REGISTRY_ENABLE(::mxnet::NDArrayFunctionReg); namespace mxnet { -NDArray::NDArray(const NDArrayStorageType stype, const TShape &shape, Context ctx, +NDArray::NDArray(const NDArrayStorageType stype, const mxnet::TShape &shape, Context ctx, bool delay_alloc, int dtype, std::vector aux_types, - std::vector aux_shapes, TShape storage_shape) : shape_(shape), + mxnet::ShapeVector aux_shapes, mxnet::TShape storage_shape) : shape_(shape), dtype_(dtype), storage_type_(stype), entry_({nullptr, 0, 0}) { // Assign default aux types if not given if (aux_types.size() == 0 @@ -70,10 +70,10 @@ NDArray::NDArray(const NDArrayStorageType stype, const TShape &shape, Context ct if (aux_shapes.size() == 0 && stype != kDefaultStorage) { if (stype == kRowSparseStorage) { - aux_shapes = {TShape(mshadow::Shape1(0))}; + aux_shapes = {mxnet::TShape(mshadow::Shape1(0))}; } else if (stype == kCSRStorage) { // aux shapes for indptr and indices - aux_shapes = {TShape(mshadow::Shape1(0)), TShape(mshadow::Shape1(0))}; + aux_shapes = {mxnet::TShape(mshadow::Shape1(0)), mxnet::TShape(mshadow::Shape1(0))}; } else { LOG(FATAL) << "Unknown storage type " << stype; } @@ -129,7 +129,7 @@ NDArray::Chunk::~Chunk() { }, shandle.ctx, var); } -void NDArray::Chunk::CheckAndAllocData(const TShape &shape, int dtype) { +void NDArray::Chunk::CheckAndAllocData(const mxnet::TShape &shape, int dtype) { CHECK_NE(aux_shapes.size(), 0) << "data is expected to be allocated after aux_data"; auto dbytes = shape.Size() * mshadow::mshadow_sizeof(dtype); @@ -171,7 +171,7 @@ nnvm::Symbol NDArray::get_autograd_symbol() const { NDArray::NDArray(mkldnn::memory::primitive_desc mem_pd) : storage_type_(kDefaultStorage), entry_({nullptr, 0, 0}) { auto mem_desc = mem_pd.desc(); - shape_ = TShape(mem_desc.data.dims, mem_desc.data.dims + mem_desc.data.ndims); + shape_ = mxnet::TShape(mem_desc.data.dims, mem_desc.data.dims + mem_desc.data.ndims); dtype_ = get_mxnet_type(mem_desc.data.data_type); ptr_ = std::make_shared(shape_, Context::CPU(), true, dtype_); ptr_->CheckAndAlloc(mem_pd.get_size()); @@ -182,7 +182,7 @@ NDArray::NDArray(const std::shared_ptr &mkldnn_mem) : storage_type_(kDefaultStorage), entry_({nullptr, 0, 0}) { auto mem_pd = mkldnn_mem->get_primitive_desc(); auto mem_desc = mem_pd.desc(); - shape_ = TShape(mem_desc.data.dims, mem_desc.data.dims + mem_desc.data.ndims); + shape_ = mxnet::TShape(mem_desc.data.dims, mem_desc.data.dims + mem_desc.data.ndims); dtype_ = get_mxnet_type(mem_desc.data.data_type); ptr_ = std::make_shared(shape_, Context::CPU(), true, dtype_); ptr_->shandle.dptr = mkldnn_mem->get_data_handle(); @@ -192,7 +192,7 @@ NDArray::NDArray(const std::shared_ptr &mkldnn_mem) ptr_->static_data = true; } -NDArray NDArray::MKLDNNDataReshape(const TShape &shape) const { +NDArray NDArray::MKLDNNDataReshape(const mxnet::TShape &shape) const { CHECK(!is_none()) << "NDArray is not initialized"; CHECK_GE(shape_.Size(), shape.Size()) << "NDArray.Reshape: target shape size is larger current shape"; @@ -231,7 +231,7 @@ NDArray NDArray::MKLDNNDataReshape(const TShape &shape) const { #endif -NDArray NDArray::Reshape(const TShape &shape) const { +NDArray NDArray::Reshape(const mxnet::TShape &shape) const { CHECK(!is_none()) << "NDArray is not initialized"; CHECK_GE(shape_.Size(), shape.Size()) << "NDArray.Reshape: target shape size is larger current shape"; @@ -246,7 +246,7 @@ NDArray NDArray::Reshape(const TShape &shape) const { return ret; } -NDArray NDArray::ReshapeWithRecord(const TShape &shape) { +NDArray NDArray::ReshapeWithRecord(const mxnet::TShape &shape) { NDArray ret = this->Reshape(shape); if (!Imperative::Get()->is_recording()) return ret; @@ -300,7 +300,7 @@ NDArray NDArray::At(index_t idx) const { << "Storage type " << storage_type() << " doesn't support At()"; NDArray ret = this->Slice(idx, idx+1); if (shape_.ndim() > 1) { - return ret.Reshape(TShape(shape_.data()+1, shape_.data()+shape_.ndim())); + return ret.Reshape(mxnet::TShape(shape_.data()+1, shape_.data()+shape_.ndim())); } else { return ret; } @@ -311,7 +311,7 @@ NDArray NDArray::AtWithRecord(index_t idx) { << "Storage type " << storage_type() << " doesn't support At()"; NDArray ret = this->SliceWithRecord(idx, idx+1); if (shape_.ndim() > 1) { - return ret.ReshapeWithRecord(TShape(shape_.data()+1, shape_.data()+shape_.ndim())); + return ret.ReshapeWithRecord(mxnet::TShape(shape_.data()+1, shape_.data()+shape_.ndim())); } else { return ret; } @@ -325,13 +325,13 @@ NDArray NDArray::aux_ndarray(size_t i) const { CHECK_NE(storage_type(), kDefaultStorage); CHECK(i < ptr_->aux_shapes.size()); // create a delay_alloc default ndarray as output - NDArray ret(TShape(), ctx(), true, aux_type(i)); + NDArray ret(mxnet::TShape(), ctx(), true, aux_type(i)); ret.SyncCopyFromNDArray(*this, i); return ret; } NDArray NDArray::data_ndarray() const { - NDArray ret(TShape(), ctx(), true, dtype_); + NDArray ret(mxnet::TShape(), ctx(), true, dtype_); ret.SyncCopyFromNDArray(*this); return ret; } @@ -454,7 +454,7 @@ void NDArray::Chunk::MKLDNNDataReorder(const mkldnn::memory::primitive_desc &pd) mkl_mem_.reset(new MKLDNNMemory(pd, shandle.dptr)); } -void NDArray::Chunk::SetMKLMem(const TShape &shape, int dtype) { +void NDArray::Chunk::SetMKLMem(const mxnet::TShape &shape, int dtype) { // The shape of the array and the one of the MKL memory may mismatch. // For example, if the array stores parameters, the MKL memory may store data // in 5 dimensions while the NDArray stores data in 4 dimensions. @@ -549,7 +549,7 @@ const mkldnn::memory *NDArray::GetMKLDNNDataReorder( // If they have different shapes, we need to reshape the array first. // Since this method will only be used inside an operator, we can call // MKLDNNDataReshape to reshape an array. - TShape required_shape(desc2.data.ndims); + mxnet::TShape required_shape(desc2.data.ndims); for (int i = 0; i < desc2.data.ndims; i++) required_shape[i] = desc2.data.dims[i]; NDArray reshaped = MKLDNNDataReshape(required_shape); @@ -575,7 +575,7 @@ NDArray NDArray::Reorder2Default() const { // create new ndarray from mkldnn layout mkldnn::memory::desc from_desc = ptr_->mkl_mem_->GetPrimitiveDesc().desc(); - TShape tshape(from_desc.data.ndims); + mxnet::TShape tshape(from_desc.data.ndims); for (int i = 0; i < from_desc.data.ndims; i++) tshape[i] = from_desc.data.dims[i]; NDArray ret(tshape, ctx(), false, dtype()); mkldnn::memory::primitive_desc def_pd = ptr_->mkl_mem_->GetPrimitiveDesc(format); @@ -737,7 +737,7 @@ void NDArray::UpdateMKLDNNMemDesc(mkldnn::memory::format format) { void NDArray::SetTBlob() const { CHECK(ptr_ != nullptr); - TShape shape = shape_; + mxnet::TShape shape = shape_; char *dptr = static_cast(ptr_->shandle.dptr); auto stype = storage_type(); if (stype == kDefaultStorage) { @@ -1161,7 +1161,7 @@ void CopyFromToImpl(const NDArray& from, const NDArray& to, if (from_stype == to_stype) { casted_nd = from; // same stype, no need to cast from } else { // different stypes on different ctx needs an temporary casted_nd - const TShape& shape = from.shape(); + const mxnet::TShape& shape = from.shape(); if (to_stype == kDefaultStorage) { casted_nd = NDArray(shape, from_ctx); } else { @@ -1567,7 +1567,7 @@ NDArray &NDArray::operator/=(const real_t &src) { return ScalarOpApply(this, src); } -/* magic number for ndarray version 1, with int64_t TShape */ +/* magic number for ndarray version 1, with int64_t mxnet::TShape */ static const uint32_t NDARRAY_V1_MAGIC = 0xF993fac8; /* magic number for ndarray version 2, with storage type */ @@ -1643,14 +1643,14 @@ void NDArray::Save(dmlc::Stream *strm) const { } } -bool LegacyTShapeLoad(dmlc::Stream *strm, TShape *shape, const uint32_t magic) { +bool LegacyTShapeLoad(dmlc::Stream *strm, mxnet::TShape *shape, const uint32_t magic) { switch (magic) { case NDARRAY_V1_MAGIC: return shape->Load(strm); default: - // meet legacy TShape, magic is ndim here + // meet legacy mxnet::TShape, magic is ndim here uint32_t ndim = magic; - *shape = TShape(ndim); + *shape = mxnet::TShape(ndim); std::vector buffer(ndim); size_t nread = ndim * sizeof(uint32_t); if (strm->Read(buffer.data(), nread) != nread) return false; @@ -1661,7 +1661,7 @@ bool LegacyTShapeLoad(dmlc::Stream *strm, TShape *shape, const uint32_t magic) { bool NDArray::LegacyLoad(dmlc::Stream *strm, const uint32_t magic) { // load shape - TShape shape; + mxnet::TShape shape; if (!LegacyTShapeLoad(strm, &shape, magic)) return false; if (shape.ndim() == 0) { *this = NDArray(); return true; @@ -1703,13 +1703,13 @@ bool NDArray::Load(dmlc::Stream *strm) { const int32_t nad = num_aux_data(static_cast(stype)); // load storage shape - TShape sshape; + mxnet::TShape sshape; if (nad > 0) { if (!sshape.Load(strm)) return false; } // load shape - TShape shape; + mxnet::TShape shape; if (!shape.Load(strm)) return false; if (shape.ndim() == 0) { *this = NDArray(); return true; @@ -1725,7 +1725,7 @@ bool NDArray::Load(dmlc::Stream *strm) { // load aux_types and aux_shapes std::vector aux_types; - std::vector aux_shapes; + mxnet::ShapeVector aux_shapes; if (nad > 0) { aux_types.resize(nad); aux_shapes.resize(nad); @@ -1819,7 +1819,7 @@ NDArray NDArray::Copy(Context ctx) const { } void NDArray::SyncCopyFromCPU(const void *data, size_t size) const { - TShape dshape = this->shape(); + mxnet::TShape dshape = this->shape(); CHECK_EQ(dshape.Size(), size) << "Memory size do not match"; TBlob src((void*)data, dshape, cpu::kDevMask, this->dtype_, 0); // NOLINT(*) @@ -1876,7 +1876,7 @@ void NDArray::SyncCopyFromNDArray(const NDArray& src, int i, int j) { // get or create a dst tblob for copying src to it // if dst is a dense format and has not been allocated, allocate memory for it // else if dst is not initialized, allocate corresponding data blob for it - auto get_dst_data = [&](const TShape& src_shape) { + auto get_dst_data = [&](const mxnet::TShape& src_shape) { if (this->storage_type() == kDefaultStorage) { this->ReshapeAndAlloc(src_shape); } else if (!this->storage_initialized()) { @@ -1950,7 +1950,7 @@ void NDArray::SyncCopyFromNDArray(const NDArray& src, int i, int j) { } void NDArray::SyncCopyToCPU(void *data, size_t size) const { - TShape dshape = this->shape(); + mxnet::TShape dshape = this->shape(); CHECK_EQ(dshape.Size(), size) << "Memory size do not match"; TBlob dst(data, dshape, cpu::kDevMask, this->dtype_, 0); // NOLINT(*) @@ -2056,7 +2056,7 @@ void CopyFromToSimple( NNVM_REGISTER_OP(_copyto) .set_num_inputs(1) .set_num_outputs(1) -.set_attr("FInferShape", op::ElemwiseShape<1, 1>) +.set_attr("FInferShape", op::ElemwiseShape<1, 1>) .set_attr("FInferType", [](const NodeAttrs& attrs, std::vector *in_type, std::vector *out_type) { return !op::type_is_none((*in_type)[0]) && !op::type_is_none((*out_type)[0]); diff --git a/src/ndarray/ndarray_function.h b/src/ndarray/ndarray_function.h index 97c23b67592a..70b626dbb9b7 100644 --- a/src/ndarray/ndarray_function.h +++ b/src/ndarray/ndarray_function.h @@ -38,7 +38,7 @@ namespace mxnet { /*! \brief namespace to support all possible Ndarray operator */ namespace ndarray { struct BinaryBase { - inline static TShape GetShape(const TShape &lshape, const TShape &rshape) { + inline static mxnet::TShape GetShape(const mxnet::TShape &lshape, const mxnet::TShape &rshape) { CHECK(lshape == rshape) << "operands shape mismatch"; CHECK(lshape.ndim() != 0) << "source operand have zero dimension shape"; return lshape; @@ -94,7 +94,7 @@ struct ClipMax : public BinaryBase { struct OneHotEncode { - inline static TShape GetShape(const TShape &index, const TShape &proptype) { + inline static mxnet::TShape GetShape(const mxnet::TShape &index, const mxnet::TShape &proptype) { CHECK(index.ndim() == 1 && proptype.ndim() == 2) << "OneHotEncode only support 1d index."; CHECK_EQ(index[0], proptype[0]) << "OneHotEncode shape inconsistent"; return proptype; @@ -102,7 +102,7 @@ struct OneHotEncode { }; struct MatChooseRowElem { - inline static TShape GetShape(const TShape &lshape, const TShape &rshape) { + inline static mxnet::TShape GetShape(const mxnet::TShape &lshape, const mxnet::TShape &rshape) { CHECK(lshape.ndim() == 2 && rshape.ndim() == 1) << "choose_row_element only support 2D Matrix and 1D index"; CHECK_EQ(lshape[0], rshape[0]) << "choose_row_element index and matrix shape mismatch"; @@ -111,7 +111,9 @@ struct MatChooseRowElem { }; struct MatFillRowElem { - inline static TShape GetShape(const TShape &lshape, const TShape &mshape, const TShape &rshape) { + inline static mxnet::TShape GetShape(const mxnet::TShape &lshape, + const mxnet::TShape &mshape, + const mxnet::TShape &rshape) { CHECK(lshape.ndim() == 2 && mshape.ndim() == 1 && rshape.ndim() == 1) << "fill_row_element only support 2D Matrix, 1D value and 1D index"; CHECK((lshape[0] == mshape[0]) && (mshape[0] == rshape[0])) diff --git a/src/nnvm/gradient.cc b/src/nnvm/gradient.cc new file mode 100644 index 000000000000..4927191a5964 --- /dev/null +++ b/src/nnvm/gradient.cc @@ -0,0 +1,281 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * Copyright (c) 2016 by Contributors + * \file gradients.cc + * \brief Passes that takes gradient of the graph + * This code code was modified based on mxnet codebase by Min Lin + */ +#include +#include +#include +#include +#include + +namespace nnvm { +namespace pass { +namespace { + +// default aggregate gradient function +// require operator zeros and elemwise_sum to be presented. +NodeEntry DefaultAggregateGradient(std::vector&& v) { + if (v.size() == 1) { + return std::move(v[0]); + } else if (v.size() == 0) { + NodePtr zero_node = Node::Create(); + zero_node->attrs.op = Op::Get("zeros"); + zero_node->attrs.name = "zero_grad"; + zero_node->attrs.op->attr_parser(&(zero_node->attrs)); + return NodeEntry{zero_node, 0, 0}; + } else { + NodePtr sum_node = Node::Create(); + sum_node->attrs.op = Op::Get("elemwise_sum"); + sum_node->inputs = std::move(v); + sum_node->attrs.name = "grad_sum"; + sum_node->attrs.dict["num_args"] = std::to_string(sum_node->inputs.size()); + sum_node->attrs.op->attr_parser(&(sum_node->attrs)); + return NodeEntry{sum_node, 0, 0}; + } +} + +bool CheckGradAllZero(const std::vector& grads, + const std::vector& zero_ops) { + if (!grads.size() || !zero_ops.size()) return false; + for (const auto& g : grads) { + bool found = false; + for (const auto& op : zero_ops) { + if (g.node->op() == op) { + found = true; + break; + } + } + if (!found) return false; + } + return true; +} + +// helper entry +struct GradEntry { +#ifdef _MSC_VER + NodeEntry sum = NodeEntry{nullptr, 0, 0}; +#else + NodeEntry sum{nullptr, 0, 0}; +#endif + std::vector grads; + bool need_attr_hint{true}; +}; + +Graph Gradient(Graph src) { + using nnvm::FGradient; + using MirrorFun = std::function; + using AttrHintFun = std::function; + + CHECK_NE(src.attrs.count("grad_ys"), 0U) + << "Gradient require grad_ys to be presented."; + CHECK_NE(src.attrs.count("grad_ys_out_grad"), 0U) + << "Gradient require grad_ys_out_grad to be presented."; + CHECK_NE(src.attrs.count("grad_xs"), 0U) + << "Gradient require grad_xs to be presented."; + const std::vector& ys = + src.GetAttr >("grad_ys"); + const std::vector& ys_out_grad = + src.GetAttr >("grad_ys_out_grad"); + const std::vector& xs = + src.GetAttr >("grad_xs"); + using AggFun = std::function&& inputs)>; + AggFun agg_fun = DefaultAggregateGradient; + if (src.attrs.count("grad_aggregate_fun") != 0) { + agg_fun = src.GetAttr("grad_aggregate_fun"); + } + MirrorFun mirror_fun = nullptr; + if (src.attrs.count("grad_mirror_fun") != 0) { + mirror_fun = src.GetAttr("grad_mirror_fun"); + } + AttrHintFun attr_hint_fun = nullptr; + if (src.attrs.count("attr_hint_fun") != 0) { + attr_hint_fun = src.GetAttr("attr_hint_fun"); + } + std::vector zero_ops; + if (src.attrs.count("zero_ops") != 0) { + zero_ops = src.GetAttr >("zero_ops"); + } + const Op* copy_op = (src.attrs.count("copy_op") != 0) ? + Op::Get(src.GetAttr("copy_op")) : + nullptr; + + // topo sort + std::vector topo_order; + std::unordered_map > output_grads; + + DFSVisit(ys, [&](const NodePtr& node) { + if (output_grads.count(node.get()) == 0) { + output_grads[node.get()].resize(node->num_outputs()); + } + topo_order.push_back(node); + }); + + CHECK_EQ(ys.size(), ys_out_grad.size()); + for (size_t i = 0; i < ys.size(); ++i) { + NodeEntry ograd = ys_out_grad[i]; + output_grads[ys[i].node.get()][ys[i].index].grads = { ograd }; + } + + // Check that all xs are reachable from ys + for (size_t i = 0; i < xs.size(); ++i) { + CHECK(output_grads.find(xs[i].node.get()) != output_grads.end()) + << "Cannot differentiate with respect to the " << i+1 << "-th variable " + << "because it is unreachable from the outputs."; + } + + // construct mirror reduece memory strategy if needed + std::unordered_map mirror_map; + if (mirror_fun != nullptr) { + for (const NodePtr& n : topo_order) { + if (mirror_fun(*n)) { + NodePtr new_node = Node::Create(); + *new_node = *n; + new_node->attrs.name += "_mirror"; + for (auto& e : new_node->inputs) { + e.node = mirror_map.at(e.node.get()); + } + for (auto& n : new_node->control_deps) { + n = mirror_map.at(n.get()); + } + mirror_map[n.get()] = std::move(new_node); + } else { + mirror_map[n.get()] = n; + } + } + } + + // traverse backward + static auto& grad_fun_map = Op::GetAttr("FGradient"); + static auto& finfer_shape = Op::GetAttr("FInferShape"); + + std::vector out_agg_grads; + for (auto rit = topo_order.rbegin(); rit != topo_order.rend(); ++rit) { + const NodePtr& ptr = *rit; + if (ptr->is_variable()) continue; + out_agg_grads.clear(); + auto& out_grad_vec = output_grads.at(ptr.get()); + for (uint32_t i = 0; i < out_grad_vec.size(); ++i) { + GradEntry& e = out_grad_vec[i]; + e.sum = agg_fun(std::move(e.grads)); + if (e.need_attr_hint && attr_hint_fun != nullptr) { + e.sum = attr_hint_fun(e.sum, NodeEntry{ptr, 0, i}); + } + out_agg_grads.push_back(e.sum); + } + if ((*rit)->inputs.size() != 0) { + NodePtr fwd_node = (mirror_map.size() == 0 ? ptr : mirror_map.at(ptr.get())); + std::vector input_grads; + if (grad_fun_map.count(ptr->op())) { + input_grads = grad_fun_map[ptr->op()](fwd_node, out_agg_grads); + CHECK_EQ((*rit)->inputs.size(), input_grads.size()) + << "Gradient function not returning enough gradient"; + } else if (CheckGradAllZero(out_agg_grads, zero_ops)) { + for (size_t i = 0; i < fwd_node->num_inputs(); ++i) { + std::ostringstream os; + if (1 == fwd_node->num_inputs()) { + os << fwd_node->attrs.name << "_backward"; + } else { + os << fwd_node->attrs.name << "_in" << i << "_backward"; + } + auto p = Node::Create(); + p->attrs.op = zero_ops[0]; + p->attrs.name = os.str(); + p->inputs.push_back(fwd_node->inputs[i]); + p->control_deps.emplace_back(fwd_node); + if (p->op()->attr_parser != nullptr) { + p->op()->attr_parser(&(p->attrs)); + } + input_grads.emplace_back(nnvm::NodeEntry{p, 0, 0}); + } + } else { + LOG(FATAL) << "Operator " << fwd_node->op()->name << " is non-differentiable " + << "because it didn't register FGradient attribute."; + } + auto git = input_grads.begin(); + for (auto it = (*rit)->inputs.begin(); it != (*rit)->inputs.end(); ++it, ++git) { + auto& ge = output_grads[it->node.get()][it->index]; + // if any of the backward op can do shape inference, the hint is not necessary. + if (finfer_shape.count(git->node->op())) { + ge.need_attr_hint = false; + } + ge.grads.emplace_back(std::move(*git)); + } + } + } + // take out the xs' grads + Graph ret; + ret.outputs.resize(xs.size()); + NodeEntryMap > unique_grads; + size_t counter = 0; + for (const NodeEntry& e : xs) { + GradEntry& entry = output_grads[e.node.get()][e.index]; + // aggregate sum if there haven't been + if (entry.sum.node.get() == nullptr) { + entry.sum = agg_fun(std::move(entry.grads)); + if (entry.need_attr_hint && attr_hint_fun != nullptr) { + entry.sum = attr_hint_fun(entry.sum, e); + } + } + if (copy_op != nullptr) { + auto kv = unique_grads.find(entry.sum); + if (kv == unique_grads.end()) { + unique_grads.emplace(std::move(entry.sum), std::make_pair(1, counter)); + } else { + NodePtr copy_node = Node::Create(); + std::ostringstream os; + os << entry.sum.node->attrs.name << "_" << kv->second.first << "_copy"; + kv->second.first++; + copy_node->attrs.op = copy_op; + copy_node->attrs.name = os.str(); + copy_node->inputs.emplace_back(entry.sum); + if (copy_node->attrs.op->attr_parser != nullptr) { + copy_node->attrs.op->attr_parser(&(copy_node->attrs)); + } + unique_grads.emplace(NodeEntry{std::move(copy_node), 0, 0}, std::make_pair(1, counter)); + } + } else { + ret.outputs[counter] = entry.sum; + } + ++counter; + } + if (copy_op != nullptr) { + for (const auto& kv : unique_grads) { + ret.outputs[kv.second.second] = kv.first; + } + } + return ret; +} + +// register pass +NNVM_REGISTER_PASS(MXGradient) +.describe("Return a gradient graph of src.attrs[\"ys\"] wrt src.attrs[\"xs\"]") +.set_body(Gradient) +.set_change_graph(true) +.depend_graph_attr("grad_ys") +.depend_graph_attr("grad_xs") +.depend_graph_attr("grad_ys_out_grad"); + +} // namespace +} // namespace pass +} // namespace nnvm diff --git a/src/nnvm/graph_algorithm.h b/src/nnvm/graph_algorithm.h new file mode 100644 index 000000000000..d1590c3b9846 --- /dev/null +++ b/src/nnvm/graph_algorithm.h @@ -0,0 +1,131 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * Copyright (c) 2016 by Contributors + * \file graph_algorithm.h + * \brief This header contains graph algorithms on StaticGraph. + * It is used compute informations such as whether two + * operations can run in parallel, and helps allocation. +*/ +#ifndef MXNET_NNVM_GRAPH_ALGORITHM_H_ +#define MXNET_NNVM_GRAPH_ALGORITHM_H_ + +#include +#include + +namespace nnvm { +namespace pass { + +/*! + * \brief Find best path in the DAG, with reward defined + * by sum of reward of each node along the path. + * \param graph the original static graph. + * \param topo_order topo order of the nodes in the graph. + * \param node_reward the reward of each node. + * \param path the output path of nodes. + * \return the total reward of best path. + */ +inline uint32_t FindBestPath( + const IndexedGraph& graph, + const std::vector& node_reward, + std::vector* path) { + const uint32_t num_nodes = static_cast(graph.num_nodes()); + CHECK_EQ(num_nodes, node_reward.size()); + + std::vector best_reward(node_reward.size(), 0); + std::vector next_node(node_reward.size(), num_nodes); + uint32_t best_solution = 0, best_start_node = 0; + + // traverse in reverse topo order + for (uint32_t i = static_cast(graph.num_nodes()); i != 0; --i) { + const uint32_t nid = i - 1; + best_reward[nid] += node_reward[nid]; + if (best_reward[nid] > best_solution) { + best_solution = best_reward[nid]; + best_start_node = nid; + } + for (const auto& e : graph[nid].inputs) { + const uint32_t prev = e.node_id; + if (best_reward[nid] > best_reward[prev]) { + best_reward[prev] = best_reward[nid]; + next_node[prev] = nid; + } + } + } + path->clear(); + uint32_t reward = 0; + for (uint32_t nid = best_start_node; nid < num_nodes; nid = next_node[nid]) { + path->push_back(nid); reward += node_reward[nid]; + } + CHECK_EQ(reward, best_solution); + return best_solution; +} + +/*! + * \brief Color the nodes in the graph into index. + * The coloring algorithm tries to assign node group + * such that node in the same group cannot run in parallel. + * + * \param graph the original indexed graph. + * \param node_importance The importance of the node + * \param max_ncolor maximum number of colors allowed. + * \param color the color index of each of the node. + * \return the total number of colors. + */ +inline uint32_t ColorNodeGroup( + const IndexedGraph &graph, + std::vector node_importance, + uint32_t max_ncolor, + std::vector *color) { + CHECK_NE(max_ncolor, 0U); + CHECK_EQ(graph.num_nodes(), node_importance.size()); + + color->clear(); + color->resize(graph.num_nodes(), max_ncolor); + uint32_t cindex; + // greedy algorithm, every time + // find a path with best reward and assign a new color + // All the nodes in the path cannot run in parallel. + for (cindex = 0; cindex < max_ncolor - 1; ++cindex) { + std::vector path; + uint32_t reward = FindBestPath(graph, node_importance, &path); + if (reward == 0) break; + for (uint32_t nid : path) { + if (node_importance[nid] != 0) { + CHECK_EQ(color->at(nid), max_ncolor); + color->at(nid) = cindex; + // make the importance 0 after color is decided. + node_importance[nid] = 0; + } + } + } + // assign i for rest of the node + for (uint32_t i = 0; i < graph.num_nodes(); ++i) { + if (color->at(i) == max_ncolor) { + color->at(i) = cindex; + } + } + return cindex + 1; +} + +} // namespace pass +} // namespace nnvm + +#endif // MXNET_NNVM_GRAPH_ALGORITHM_H_ diff --git a/src/nnvm/legacy_op_util.cc b/src/nnvm/legacy_op_util.cc index 4ab777b6adb7..16ad0053e29a 100644 --- a/src/nnvm/legacy_op_util.cc +++ b/src/nnvm/legacy_op_util.cc @@ -217,12 +217,12 @@ bool OpPropInferAttr(const NodeAttrs& attrs, } bool OpPropInferShape(const NodeAttrs& attrs, - std::vector *iattr, - std::vector *oattr) { + mxnet::ShapeVector *iattr, + mxnet::ShapeVector *oattr) { auto finfer = [](const OperatorProperty* op, - std::vector *in, - std::vector *out, - std::vector *aux) { + mxnet::ShapeVector *in, + mxnet::ShapeVector *out, + mxnet::ShapeVector *aux) { return op->InferShape(in, out, aux); }; return OpPropInferAttr(attrs, iattr, oattr, finfer); @@ -294,23 +294,23 @@ std::vector > OpPropInplaceOption(const NodeAttrs& attrs) { } std::vector OpPropResourceRequest(const NodeAttrs& attrs) { - std::vector ishape; + mxnet::ShapeVector ishape; auto& prop = nnvm::get(attrs.parsed); return prop.ptr->ForwardResource(ishape); } std::vector OpBackResourceRequest(const NodeAttrs& attrs) { - std::vector ishape; + mxnet::ShapeVector ishape; auto& prop = nnvm::get(attrs.parsed); return prop.ptr->BackwardResource(ishape); } OpStatePtr OpPropCreateLayerOp(const NodeAttrs& attrs, Context ctx, - const std::vector& ishape, + const mxnet::ShapeVector& ishape, const std::vector& itype) { auto& prop = nnvm::get(attrs.parsed); - std::vector is(ishape.begin(), ishape.begin() + prop.arguments.size()); + mxnet::ShapeVector is(ishape.begin(), ishape.begin() + prop.arguments.size()); std::vector it(itype.begin(), itype.begin() + prop.arguments.size()); return OpStatePtr::Create(prop.ptr->CreateOperatorEx(ctx, &is, &it), prop.ptr.get()); @@ -452,7 +452,7 @@ void RegisterLegacyOpProp() { op.set_attr("FListInputNames", OpPropListInputNames); op.set_attr("FListOutputNames", OpPropListOutputNames); op.set_attr("FNumVisibleOutputs", OpPropNumVisibleOutputs); - op.set_attr("FInferShape", OpPropInferShape); + op.set_attr("FInferShape", OpPropInferShape); op.set_attr("FInferType", OpPropInferType); op.set_attr("FMutateInputs", OpPropMutateInputs); op.set_attr("FInplaceOption", OpPropInplaceOption); diff --git a/src/nnvm/plan_memory.cc b/src/nnvm/plan_memory.cc new file mode 100644 index 000000000000..2b18f990c845 --- /dev/null +++ b/src/nnvm/plan_memory.cc @@ -0,0 +1,412 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one + * or more contributor license agreements. See the NOTICE file + * distributed with this work for additional information + * regarding copyright ownership. The ASF licenses this file + * to you under the Apache License, Version 2.0 (the + * "License"); you may not use this file except in compliance + * with the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, + * software distributed under the License is distributed on an + * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY + * KIND, either express or implied. See the License for the + * specific language governing permissions and limitations + * under the License. + */ + +/*! + * Copyright (c) 2016 by Contributors + * \file plan_memory.cc + * \brief Assign memory tag to each of the data entries. + */ +#include +#include +#include +#include +#include +#include +#include +#include "graph_algorithm.h" + +namespace nnvm { +namespace pass { + +namespace { + using namespace nnvm::top; +// Return bytes of data flag. +static int GetDTypeSize(int type_flag) { + switch (type_flag) { + case kUint8: + case kInt8: + return 1; + case kFloat16: + case kInt16: + case kUint16: + return 2; + case kFloat32: + case kInt32: + case kUint32: + return 4; + case kFloat64: + case kInt64: + case kUint64: + return 8; + default: + LOG(FATAL) << "unknown type_flag=" << type_flag; + return -1; + } +} + +// simple graph based allocator. +class GraphAllocator { + public: + // storage id equals integer. + using StorageID = int; + + // bad storage id + static const StorageID kBadStorageID = -1; + // external storage id + static const StorageID kExternalStorageID = -2; + // dynamic storage id + static const StorageID kDynamicStorageID = -3; + + // request a free storage + StorageID Request(int dev_id, int dtype, mxnet::TShape shape, uint32_t node_id) { + if (shape.ndim() == 0) return kBadStorageID; + // search memory block in [size / match_range_, size * match_range_) + // TODO(tqchen) add size of the dtype, assume 4 bytes for now + size_t size = shape.Size() * 4; + if (match_range_ == 0) return this->Alloc(dev_id, size); + auto begin = free_.lower_bound(size / match_range_); + auto mid = free_.lower_bound(size); + auto end = free_.upper_bound(size * match_range_); + // search for memory blocks larger than requested + for (auto it = mid; it != end; ++it) { + StorageEntry *e = it->second; + if (e->device_id != dev_id) continue; + if (node_color_.size() != 0 && + node_color_[e->released_by_node] != node_color_[node_id]) continue; + // Use exect matching strategy + e->max_bytes = std::max(size, e->max_bytes); + // find a exact match, erase from map and return + free_.erase(it); + return e->id; + } + // then search for memory blocks smaller than requested space + for (auto it = mid; it != begin;) { + --it; + StorageEntry *e = it->second; + if (e->device_id != dev_id) continue; + if (node_color_.size() != 0 && + node_color_[e->released_by_node] != node_color_[node_id]) continue; + // Use exect matching strategy + e->max_bytes = std::max(size, e->max_bytes); + // erase from map and return + free_.erase(it); + return e->id; + } + // cannot find anything return a new one. + return this->Alloc(dev_id, size); + } + // release a memory space. + void Release(StorageID id, uint32_t node_id) { + CHECK_NE(id, kBadStorageID); + if (id == kExternalStorageID || id == kDynamicStorageID) return; + StorageEntry *e = data_[id].get(); + e->released_by_node = node_id; + free_.insert({e->max_bytes, e}); + } + + // totoal number of bytes allocated + size_t TotalAllocBytes() const { + size_t total = 0; + for (auto &p : data_) { + total += p->max_bytes; + } + return total; + } + + // constructor + explicit GraphAllocator(const IndexedGraph* idx, const size_t match_range) : idx_(idx) { + this->Init(match_range, dmlc::GetEnv("NNVM_EXEC_NUM_TEMP", 1)); + } + + private: + // initialize the graph allocator + void Init(const size_t match_range, const uint32_t num_match_color) { + match_range_ = match_range; + num_match_color_ = num_match_color; + if (num_match_color_ > 1) { + std::vector importance(idx_->num_nodes(), 0); + for (uint32_t nid = 0; nid < idx_->num_nodes(); ++nid) { + if ((*idx_)[nid].source->is_variable()) continue; + importance[nid] = 1; + } + num_match_color_ = pass::ColorNodeGroup( + *idx_, importance, num_match_color_, &node_color_); + } + } + + StorageID Alloc(int dev_id, size_t size) { + StorageID id = static_cast(data_.size()); + std::unique_ptr ptr(new StorageEntry()); + ptr->id = id; + ptr->device_id = dev_id; + ptr->max_bytes = size; + data_.emplace_back(std::move(ptr)); + return id; + } + // internal storage entry + struct StorageEntry { + // the id of the entry. + StorageID id; + // the device id of the storage. + int device_id; + // maximum size of storage requested. + size_t max_bytes{0}; + // node index that released it last time + uint32_t released_by_node{0}; + }; + // scale used for rough match + size_t match_range_; + // whether use color based match algorithm + uint32_t num_match_color_{1}; + // the size of each dtype + std::vector dtype_size_dict_; + // free list of storage entry + std::multimap free_; + // all the storage resources available + std::vector > data_; + // color of nodes in the graph, used for auxiliary policy making. + std::vector node_color_; + // internal indexed graph + const IndexedGraph* idx_; +}; + +/* + * Internal method to perform the memory allocation for a graph + * */ +size_t AllocMemory(const Graph& ret, const IndexedGraph& idx, + const std::pair& node_range, + StorageVector* storage_ptr, + std::vector* storage_inplace_index_ptr, + const std::vector& entry_ref_count, + GraphAllocator* allocator) { + static auto& finplace_option = Op::GetAttr("FInplaceOption"); + static auto& finplace_identity = Op::GetAttr("FInplaceIdentity"); + static auto& fignore_inputs = Op::GetAttr("FIgnoreInputs"); + + // Get reference + auto &storage = *storage_ptr; + auto &storage_inplace_index = *storage_inplace_index_ptr; + + // Get attributes from the graph + const mxnet::ShapeVector& shape_vec = ret.GetAttr("shape"); + const DTypeVector& dtype_vec = ret.GetAttr("dtype"); + const DeviceVector* device_vec = nullptr; + + if (ret.attrs.count("device") != 0) { + device_vec = &(ret.GetAttr("device")); + } + size_t num_not_allocated = 0; + std::vector storage_ref_count(idx.num_node_entries(), 0); + + for (uint32_t nid = node_range.first; nid < node_range.second; ++nid) { + const auto& inode = idx[nid]; + if (inode.source->is_variable()) continue; + // check inplace option + if (finplace_option.count(inode.source->op()) != 0) { + auto inplace_pairs = finplace_option[inode.source->op()](inode.source->attrs); + std::vector identity; + if (finplace_identity.count(inode.source->op()) != 0) { + identity = finplace_identity[inode.source->op()](inode.source->attrs); + CHECK_EQ(identity.size(), inplace_pairs.size()) + << "FInplaceOption and FInplaceIdentity returned vectors of different " + << "size for operator " << inode.source->op()->name; + } else { + identity = std::vector(inplace_pairs.size(), false); + } + std::vector taken(inode.inputs.size(), false); + for (size_t ipair = 0; ipair < inplace_pairs.size(); ++ipair) { + const auto& kv = inplace_pairs[ipair]; + uint32_t eid_out = idx.entry_id(nid, kv.second); + uint32_t eid_in = idx.entry_id(inode.inputs[kv.first]); + auto sid_out = storage[eid_out]; + auto sid_in = storage[eid_in]; + bool ignore_all_inputs = (fignore_inputs.count(inode.source->op()) != 0 && + fignore_inputs[inode.source->op()]( + inode.source->attrs).size() == inode.source->num_inputs()); + if (taken[kv.first] == false && + sid_out == GraphAllocator::kBadStorageID && + sid_in >= 0 && + ((storage_ref_count[sid_in] == 1 && !ignore_all_inputs) || identity[ipair]) && + entry_ref_count[eid_out] > 0 && + shape_vec[eid_out].Size() == shape_vec[eid_in].Size() && + (dtype_vec[eid_out] == dtype_vec[eid_in] || + GetDTypeSize(dtype_vec[eid_out]) == GetDTypeSize(dtype_vec[eid_in]))) { + // inplace optimization + taken[kv.first] = true; + storage[eid_out] = sid_in; + // Reuse storage for output and add ref count of output + // to storage. This will get substracted later in free + // input section. + storage_ref_count[sid_in] += entry_ref_count[eid_out]; + storage_inplace_index[eid_out] = kv.first; + } + } + } + // normal allocation + const int dev_id = (device_vec != nullptr) ? device_vec->at(nid) : 0; + // sort output nodes based on size before allocating output + std::multimap eids; + for (uint32_t index = 0; index < inode.source->num_outputs(); ++index) { + uint32_t eid = idx.entry_id(nid, index); + // only request memory for kBadStorageID + if (storage[eid] == GraphAllocator::kBadStorageID) { + auto &eshape = shape_vec[eid]; + size_t esize = 0; + if (eshape.ndim() != 0) esize = eshape.Size(); + eids.insert(std::make_pair(esize, eid)); + } + } + for (auto rit = eids.rbegin(); rit != eids.rend(); ++rit) { + uint32_t eid = rit->second; + auto sid = allocator->Request(dev_id, dtype_vec[eid], shape_vec[eid], nid); + if (sid >= 0) { + storage_ref_count[sid] = entry_ref_count[eid]; + } + storage[eid] = sid; + } + // check if certain inputs is ignored. + std::vector ignore_inputs; + if (fignore_inputs.count(inode.source->op()) != 0) { + ignore_inputs = fignore_inputs[inode.source->op()](inode.source->attrs); + std::sort(ignore_inputs.begin(), ignore_inputs.end()); + } + // then free inputs + for (size_t i = 0; i < inode.inputs.size(); ++i) { + // ref counter of ignored input is already decreased. + if (std::binary_search(ignore_inputs.begin(), ignore_inputs.end(), i)) continue; + const auto& e = inode.inputs[i]; + uint32_t eid = idx.entry_id(e); + auto sid = storage[eid]; + // storage_ref_count == 0 means it is taken by inplace op + if (sid < 0) continue; + // if we decrease it to zero, means we are ready to relase + --storage_ref_count[sid]; + if (storage_ref_count[sid] == 0) { + allocator->Release(sid, nid); + } + } + // check if there are outputs that can be freeded immediately + // these output are not referenced by any operator. + for (uint32_t index = 0; index < inode.source->num_outputs(); ++index) { + uint32_t eid = idx.entry_id(nid, index); + auto sid = storage[eid]; + if (sid >= 0 && storage_ref_count[sid] == 0) { + allocator->Release(sid, nid); + // use -2 to indicate that the node was never touched. + storage_inplace_index[eid] = -2; + } + if (storage[eid] == GraphAllocator::kBadStorageID) { + ++num_not_allocated; + } + } + } + return num_not_allocated; +} + + +// function to plan memory +Graph PlanMemory(Graph ret) { + // setup ref counter + const IndexedGraph& idx = ret.indexed_graph(); + static auto& fignore_inputs = Op::GetAttr("FIgnoreInputs"); + std::pair node_range = {0, idx.num_nodes()}; + if (ret.attrs.count("node_range")) { + node_range = ret.MoveCopyAttr >("node_range"); + } + // reference counter of each node + std::vector ref_count; + // step 1: initialize reference count + if (ret.attrs.count("ref_count") != 0) { + ref_count = ret.MoveCopyAttr >("ref_count"); + } else { + ref_count.resize(idx.num_node_entries(), 0); + for (uint32_t nid = 0; nid < idx.num_nodes(); ++nid) { + const auto& inode = idx[nid]; + if (inode.source->is_variable()) continue; + for (const auto& e : inode.inputs) { + ++ref_count[idx.entry_id(e)]; + } + // no dataflow dependency is needed for those are ignored. + // revoke the dependency counter. + if (fignore_inputs.count(inode.source->op()) != 0) { + auto ignore_inputs = fignore_inputs[inode.source->op()](inode.source->attrs); + for (uint32_t i : ignore_inputs) { + --ref_count[idx.entry_id(inode.inputs[i])]; + } + } + } + for (const auto& e : idx.outputs()) { + ++ref_count[idx.entry_id(e)]; + } + } + // step 2: allocate memory. + StorageVector storage; + if (ret.attrs.count("storage") != 0) { + storage = ret.MoveCopyAttr("storage"); + } else { + storage.resize(idx.num_node_entries(), -1); + } + + // Search the best NNVM_EXEC_MATCH_RANGE parameter. This is turned off by default + size_t min_allocated_bytes = -1; + size_t max_match_range = dmlc::GetEnv("NNVM_EXEC_MATCH_RANGE", 16); + size_t min_match_range = + dmlc::GetEnv("NNVM_AUTO_SEARCH_MATCH_RANGE", false) ? 1 : max_match_range; + for (size_t match_range = min_match_range; match_range <= max_match_range; match_range *= 2) { + // Make a copy of related fields + StorageVector storage_vec(storage); + std::vector storage_inplace_index(idx.num_node_entries(), -1); + + // the allocator + GraphAllocator allocator(&idx, match_range); + + // number of entries that are not statically allocated. + size_t storage_num_not_allocated = + AllocMemory(ret, idx, node_range, &storage_vec, &storage_inplace_index, + ref_count, &allocator); + size_t storage_allocated_bytes = allocator.TotalAllocBytes(); + + // Choose the plan which leads to minimal memory usage + if (min_allocated_bytes > storage_allocated_bytes) { + ret.attrs["storage_id"] = std::make_shared(std::move(storage_vec)); + ret.attrs["storage_inplace_index"] = std::make_shared(std::move(storage_inplace_index)); + ret.attrs["storage_allocated_bytes"] = std::make_shared(storage_allocated_bytes); + ret.attrs["storage_num_not_allocated"] = std::make_shared(storage_num_not_allocated); + min_allocated_bytes = storage_allocated_bytes; + } + + if (max_match_range == 0) { + break; + } + } + return ret; +} + +NNVM_REGISTER_PASS(MXPlanMemory) +.describe("Plan the memory allocation of each node entries.") +.set_body(PlanMemory) +.set_change_graph(false) +.depend_graph_attr("dtype") +.depend_graph_attr("shape") +.provide_graph_attr("storage_id") +.provide_graph_attr("storage_inplace_index"); + +} // namespace +} // namespace pass +} // namespace nnvm diff --git a/src/operator/batch_norm_v1-inl.h b/src/operator/batch_norm_v1-inl.h index f4116e30186e..f407a5cce61b 100644 --- a/src/operator/batch_norm_v1-inl.h +++ b/src/operator/batch_norm_v1-inl.h @@ -255,15 +255,15 @@ class BatchNormV1Prop : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 3U) << "Input:[data, gamma, beta]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; - in_shape->at(1) = TShape(Shape1(dshape[1])); - in_shape->at(2) = TShape(Shape1(dshape[1])); + in_shape->at(1) = mxnet::TShape(Shape1(dshape[1])); + in_shape->at(2) = mxnet::TShape(Shape1(dshape[1])); out_shape->clear(); out_shape->push_back(dshape); out_shape->push_back(Shape1(dshape[1])); @@ -331,7 +331,7 @@ class BatchNormV1Prop : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -363,7 +363,7 @@ class BatchNormV1Prop : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; inline const BatchNormV1Param& getParam() const { diff --git a/src/operator/batch_norm_v1.cc b/src/operator/batch_norm_v1.cc index 2d19107eda1e..dc9f724aff18 100644 --- a/src/operator/batch_norm_v1.cc +++ b/src/operator/batch_norm_v1.cc @@ -35,9 +35,9 @@ Operator *CreateOp(BatchNormV1Param param, int dtype) { } // DO_BIND_DISPATCH comes from operator_common.h -Operator *BatchNormV1Prop::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *BatchNormV1Prop::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferType(in_type, &out_type, &aux_type)); CHECK(InferShape(in_shape, &out_shape, &aux_shape)); diff --git a/src/operator/bilinear_sampler-inl.h b/src/operator/bilinear_sampler-inl.h index 49a5b5e5d5d8..8b1ff38709b6 100644 --- a/src/operator/bilinear_sampler-inl.h +++ b/src/operator/bilinear_sampler-inl.h @@ -142,13 +142,13 @@ class BilinearSamplerProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 2U) << "Input:[data, grid]"; - const TShape &dshape = (*in_shape)[bs::kData]; - const TShape &lshape = (*in_shape)[bs::kGrid]; + const mxnet::TShape &dshape = (*in_shape)[bs::kData]; + const mxnet::TShape &lshape = (*in_shape)[bs::kGrid]; if (dshape.ndim() == 0) return false; CHECK_EQ(dshape.ndim(), 4U) \ << "input data should be 4D in batch-num_filter-y-x"; @@ -226,7 +226,7 @@ class BilinearSamplerProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/bilinear_sampler.cc b/src/operator/bilinear_sampler.cc index c435fdeca481..a2442bffa232 100644 --- a/src/operator/bilinear_sampler.cc +++ b/src/operator/bilinear_sampler.cc @@ -170,7 +170,7 @@ Operator* CreateOp(BilinearSamplerParam param, int dtype) { return op; } -Operator *BilinearSamplerProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *BilinearSamplerProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]); } diff --git a/src/operator/contrib/adamw-inl.h b/src/operator/contrib/adamw-inl.h index 66bd4f3f3ba4..07feaefe87aa 100644 --- a/src/operator/contrib/adamw-inl.h +++ b/src/operator/contrib/adamw-inl.h @@ -83,14 +83,14 @@ struct AdamWParam : public dmlc::Parameter { // total_in = 6: weight, grad, mean, var, weight32, rescale_grad (fp32) template inline bool MPUpdateInferShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), static_cast(total_in)) << " in operator " << attrs.name; CHECK_EQ(out_attrs->size(), static_cast(n_out)) << " in operator " << attrs.name; // rescale_grad.shape = (1,) SHAPE_ASSIGN_CHECK(*in_attrs, total_in - 1, mshadow::Shape1(1)); - return ElemwiseAttr( - attrs, in_attrs, out_attrs, TShape()); + return ElemwiseAttr( + attrs, in_attrs, out_attrs, mxnet::TShape()); } // rescale_grad is a reserved argument at position -1. Example: diff --git a/src/operator/contrib/adamw.cc b/src/operator/contrib/adamw.cc index 874cce8d8772..f0716c6020f9 100644 --- a/src/operator/contrib/adamw.cc +++ b/src/operator/contrib/adamw.cc @@ -78,7 +78,7 @@ the update is skipped. .set_num_inputs(6) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", MPUpdateInferShape<2, 1, 6>) +.set_attr("FInferShape", MPUpdateInferShape<2, 1, 6>) .set_attr("FInferType", MPUpdateInferType<2, 1, 6>) .set_attr("FMutateInputs", [](const nnvm::NodeAttrs& attrs) { @@ -121,7 +121,7 @@ the update is skipped. .set_num_inputs(5) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", MPUpdateInferShape<4, 1, 5>) +.set_attr("FInferShape", MPUpdateInferShape<4, 1, 5>) .set_attr("FInferType", MPUpdateInferType<4, 1, 5>) .set_attr("FMutateInputs", [](const nnvm::NodeAttrs& attrs) { diff --git a/src/operator/contrib/adaptive_avg_pooling-inl.h b/src/operator/contrib/adaptive_avg_pooling-inl.h index 12284d9d85d2..0d66de0a5692 100644 --- a/src/operator/contrib/adaptive_avg_pooling-inl.h +++ b/src/operator/contrib/adaptive_avg_pooling-inl.h @@ -48,9 +48,9 @@ namespace mxnet { namespace op { struct AdaptiveAvgPoolParam : public dmlc::Parameter { - TShape output_size; + mxnet::TShape output_size; DMLC_DECLARE_PARAMETER(AdaptiveAvgPoolParam) { - DMLC_DECLARE_FIELD(output_size).set_default(TShape()) + DMLC_DECLARE_FIELD(output_size).set_default(mxnet::TShape()) .describe("int (output size) or a tuple of int for output (height, width)."); } }; @@ -118,13 +118,13 @@ inline void AdaptiveAvgPoolOpBackward(const nnvm::NodeAttrs& attrs, static bool AdaptiveAvgPoolOpInferShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { using namespace mshadow; CHECK_EQ(in_shape->size(), 1U) << "Input:[data]"; CHECK_EQ(out_shape->size(), 1U) << "Output:[data]"; const AdaptiveAvgPoolParam& param = nnvm::get(attrs.parsed); - TShape dshape(in_shape->at(0)); + mxnet::TShape dshape(in_shape->at(0)); if (dshape.ndim() == 0) return false; if (param.output_size.ndim() == 0) { dshape[2] = 1; diff --git a/src/operator/contrib/adaptive_avg_pooling.cc b/src/operator/contrib/adaptive_avg_pooling.cc index 720cf9844864..42c39cc157c6 100644 --- a/src/operator/contrib/adaptive_avg_pooling.cc +++ b/src/operator/contrib/adaptive_avg_pooling.cc @@ -215,7 +215,7 @@ The pooling kernel and stride sizes are automatically chosen for desired output .set_attr_parser(ParamParser) .set_num_inputs(1) .set_num_outputs(1) -.set_attr("FInferShape", AdaptiveAvgPoolOpInferShape) +.set_attr("FInferShape", AdaptiveAvgPoolOpInferShape) .set_attr("FCompute", AdaptiveAvgPoolOpForward) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_contrib_AdaptiveAvgPooling2D"}) diff --git a/src/operator/contrib/bilinear_resize-inl.h b/src/operator/contrib/bilinear_resize-inl.h index 5a653d8a175c..46c8e1aa7c0d 100644 --- a/src/operator/contrib/bilinear_resize-inl.h +++ b/src/operator/contrib/bilinear_resize-inl.h @@ -127,13 +127,13 @@ inline void BilinearSampleOpBackward(const nnvm::NodeAttrs& attrs, static bool BilinearSampleOpInferShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { using namespace mshadow; CHECK_EQ(in_shape->size(), 1U) << "Input:[data]"; CHECK_EQ(out_shape->size(), 1U) << "Output:[data]"; const BilinearSampleParam& param = nnvm::get(attrs.parsed); - TShape dshape(in_shape->at(0)); + mxnet::TShape dshape(in_shape->at(0)); if (dshape.ndim() == 0) return false; if (param.scale_height.has_value()) { dshape[2] = static_cast(param.scale_height.value() * in_shape->at(0)[2]); diff --git a/src/operator/contrib/bilinear_resize.cc b/src/operator/contrib/bilinear_resize.cc index 074f74aefcc9..1288e9d22691 100644 --- a/src/operator/contrib/bilinear_resize.cc +++ b/src/operator/contrib/bilinear_resize.cc @@ -176,7 +176,7 @@ for more details. .set_attr_parser(ParamParser) .set_num_inputs(1) .set_num_outputs(1) -.set_attr("FInferShape", BilinearSampleOpInferShape) +.set_attr("FInferShape", BilinearSampleOpInferShape) .set_attr("FCompute", BilinearSampleOpForward) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_contrib_BilinearResize2D"}) diff --git a/src/operator/contrib/boolean_mask.cc b/src/operator/contrib/boolean_mask.cc index 18ba8c3fdcf6..e22c493d5e2c 100644 --- a/src/operator/contrib/boolean_mask.cc +++ b/src/operator/contrib/boolean_mask.cc @@ -136,7 +136,7 @@ inline void BooleanMaskForward(const nnvm::NodeAttrs& attrs, valid_num = prefix_sum[idx_size - 1]; }); // set the output shape forcefully - TShape s = data.shape(); + mxnet::TShape s = data.shape(); s[axis] = valid_num; const_cast(out).Init(s); // do the copy diff --git a/src/operator/contrib/boolean_mask.cu b/src/operator/contrib/boolean_mask.cu index 25a781ceec4b..04f61eea0384 100644 --- a/src/operator/contrib/boolean_mask.cu +++ b/src/operator/contrib/boolean_mask.cu @@ -80,7 +80,7 @@ inline void BooleanMaskForward(const nnvm::NodeAttrs& attrs, cudaMemcpyDeviceToHost)); CHECK(valid_num > 0) << "boolean_mask behavior not defined when all masks are 0"; // Set the output shape forcefully - TShape data_shape = data.shape(); + mxnet::TShape data_shape = data.shape(); data_shape[axis] = valid_num; const_cast(out).Init(data_shape); size_t input_size = data.shape().Size(); diff --git a/src/operator/contrib/bounding_box-inl.h b/src/operator/contrib/bounding_box-inl.h index 031dd952d386..650e58d0e0cd 100644 --- a/src/operator/contrib/bounding_box-inl.h +++ b/src/operator/contrib/bounding_box-inl.h @@ -26,7 +26,6 @@ #define MXNET_OPERATOR_CONTRIB_BOUNDING_BOX_INL_H_ #include #include -#include #include #include #include @@ -89,8 +88,8 @@ struct BoxNMSParam : public dmlc::Parameter { }; // BoxNMSParam inline bool BoxNMSShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const BoxNMSParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 2U); @@ -98,7 +97,7 @@ inline bool BoxNMSShape(const nnvm::NodeAttrs& attrs, return false; } - TShape& ishape = (*in_attrs)[0]; + mxnet::TShape& ishape = (*in_attrs)[0]; int indim = ishape.ndim(); CHECK(indim >= 2) << "input must have dim >= 2" @@ -137,7 +136,7 @@ inline bool BoxNMSShape(const nnvm::NodeAttrs& attrs, CHECK_NE(id_index, score_index) << "id_index: " << id_index << " conflict with score_index: " << score_index; } - TShape oshape = ishape; + mxnet::TShape oshape = ishape; oshape[indim - 1] = 1; SHAPE_ASSIGN_CHECK(*out_attrs, 0, ishape); // out_shape[0] == in_shape SHAPE_ASSIGN_CHECK(*out_attrs, 1, oshape); // out_shape[1] @@ -398,7 +397,7 @@ void BoxNMSForward(const nnvm::NodeAttrs& attrs, CHECK_EQ(outputs.size(), 2U) << "BoxNMS output: [output, temp]"; const BoxNMSParam& param = nnvm::get(attrs.parsed); Stream *s = ctx.get_stream(); - TShape in_shape = inputs[box_nms_enum::kData].shape_; + mxnet::TShape in_shape = inputs[box_nms_enum::kData].shape_; int indim = in_shape.ndim(); int num_batch = indim <= 2? 1 : in_shape.ProdShape(0, indim - 2); int num_elem = in_shape[indim - 2]; @@ -547,7 +546,7 @@ void BoxNMSBackward(const nnvm::NodeAttrs& attrs, CHECK_EQ(inputs.size(), 4U); CHECK_EQ(outputs.size(), 1U); Stream *s = ctx.get_stream(); - TShape in_shape = outputs[box_nms_enum::kData].shape_; + mxnet::TShape in_shape = outputs[box_nms_enum::kData].shape_; int indim = in_shape.ndim(); int num_batch = indim <= 2? 1 : in_shape.ProdShape(0, indim - 2); int num_elem = in_shape[indim - 2]; @@ -579,12 +578,12 @@ struct BoxOverlapParam : public dmlc::Parameter { }; // BoxOverlapParam inline bool BoxOverlapShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); - TShape& lshape = (*in_attrs)[0]; - TShape& rshape = (*in_attrs)[1]; + mxnet::TShape& lshape = (*in_attrs)[0]; + mxnet::TShape& rshape = (*in_attrs)[1]; CHECK_GE(lshape.ndim(), 2) << "lhs must have dim >= 2 " @@ -602,7 +601,7 @@ inline bool BoxOverlapShape(const nnvm::NodeAttrs& attrs, << rdim << " provided"; // assign output shape - TShape oshape(lshape.ndim() + rshape.ndim() - 2); + mxnet::TShape oshape(lshape.ndim() + rshape.ndim() - 2); int idx = 0; for (index_t i = 0; i < lshape.ndim() - 1; ++i) { oshape[idx++] = lshape[i]; @@ -648,8 +647,8 @@ void BoxOverlapForward(const nnvm::NodeAttrs& attrs, CHECK_EQ(outputs.size(), 1U); const BoxOverlapParam& param = nnvm::get(attrs.parsed); Stream *s = ctx.get_stream(); - TShape lshape = inputs[0].shape_; - TShape rshape = inputs[1].shape_; + mxnet::TShape lshape = inputs[0].shape_; + mxnet::TShape rshape = inputs[1].shape_; int lsize = lshape.ProdShape(0, lshape.ndim() - 1); int rsize = rshape.ProdShape(0, rshape.ndim() - 1); MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, { @@ -703,19 +702,19 @@ struct BipartiteMatchingParam : public dmlc::Parameter { }; // BipartiteMatchingParam inline bool MatchingShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { // const BipartiteMatchingParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 2U); - TShape& dshape = (*in_attrs)[0]; + mxnet::TShape& dshape = (*in_attrs)[0]; CHECK_GE(dshape.ndim(), 2) << "score matrix must have dim >= 2 " << dshape.ndim() << " provided"; // assign output shape - TShape oshape(dshape.ndim() - 1); + mxnet::TShape oshape(dshape.ndim() - 1); for (index_t i = 0; i < dshape.ndim() - 1; ++i) { oshape[i] = dshape[i]; } @@ -772,7 +771,7 @@ void BipartiteMatchingForward(const nnvm::NodeAttrs& attrs, CHECK_EQ(outputs.size(), 2U); const BipartiteMatchingParam& param = nnvm::get(attrs.parsed); Stream *s = ctx.get_stream(); - TShape dshape = inputs[0].shape_; + mxnet::TShape dshape = inputs[0].shape_; int row = dshape[dshape.ndim() - 2]; int col = dshape[dshape.ndim() - 1]; int batch_size = dshape.Size() / row / col; diff --git a/src/operator/contrib/bounding_box.cc b/src/operator/contrib/bounding_box.cc index 56925f94de55..d73f99245118 100644 --- a/src/operator/contrib/bounding_box.cc +++ b/src/operator/contrib/bounding_box.cc @@ -91,7 +91,7 @@ Examples:: .set_num_outputs(2) .set_attr_parser(ParamParser) .set_attr("FNumVisibleOutputs", BoxNMSNumVisibleOutputs) -.set_attr("FInferShape", BoxNMSShape) +.set_attr("FInferShape", BoxNMSShape) .set_attr("FInferType", ElemwiseType<1, 2>) .set_attr("FResourceRequest", [](const NodeAttrs& attrs) { @@ -135,7 +135,7 @@ NNVM_REGISTER_OP(_contrib_box_iou) [](const NodeAttrs& attrs) { return std::vector{"lhs", "rhs"}; }) -.set_attr("FInferShape", BoxOverlapShape) +.set_attr("FInferShape", BoxOverlapShape) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FCompute", BoxOverlapForward) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_contrib_box_iou"}) @@ -181,7 +181,7 @@ NNVM_REGISTER_OP(_contrib_bipartite_matching) [](const NodeAttrs& attrs) { return std::vector{ResourceRequest::kTempSpace}; }) -.set_attr("FInferShape", MatchingShape) +.set_attr("FInferShape", MatchingShape) .set_attr("FInferType", ElemwiseType<1, 2>) .set_attr("FCompute", BipartiteMatchingForward) .set_attr("FGradient", diff --git a/src/operator/contrib/count_sketch-inl.h b/src/operator/contrib/count_sketch-inl.h index dd3bf54ab6a6..f3a294f6ad46 100644 --- a/src/operator/contrib/count_sketch-inl.h +++ b/src/operator/contrib/count_sketch-inl.h @@ -76,8 +76,8 @@ class CountSketchOp : public Operator { // h and s should be 1d vectors Tensor data = in_data[CountSketch::kData].FlatTo2D(s); - const TShape& hshape = in_data[CountSketch::kH].shape_; - const TShape& sshape = in_data[CountSketch::kS].shape_; + const mxnet::TShape& hshape = in_data[CountSketch::kH].shape_; + const mxnet::TShape& sshape = in_data[CountSketch::kS].shape_; Tensor h = in_data[CountSketch::kH].get_with_shape( Shape1(hshape.ProdShape(0, hshape.ndim())), s); Tensor ss = in_data[CountSketch::kS].get_with_shape( @@ -103,8 +103,8 @@ class CountSketchOp : public Operator { Tensor ograd = out_grad[CountSketch::kOut].FlatTo2D(s); Tensor dgrad = in_grad[CountSketch::kData].FlatTo2D(s); - const TShape& hshape = in_data[CountSketch::kH].shape_; - const TShape& sshape = in_data[CountSketch::kS].shape_; + const mxnet::TShape& hshape = in_data[CountSketch::kH].shape_; + const mxnet::TShape& sshape = in_data[CountSketch::kS].shape_; Tensor h = in_data[CountSketch::kH].get_with_shape( Shape1(hshape.ProdShape(0, hshape.ndim())), s); Tensor ss = in_data[CountSketch::kS].get_with_shape( @@ -144,12 +144,12 @@ class CountSketchProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 3) <<"Input:[data, h, s]"; - const TShape &dshape = (*in_shape)[CountSketch::kData]; + const mxnet::TShape &dshape = (*in_shape)[CountSketch::kData]; // require data to be known if (dshape.ndim() == 0) return false; @@ -229,7 +229,7 @@ class CountSketchProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/contrib/count_sketch.cc b/src/operator/contrib/count_sketch.cc index ca239b63246f..4b6504e564ee 100644 --- a/src/operator/contrib/count_sketch.cc +++ b/src/operator/contrib/count_sketch.cc @@ -32,9 +32,9 @@ Operator *CreateOp(CountSketchParam param, int dtype) { LOG(FATAL) << "CountSketch is only available for GPU."; return nullptr; } -Operator *CountSketchProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *CountSketchProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferType(in_type, &out_type, &aux_type)); CHECK(InferShape(in_shape, &out_shape, &aux_shape)); diff --git a/src/operator/contrib/deformable_convolution-inl.h b/src/operator/contrib/deformable_convolution-inl.h index 7328eb38308f..f50641fca6d6 100644 --- a/src/operator/contrib/deformable_convolution-inl.h +++ b/src/operator/contrib/deformable_convolution-inl.h @@ -57,10 +57,10 @@ namespace conv { } struct DeformableConvolutionParam : public dmlc::Parameter { - TShape kernel; - TShape stride; - TShape dilate; - TShape pad; + mxnet::TShape kernel; + mxnet::TShape stride; + mxnet::TShape dilate; + mxnet::TShape pad; uint32_t num_filter; uint32_t num_group; uint32_t num_deformable_group; @@ -69,11 +69,11 @@ struct DeformableConvolutionParam : public dmlc::Parameter layout; DMLC_DECLARE_PARAMETER(DeformableConvolutionParam) { DMLC_DECLARE_FIELD(kernel).describe("Convolution kernel size: (h, w) or (d, h, w)"); - DMLC_DECLARE_FIELD(stride).set_default(TShape()) + DMLC_DECLARE_FIELD(stride).set_default(mxnet::TShape()) .describe("Convolution stride: (h, w) or (d, h, w). Defaults to 1 for each dimension."); - DMLC_DECLARE_FIELD(dilate).set_default(TShape()) + DMLC_DECLARE_FIELD(dilate).set_default(mxnet::TShape()) .describe("Convolution dilate: (h, w) or (d, h, w). Defaults to 1 for each dimension."); - DMLC_DECLARE_FIELD(pad).set_default(TShape()) + DMLC_DECLARE_FIELD(pad).set_default(mxnet::TShape()) .describe("Zero pad for convolution: (h, w) or (d, h, w). Defaults to no padding."); DMLC_DECLARE_FIELD(num_filter).set_range(1, 100000) .describe("Convolution filter(channel) number"); @@ -127,7 +127,7 @@ class DeformableConvolutionOp : public Operator { Tensor workspace = ctx.requested[conv::kTempSpace] .get_space_typed(Shape1(col_buffer_size_), s); // calculate the shape of col_buffer - TShape col_buffer_shape(num_spatial_axes_ + 1); + mxnet::TShape col_buffer_shape(num_spatial_axes_ + 1); col_buffer_shape[0] = conv_in_channels_ * param_.kernel.Size(); for (size_t i = 1; i < col_buffer_shape.ndim(); ++i) { col_buffer_shape[i] = out_data[0].shape_[i + 1]; @@ -189,7 +189,7 @@ class DeformableConvolutionOp : public Operator { Tensor workspace = ctx.requested[conv::kTempSpace] .get_space_typed(Shape1(col_buffer_size_), s); // calculate the shape of col_buffer - TShape col_buffer_shape(num_spatial_axes_ + 1); + mxnet::TShape col_buffer_shape(num_spatial_axes_ + 1); col_buffer_shape[0] = conv_in_channels_ * param_.kernel.Size(); for (index_t i = 1; i < col_buffer_shape.ndim(); ++i) { col_buffer_shape[i] = out_grad[conv::kData].shape_[i + 1]; @@ -265,7 +265,9 @@ class DeformableConvolutionOp : public Operator { } private: - void LayerSetUp(const TShape& ishape, const TShape& offset_shape, const TShape& oshape) { + void LayerSetUp(const mxnet::TShape& ishape, + const mxnet::TShape& offset_shape, + const mxnet::TShape& oshape) { channel_axis_ = 1; // hard code channel axis const index_t first_spatial_axis = channel_axis_ + 1; const index_t num_axes = param_.kernel.ndim() + 2; @@ -325,8 +327,8 @@ class DeformableConvolutionOp : public Operator { template Operator* CreateOp(DeformableConvolutionParam param, int dtype, - std::vector *in_shape, - std::vector *out_shape, + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, Context ctx); #if DMLC_USE_CXX11 @@ -357,18 +359,18 @@ class DeformableConvolutionProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; if (!param_.no_bias) { CHECK_EQ(in_shape->size(), 4U) << "Input:[data, offset, weight, bias]"; } else { CHECK_EQ(in_shape->size(), 3U) << "Input:[data, offset, weight]"; } - out_shape->resize(1, TShape()); - const TShape &dshp = (*in_shape)[conv::kData]; - const TShape &oshp = (*in_shape)[conv::kOffset]; + out_shape->resize(1, mxnet::TShape()); + const mxnet::TShape &dshp = (*in_shape)[conv::kData]; + const mxnet::TShape &oshp = (*in_shape)[conv::kOffset]; if (dshp.ndim() == 0) return false; if (param_.kernel.ndim() == 2) { // 2d conv @@ -484,12 +486,12 @@ class DeformableConvolutionProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return{ ResourceRequest::kTempSpace }; } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return{ ResourceRequest::kTempSpace }; } @@ -498,7 +500,7 @@ class DeformableConvolutionProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/contrib/deformable_convolution.cc b/src/operator/contrib/deformable_convolution.cc index 78a7a1250d3c..8bb1ae23f40d 100644 --- a/src/operator/contrib/deformable_convolution.cc +++ b/src/operator/contrib/deformable_convolution.cc @@ -33,8 +33,8 @@ DMLC_REGISTER_PARAMETER(DeformableConvolutionParam); template<> Operator* CreateOp(DeformableConvolutionParam param, int dtype, - std::vector *in_shape, - std::vector *out_shape, + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, Context ctx) { Operator *op = nullptr; MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { @@ -45,9 +45,9 @@ Operator* CreateOp(DeformableConvolutionParam param, int dtype, // DO_BIND_DISPATCH comes from operator_common.h Operator *DeformableConvolutionProp::CreateOperatorEx(Context ctx, - std::vector *in_shape, + mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferType(in_type, &out_type, &aux_type)); CHECK(InferShape(in_shape, &out_shape, &aux_shape)); diff --git a/src/operator/contrib/deformable_convolution.cu b/src/operator/contrib/deformable_convolution.cu index f2200a9978ca..0e8151229a4a 100644 --- a/src/operator/contrib/deformable_convolution.cu +++ b/src/operator/contrib/deformable_convolution.cu @@ -33,8 +33,8 @@ namespace op { template<> Operator* CreateOp(DeformableConvolutionParam param, int dtype, - std::vector *in_shape, - std::vector *out_shape, + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, Context ctx) { Operator *op = NULL; MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { diff --git a/src/operator/contrib/deformable_psroi_pooling-inl.h b/src/operator/contrib/deformable_psroi_pooling-inl.h index d391f045a1b5..e466c065abbc 100644 --- a/src/operator/contrib/deformable_psroi_pooling-inl.h +++ b/src/operator/contrib/deformable_psroi_pooling-inl.h @@ -49,7 +49,7 @@ namespace deformablepsroipool { } // deformablepsroipool struct DeformablePSROIPoolingParam : public dmlc::Parameter { - // TShape pooled_size; + // mxnet::TShape pooled_size; float spatial_scale; int output_dim; int group_size; @@ -215,25 +215,25 @@ class DeformablePSROIPoolingProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; if (param_.no_trans) { CHECK_EQ(in_shape->size(), 2) << "Input:[data, rois]"; } else { CHECK_EQ(in_shape->size(), 3) << "Input:[data, rois, trans]"; // trans: [num_rois, 2, pooled_h, pooled_w] - TShape tshape = in_shape->at(deformablepsroipool::kTrans); + mxnet::TShape tshape = in_shape->at(deformablepsroipool::kTrans); CHECK_EQ(tshape.ndim(), 4) << "trans should be a 4D tensor of shape"; } // data: [batch_size, c, h, w] - TShape dshape = in_shape->at(deformablepsroipool::kData); + mxnet::TShape dshape = in_shape->at(deformablepsroipool::kData); CHECK_EQ(dshape.ndim(), 4) << "data should be a 4D tensor"; // bbox: [num_rois, 5] - TShape bshape = in_shape->at(deformablepsroipool::kBox); + mxnet::TShape bshape = in_shape->at(deformablepsroipool::kBox); CHECK_EQ(bshape.ndim(), 2) << "bbox should be a 2D tensor of shape [batch, 5]"; CHECK_EQ(bshape[1], 5) << "bbox should be a 2D tensor of shape [batch, 5]"; @@ -292,7 +292,7 @@ class DeformablePSROIPoolingProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; diff --git a/src/operator/contrib/deformable_psroi_pooling.cc b/src/operator/contrib/deformable_psroi_pooling.cc index 6aaf607f059a..d9d4cf8f78c5 100644 --- a/src/operator/contrib/deformable_psroi_pooling.cc +++ b/src/operator/contrib/deformable_psroi_pooling.cc @@ -89,9 +89,9 @@ namespace op { } Operator *DeformablePSROIPoolingProp::CreateOperatorEx( - Context ctx, std::vector *in_shape, + Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferType(in_type, &out_type, &aux_type)); CHECK(InferShape(in_shape, &out_shape, &aux_shape)); diff --git a/src/operator/contrib/dgl_graph.cc b/src/operator/contrib/dgl_graph.cc index a03cbef0b5ca..f19af84ce9c6 100644 --- a/src/operator/contrib/dgl_graph.cc +++ b/src/operator/contrib/dgl_graph.cc @@ -241,8 +241,8 @@ static bool CSRNeighborNonUniformSampleStorageType(const nnvm::NodeAttrs& attrs, * Check uniform Shape */ static bool CSRNeighborUniformSampleShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const NeighborSampleParam& params = nnvm::get(attrs.parsed); @@ -259,7 +259,7 @@ static bool CSRNeighborUniformSampleShape(const nnvm::NodeAttrs& attrs, // Output bool success = true; - TShape out_shape(1); + mxnet::TShape out_shape(1); // We use the last element to store the actual // number of vertices in the subgraph. out_shape[0] = params.max_num_vertices + 1; @@ -270,7 +270,7 @@ static bool CSRNeighborUniformSampleShape(const nnvm::NodeAttrs& attrs, out_attrs->at(i).Size() != 0U; } // sub_csr - TShape out_csr_shape(2); + mxnet::TShape out_csr_shape(2); out_csr_shape[0] = params.max_num_vertices; out_csr_shape[1] = in_attrs->at(0)[1]; for (size_t i = 0; i < num_subgraphs; i++) { @@ -280,7 +280,7 @@ static bool CSRNeighborUniformSampleShape(const nnvm::NodeAttrs& attrs, out_attrs->at(i + num_subgraphs).Size() != 0U; } // sub_layer - TShape out_layer_shape(1); + mxnet::TShape out_layer_shape(1); out_layer_shape[0] = params.max_num_vertices; for (size_t i = 0; i < num_subgraphs; i++) { SHAPE_ASSIGN_CHECK(*out_attrs, i + 2*num_subgraphs, out_layer_shape); @@ -296,8 +296,8 @@ static bool CSRNeighborUniformSampleShape(const nnvm::NodeAttrs& attrs, * Check non-uniform Shape */ static bool CSRNeighborNonUniformSampleShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const NeighborSampleParam& params = nnvm::get(attrs.parsed); @@ -317,7 +317,7 @@ static bool CSRNeighborNonUniformSampleShape(const nnvm::NodeAttrs& attrs, // Output bool success = true; - TShape out_shape(1); + mxnet::TShape out_shape(1); // We use the last element to store the actual // number of vertices in the subgraph. out_shape[0] = params.max_num_vertices + 1; @@ -328,7 +328,7 @@ static bool CSRNeighborNonUniformSampleShape(const nnvm::NodeAttrs& attrs, out_attrs->at(i).Size() != 0U; } // sub_csr - TShape out_csr_shape(2); + mxnet::TShape out_csr_shape(2); out_csr_shape[0] = params.max_num_vertices; out_csr_shape[1] = in_attrs->at(0)[1]; for (size_t i = 0; i < num_subgraphs; i++) { @@ -338,7 +338,7 @@ static bool CSRNeighborNonUniformSampleShape(const nnvm::NodeAttrs& attrs, out_attrs->at(i + num_subgraphs).Size() != 0U; } // sub_probability - TShape out_prob_shape(1); + mxnet::TShape out_prob_shape(1); out_prob_shape[0] = params.max_num_vertices; for (size_t i = 0; i < num_subgraphs; i++) { SHAPE_ASSIGN_CHECK(*out_attrs, i + 2*num_subgraphs, out_prob_shape); @@ -347,7 +347,7 @@ static bool CSRNeighborNonUniformSampleShape(const nnvm::NodeAttrs& attrs, out_attrs->at(i + 2*num_subgraphs).Size() != 0U; } // sub_layer - TShape out_layer_shape(1); + mxnet::TShape out_layer_shape(1); out_layer_shape[0] = params.max_num_vertices; for (size_t i = 0; i < num_subgraphs; i++) { SHAPE_ASSIGN_CHECK(*out_attrs, i + 3*num_subgraphs, out_prob_shape); @@ -679,8 +679,8 @@ static void SampleSubgraph(const NDArray &csr, } } // Construct sub_csr_graph - TShape shape_1(1); - TShape shape_2(1); + mxnet::TShape shape_1(1); + mxnet::TShape shape_2(1); shape_1[0] = num_edges; shape_2[0] = max_num_vertices+1; sub_csr.CheckAndAllocData(shape_1); @@ -809,7 +809,7 @@ of max_num_vertices, and the valid number of vertices is the same as the ones in return num_subgraphs * 3; }) .set_attr("FInferStorageType", CSRNeighborUniformSampleStorageType) -.set_attr("FInferShape", CSRNeighborUniformSampleShape) +.set_attr("FInferShape", CSRNeighborUniformSampleShape) .set_attr("FInferType", CSRNeighborUniformSampleType) .set_attr("FComputeEx", CSRNeighborUniformSampleComputeExCPU) .add_argument("csr_matrix", "NDArray-or-Symbol", "csr matrix") @@ -908,7 +908,7 @@ of max_num_vertices, and the valid number of vertices is the same as the ones in return num_subgraphs * 4; }) .set_attr("FInferStorageType", CSRNeighborNonUniformSampleStorageType) -.set_attr("FInferShape", CSRNeighborNonUniformSampleShape) +.set_attr("FInferShape", CSRNeighborNonUniformSampleShape) .set_attr("FInferType", CSRNeighborNonUniformSampleType) .set_attr("FComputeEx", CSRNeighborNonUniformSampleComputeExCPU) .add_argument("csr_matrix", "NDArray-or-Symbol", "csr matrix") @@ -951,8 +951,8 @@ static bool DGLSubgraphStorageType(const nnvm::NodeAttrs& attrs, } static bool DGLSubgraphShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const DGLSubgraphParam& params = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->at(0).ndim(), 2U); for (size_t i = 1; i < in_attrs->size(); i++) @@ -960,13 +960,13 @@ static bool DGLSubgraphShape(const nnvm::NodeAttrs& attrs, size_t num_g = params.num_args - 1; for (size_t i = 0; i < num_g; i++) { - TShape gshape(2); + mxnet::TShape gshape(2); gshape[0] = in_attrs->at(i + 1)[0]; gshape[1] = in_attrs->at(i + 1)[0]; out_attrs->at(i) = gshape; } for (size_t i = num_g; i < out_attrs->size(); i++) { - TShape gshape(2); + mxnet::TShape gshape(2); gshape[0] = in_attrs->at(i - num_g + 1)[0]; gshape[1] = in_attrs->at(i - num_g + 1)[0]; out_attrs->at(i) = gshape; @@ -1081,9 +1081,9 @@ static void GetSubgraph(const NDArray &csr_arr, const NDArray &varr, row_idx[i + 1] = col_idx.size(); } - TShape nz_shape(1); + mxnet::TShape nz_shape(1); nz_shape[0] = col_idx.size(); - TShape indptr_shape(1); + mxnet::TShape indptr_shape(1); indptr_shape[0] = row_idx.size(); // Store the non-zeros in a subgraph with edge attributes of new edge ids. @@ -1176,7 +1176,7 @@ edge Ids. return names; }) .set_attr("FInferStorageType", DGLSubgraphStorageType) -.set_attr("FInferShape", DGLSubgraphShape) +.set_attr("FInferShape", DGLSubgraphShape) .set_attr("FInferType", DGLSubgraphType) .set_attr("FComputeEx", DGLSubgraphComputeExCPU) .set_attr("key_var_num_args", "num_args") @@ -1188,8 +1188,8 @@ edge Ids. ///////////////////////// Edge Id /////////////////////////// inline bool EdgeIDShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_EQ(in_attrs->size(), 3U); CHECK_EQ(out_attrs->size(), 1U); CHECK_EQ(in_attrs->at(1).ndim(), 1U); @@ -1339,7 +1339,7 @@ The storage type of ``edge_id`` output depends on storage types of inputs [](const NodeAttrs& attrs) { return std::vector{"data", "u", "v"}; }) -.set_attr("FInferShape", EdgeIDShape) +.set_attr("FInferShape", EdgeIDShape) .set_attr("FInferType", EdgeIDType) .set_attr("FInferStorageType", EdgeIDStorageType) .set_attr("FComputeEx", EdgeIDForwardEx) @@ -1350,8 +1350,8 @@ The storage type of ``edge_id`` output depends on storage types of inputs ///////////////////////// DGL Adjacency /////////////////////////// inline bool DGLAdjacencyShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); @@ -1411,7 +1411,7 @@ the data value of float32. [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", DGLAdjacencyShape) +.set_attr("FInferShape", DGLAdjacencyShape) .set_attr("FInferType", DGLAdjacencyType) .set_attr("FInferStorageType", DGLAdjacencyStorageType) .set_attr("FComputeEx", DGLAdjacencyForwardEx) @@ -1460,9 +1460,9 @@ static void CompactSubgraph(const NDArray &csr, const NDArray &vids, CHECK_NE(row_ids[i], -1); } - TShape nz_shape(1); + mxnet::TShape nz_shape(1); nz_shape[0] = num_elems; - TShape indptr_shape(1); + mxnet::TShape indptr_shape(1); CHECK_EQ(out_csr.shape()[0], graph_size); indptr_shape[0] = graph_size + 1; CHECK_GE(in_ptr_data.shape_[0], indptr_shape[0]); @@ -1522,8 +1522,8 @@ static bool SubgraphCompactStorageType(const nnvm::NodeAttrs& attrs, } static bool SubgraphCompactShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const SubgraphCompactParam& params = nnvm::get(attrs.parsed); size_t num_g = get_num_graphs(params); CHECK_EQ(num_g * 2, in_attrs->size()); @@ -1540,7 +1540,7 @@ static bool SubgraphCompactShape(const nnvm::NodeAttrs& attrs, } for (size_t i = 0; i < num_g; i++) { - TShape gshape(2); + mxnet::TShape gshape(2); gshape[0] = params.graph_sizes[i]; gshape[1] = params.graph_sizes[i]; out_attrs->at(i) = gshape; @@ -1620,7 +1620,7 @@ empty rows and empty columns. return names; }) .set_attr("FInferStorageType", SubgraphCompactStorageType) -.set_attr("FInferShape", SubgraphCompactShape) +.set_attr("FInferShape", SubgraphCompactShape) .set_attr("FInferType", SubgraphCompactType) .set_attr("FComputeEx", SubgraphCompactComputeExCPU) .set_attr("key_var_num_args", "num_args") diff --git a/src/operator/contrib/fft-inl.h b/src/operator/contrib/fft-inl.h index c5c8574f19e7..247f6290c02a 100644 --- a/src/operator/contrib/fft-inl.h +++ b/src/operator/contrib/fft-inl.h @@ -90,9 +90,9 @@ class FFTOp : public Operator { Stream *s = ctx.get_stream(); - // const TShape& oshape = out_data[fft::kOutComplex].shape_; - const TShape& ishape = in_data[fft::kData].shape_; - const TShape& oshape = out_data[fft::kOutComplex].shape_; + // const mxnet::TShape& oshape = out_data[fft::kOutComplex].shape_; + const mxnet::TShape& ishape = in_data[fft::kData].shape_; + const mxnet::TShape& oshape = out_data[fft::kOutComplex].shape_; Tensor data = in_data[fft::kData].get_with_shape( Shape2(n_ffts, dim_), s); Tensor out = out_data[fft::kOutComplex].get_with_shape( @@ -153,8 +153,8 @@ class FFTOp : public Operator { Stream *s = ctx.get_stream(); - const TShape& ishape = in_grad[fft::kData].shape_; - const TShape& oshape = out_grad[fft::kOutComplex].shape_; + const mxnet::TShape& ishape = in_grad[fft::kData].shape_; + const mxnet::TShape& oshape = out_grad[fft::kOutComplex].shape_; Tensor gdata = in_grad[fft::kData].get_with_shape( Shape2(n_ffts, dim_), s); Tensor grad = out_grad[fft::kOutComplex].get_with_shape( @@ -234,12 +234,12 @@ class FFTProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 1) <<"Input:[data]"; - const TShape &dshape = (*in_shape)[fft::kData]; + const mxnet::TShape &dshape = (*in_shape)[fft::kData]; // require data to be known if (dshape.ndim() == 0) return false; @@ -289,12 +289,12 @@ class FFTProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -311,7 +311,7 @@ class FFTProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/contrib/fft.cc b/src/operator/contrib/fft.cc index 4a4395836e3f..1262835cbb58 100644 --- a/src/operator/contrib/fft.cc +++ b/src/operator/contrib/fft.cc @@ -33,7 +33,7 @@ Operator *CreateOp(FFTParam param, int dtype) { return nullptr; } -Operator *FFTProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *FFTProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]); } diff --git a/src/operator/contrib/ifft-inl.h b/src/operator/contrib/ifft-inl.h index da560c3c5178..e53c0f60fa9e 100644 --- a/src/operator/contrib/ifft-inl.h +++ b/src/operator/contrib/ifft-inl.h @@ -88,8 +88,8 @@ class IFFTOp : public Operator { } Stream *s = ctx.get_stream(); - const TShape& ishape = in_data[ifft::kData].shape_; - const TShape& oshape = out_data[ifft::kOut].shape_; + const mxnet::TShape& ishape = in_data[ifft::kData].shape_; + const mxnet::TShape& oshape = out_data[ifft::kOut].shape_; Tensor data = in_data[ifft::kData].get_with_shape( Shape2(n_iffts, dim_*2), s); Tensor out = out_data[ifft::kOut].get_with_shape( @@ -150,8 +150,8 @@ class IFFTOp : public Operator { Stream *s = ctx.get_stream(); - const TShape& ishape = in_grad[ifft::kData].shape_; - const TShape& oshape = out_grad[ifft::kOut].shape_; + const mxnet::TShape& ishape = in_grad[ifft::kData].shape_; + const mxnet::TShape& oshape = out_grad[ifft::kOut].shape_; Tensor gdata = in_grad[ifft::kData].get_with_shape( Shape2(n_iffts, dim_*2), s); Tensor grad = out_grad[ifft::kOut].get_with_shape( @@ -224,12 +224,12 @@ class IFFTProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 1) <<"Input:[data]"; - const TShape &dshape = (*in_shape)[ifft::kData]; + const mxnet::TShape &dshape = (*in_shape)[ifft::kData]; // require data to be known if (dshape.ndim() == 0) return false; @@ -280,12 +280,12 @@ class IFFTProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -302,7 +302,7 @@ class IFFTProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/contrib/ifft.cc b/src/operator/contrib/ifft.cc index cb4605d8b787..f60220e6190f 100644 --- a/src/operator/contrib/ifft.cc +++ b/src/operator/contrib/ifft.cc @@ -34,7 +34,7 @@ Operator *CreateOp(IFFTParam param, int dtype) { return nullptr; } -Operator *IFFTProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *IFFTProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]); } diff --git a/src/operator/contrib/index_copy-inl.h b/src/operator/contrib/index_copy-inl.h index 923fb0f4f138..d93bf47949a8 100644 --- a/src/operator/contrib/index_copy-inl.h +++ b/src/operator/contrib/index_copy-inl.h @@ -141,8 +141,8 @@ void IndexCopyBackward(const nnvm::NodeAttrs& attrs, } inline bool IndexCopyShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { // inputs[0]: original tensor // inputs[1]: index vector // inputs[2]: copied tensor diff --git a/src/operator/contrib/index_copy.cc b/src/operator/contrib/index_copy.cc index 70a32a1b2d99..bcf6c02d3d37 100644 --- a/src/operator/contrib/index_copy.cc +++ b/src/operator/contrib/index_copy.cc @@ -67,7 +67,7 @@ Examples:: )code" ADD_FILELINE) .set_num_inputs(3) .set_num_outputs(1) -.set_attr("FInferShape", IndexCopyShape) +.set_attr("FInferShape", IndexCopyShape) .set_attr("FInferType", IndexCopyType) .set_attr("FGradient", ElemwiseGradUseIn{"_contrib_backward_index_copy"}) .set_attr("FCompute", IndexCopyForward) diff --git a/src/operator/contrib/krprod.cc b/src/operator/contrib/krprod.cc index 8fc7661afb78..f0325645f4dd 100644 --- a/src/operator/contrib/krprod.cc +++ b/src/operator/contrib/krprod.cc @@ -42,8 +42,8 @@ namespace op { inline bool KhatriRaoShape( const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(out_attrs->size(), 1); CHECK_GE(in_attrs->size(), 1); @@ -51,7 +51,7 @@ inline bool KhatriRaoShape( // (when inputs_transposed is set to true/false) int num_columns = static_cast((*in_attrs)[0][1]); int num_rows = 1; - for (const TShape& attr_shape : (*in_attrs)) { + for (const mxnet::TShape& attr_shape : (*in_attrs)) { CHECK_EQ(num_columns, static_cast(attr_shape[1])); num_rows *= attr_shape[0]; } @@ -112,7 +112,7 @@ Example:: return ret; }) .set_num_outputs(1) -.set_attr("FInferShape", KhatriRaoShape) +.set_attr("FInferShape", KhatriRaoShape) .set_attr("FInferType", [](const nnvm::NodeAttrs& attrs, std::vector *in_attrs, diff --git a/src/operator/contrib/multi_proposal-inl.h b/src/operator/contrib/multi_proposal-inl.h index e2ba7c48df2f..4b9a41c2fa87 100644 --- a/src/operator/contrib/multi_proposal-inl.h +++ b/src/operator/contrib/multi_proposal-inl.h @@ -102,12 +102,12 @@ class MultiProposalProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 3) << "Input:[cls_prob, bbox_pred, im_info]"; - const TShape &dshape = in_shape->at(proposal::kClsProb); + const mxnet::TShape &dshape = in_shape->at(proposal::kClsProb); if (dshape.ndim() == 0) return false; Shape<4> bbox_pred_shape; bbox_pred_shape = Shape4(dshape[0], dshape[1] * 2, dshape[2], dshape[3]); @@ -135,7 +135,7 @@ class MultiProposalProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } diff --git a/src/operator/contrib/multibox_detection-inl.h b/src/operator/contrib/multibox_detection-inl.h index fcf22727ffb1..977126ad269d 100644 --- a/src/operator/contrib/multibox_detection-inl.h +++ b/src/operator/contrib/multibox_detection-inl.h @@ -29,7 +29,6 @@ #include #include #include -#include #include #include #include @@ -87,7 +86,7 @@ class MultiBoxDetectionOp : public Operator { using namespace mshadow; using namespace mshadow::expr; CHECK_EQ(in_data.size(), 3U) << "Input: [cls_prob, loc_pred, anchor]"; - TShape ashape = in_data[mboxdet_enum::kAnchor].shape_; + mxnet::TShape ashape = in_data[mboxdet_enum::kAnchor].shape_; CHECK_EQ(out_data.size(), 1U); Stream *s = ctx.get_stream(); @@ -147,14 +146,14 @@ class MultiBoxDetectionProp : public OperatorProperty { return {"cls_prob", "loc_pred", "anchor"}; } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 3U) << "Inputs: [cls_prob, loc_pred, anchor]"; - TShape cshape = in_shape->at(mboxdet_enum::kClsProb); - TShape lshape = in_shape->at(mboxdet_enum::kLocPred); - TShape ashape = in_shape->at(mboxdet_enum::kAnchor); + mxnet::TShape cshape = in_shape->at(mboxdet_enum::kClsProb); + mxnet::TShape lshape = in_shape->at(mboxdet_enum::kLocPred); + mxnet::TShape ashape = in_shape->at(mboxdet_enum::kAnchor); CHECK_EQ(cshape.ndim(), 3U) << "Provided: " << cshape; CHECK_EQ(lshape.ndim(), 2U) << "Provided: " << lshape; CHECK_EQ(ashape.ndim(), 3U) << "Provided: " << ashape; @@ -162,7 +161,7 @@ class MultiBoxDetectionProp : public OperatorProperty { CHECK_EQ(cshape[2] * 4, lshape[1]) << "# anchors mismatch with # loc"; CHECK_GT(ashape[1], 0U) << "Number of anchors must > 0"; CHECK_EQ(ashape[2], 4U); - TShape oshape = TShape(3); + mxnet::TShape oshape = mxnet::TShape(3); oshape[0] = cshape[0]; oshape[1] = ashape[1]; oshape[2] = 6; // [id, prob, xmin, ymin, xmax, ymax] @@ -182,7 +181,7 @@ class MultiBoxDetectionProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -191,7 +190,7 @@ class MultiBoxDetectionProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/contrib/multibox_detection.cc b/src/operator/contrib/multibox_detection.cc index b4f66d8fcf1d..8d1082914df7 100644 --- a/src/operator/contrib/multibox_detection.cc +++ b/src/operator/contrib/multibox_detection.cc @@ -205,9 +205,9 @@ Operator *CreateOp(MultiBoxDetectionParam param, int dtype) { } Operator* MultiBoxDetectionProp::CreateOperatorEx(Context ctx, - std::vector *in_shape, + mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferShape(in_shape, &out_shape, &aux_shape)); CHECK(InferType(in_type, &out_type, &aux_type)); diff --git a/src/operator/contrib/multibox_prior-inl.h b/src/operator/contrib/multibox_prior-inl.h index 6602b43ca01f..3636a6016bd2 100644 --- a/src/operator/contrib/multibox_prior-inl.h +++ b/src/operator/contrib/multibox_prior-inl.h @@ -29,7 +29,6 @@ #include #include #include -#include #include #include #include @@ -169,19 +168,19 @@ class MultiBoxPriorProp: public OperatorProperty { return {"data"}; } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 1) << "Inputs: [data]" << in_shape->size(); - TShape dshape = in_shape->at(mboxprior_enum::kData); + mxnet::TShape dshape = in_shape->at(mboxprior_enum::kData); CHECK_GE(dshape.ndim(), 4) << "Input data should be 4D: batch-channel-y-x"; int in_height = dshape[2]; CHECK_GT(in_height, 0) << "Input height should > 0"; int in_width = dshape[3]; CHECK_GT(in_width, 0) << "Input width should > 0"; // since input sizes are same in each batch, we could share MultiBoxPrior - TShape oshape = TShape(3); + mxnet::TShape oshape = mxnet::TShape(3); int num_sizes = param_.sizes.ndim(); int num_ratios = param_.ratios.ndim(); oshape[0] = 1; @@ -208,7 +207,7 @@ class MultiBoxPriorProp: public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/contrib/multibox_prior.cc b/src/operator/contrib/multibox_prior.cc index 579ea608aa9f..ee8f5bfac772 100644 --- a/src/operator/contrib/multibox_prior.cc +++ b/src/operator/contrib/multibox_prior.cc @@ -83,9 +83,9 @@ Operator* CreateOp(MultiBoxPriorParam param, int dtype) { return op; } -Operator* MultiBoxPriorProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator* MultiBoxPriorProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferShape(in_shape, &out_shape, &aux_shape)); CHECK(InferType(in_type, &out_type, &aux_type)); diff --git a/src/operator/contrib/multibox_target-inl.h b/src/operator/contrib/multibox_target-inl.h index daf870a1517a..f7a92882650c 100644 --- a/src/operator/contrib/multibox_target-inl.h +++ b/src/operator/contrib/multibox_target-inl.h @@ -29,7 +29,6 @@ #include #include #include -#include #include #include #include @@ -211,26 +210,26 @@ class MultiBoxTargetProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 3) << "Input: [anchor, label, clsPred]"; - TShape ashape = in_shape->at(mboxtarget_enum::kAnchor); + mxnet::TShape ashape = in_shape->at(mboxtarget_enum::kAnchor); CHECK_EQ(ashape.ndim(), 3) << "Anchor should be batch shared N*4 tensor"; CHECK_EQ(ashape[0], 1) << "Anchors are shared across batches, first dimension should be 1"; CHECK_GT(ashape[1], 0) << "Number boxes should be greater than 0"; CHECK_EQ(ashape[2], 4) << "Box dimension should be 4: [xmin, ymin, xmax, ymax]"; - TShape lshape = in_shape->at(mboxtarget_enum::kLabel); + mxnet::TShape lshape = in_shape->at(mboxtarget_enum::kLabel); CHECK_EQ(lshape.ndim(), 3) << "Label should be [batch, num_labels, label_width] tensor"; CHECK_GT(lshape[1], 0) << "Padded label should be greater than 0"; CHECK_GE(lshape[2], 5) << "Label width should be greater than or equal to 5"; - TShape pshape = in_shape->at(mboxtarget_enum::kClsPred); + mxnet::TShape pshape = in_shape->at(mboxtarget_enum::kClsPred); CHECK_EQ(pshape.ndim(), 3) << "Prediction: [batch, num_classes, num_anchors]"; CHECK_EQ(pshape[2], ashape[1]) << "Number of anchors mismatch"; - TShape loc_shape = Shape2(lshape[0], ashape.Size()); // batch - (num_box * 4) - TShape lm_shape = loc_shape; - TShape label_shape = Shape2(lshape[0], ashape[1]); // batch - num_box + mxnet::TShape loc_shape = Shape2(lshape[0], ashape.Size()); // batch - (num_box * 4) + mxnet::TShape lm_shape = loc_shape; + mxnet::TShape label_shape = Shape2(lshape[0], ashape[1]); // batch - num_box out_shape->clear(); out_shape->push_back(loc_shape); out_shape->push_back(lm_shape); @@ -257,7 +256,7 @@ class MultiBoxTargetProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -266,7 +265,7 @@ class MultiBoxTargetProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/contrib/multibox_target.cc b/src/operator/contrib/multibox_target.cc index 093234b59ec3..a1f2aac250ff 100644 --- a/src/operator/contrib/multibox_target.cc +++ b/src/operator/contrib/multibox_target.cc @@ -291,9 +291,9 @@ Operator *CreateOp(MultiBoxTargetParam param, int dtype) { return op; } -Operator* MultiBoxTargetProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator* MultiBoxTargetProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferShape(in_shape, &out_shape, &aux_shape)); CHECK(InferType(in_type, &out_type, &aux_type)); diff --git a/src/operator/contrib/nn/deformable_im2col.cuh b/src/operator/contrib/nn/deformable_im2col.cuh index 5914184d5bbe..5f206d23d8d7 100644 --- a/src/operator/contrib/nn/deformable_im2col.cuh +++ b/src/operator/contrib/nn/deformable_im2col.cuh @@ -283,8 +283,8 @@ __global__ void deformable_im2col_gpu_kernel(const int n, const DType* data_im, template inline void deformable_im2col(mshadow::Stream* s, const DType* data_im, const DType* data_offset, - const TShape& im_shape, const TShape& col_shape, const TShape& kernel_shape, - const TShape& pad, const TShape& stride, const TShape& dilation, + const mxnet::TShape& im_shape, const mxnet::TShape& col_shape, const mxnet::TShape& kernel_shape, + const mxnet::TShape& pad, const mxnet::TShape& stride, const mxnet::TShape& dilation, const uint32_t deformable_group, DType* data_col) { // num_axes should be smaller than block size index_t num_spatial_axes = kernel_shape.ndim(); @@ -381,9 +381,9 @@ __global__ void deformable_col2im_gpu_kernel(const int n, const DType* data_col, template inline void deformable_col2im(mshadow::Stream* s, const DType* data_col, const DType* data_offset, - const TShape& im_shape, const TShape& col_shape, const TShape& kernel_shape, - const TShape& pad, const TShape& stride, - const TShape& dilation, const uint32_t deformable_group, + const mxnet::TShape& im_shape, const mxnet::TShape& col_shape, const mxnet::TShape& kernel_shape, + const mxnet::TShape& pad, const mxnet::TShape& stride, + const mxnet::TShape& dilation, const uint32_t deformable_group, DType* grad_im, OpReqType req) { index_t num_spatial_axes = kernel_shape.ndim(); index_t im_size = im_shape.ProdShape(1, im_shape.ndim()); @@ -489,10 +489,10 @@ __global__ void deformable_col2im_coord_gpu_kernel(const int n, const DType* dat */ template inline void deformable_col2im_coord(mshadow::Stream* s, - const DType* data_col, const DType* data_im, const DType* data_offset, const TShape& im_shape, - const TShape& col_shape, const TShape& kernel_shape, - const TShape& pad, const TShape& stride, - const TShape& dilation, const uint32_t deformable_group, DType* grad_offset, OpReqType req) { + const DType* data_col, const DType* data_im, const DType* data_offset, const mxnet::TShape& im_shape, + const mxnet::TShape& col_shape, const mxnet::TShape& kernel_shape, + const mxnet::TShape& pad, const mxnet::TShape& stride, + const mxnet::TShape& dilation, const uint32_t deformable_group, DType* grad_offset, OpReqType req) { index_t num_spatial_axes = kernel_shape.ndim(); index_t num_kernels = col_shape[1] * col_shape[2] * 2 * kernel_shape[0] * kernel_shape[1] * deformable_group; index_t channel_per_deformable_group = col_shape[0] / deformable_group; diff --git a/src/operator/contrib/nn/deformable_im2col.h b/src/operator/contrib/nn/deformable_im2col.h index 1c25982ed32c..1f96fe5b2366 100644 --- a/src/operator/contrib/nn/deformable_im2col.h +++ b/src/operator/contrib/nn/deformable_im2col.h @@ -87,8 +87,8 @@ namespace op { template inline void deformable_im2col(mshadow::Stream* s, const DType* data_im, const DType* data_offset, - const TShape& im_shape, const TShape& col_shape, const TShape& kernel_shape, - const TShape& pad, const TShape& stride, const TShape& dilation, + const mxnet::TShape& im_shape, const mxnet::TShape& col_shape, const mxnet::TShape& kernel_shape, + const mxnet::TShape& pad, const mxnet::TShape& stride, const mxnet::TShape& dilation, const uint32_t deformable_group, DType* data_col) { if (2 == kernel_shape.ndim()) { LOG(FATAL) << "only implemented in GPU"; @@ -115,9 +115,9 @@ inline void deformable_im2col(mshadow::Stream* s, template inline void deformable_col2im(mshadow::Stream* s, const DType* data_col, const DType* data_offset, - const TShape& im_shape, const TShape& col_shape, const TShape& kernel_shape, - const TShape& pad, const TShape& stride, - const TShape& dilation, const uint32_t deformable_group, + const mxnet::TShape& im_shape, const mxnet::TShape& col_shape, const mxnet::TShape& kernel_shape, + const mxnet::TShape& pad, const mxnet::TShape& stride, + const mxnet::TShape& dilation, const uint32_t deformable_group, DType* grad_im, OpReqType req) { LOG(FATAL) << "only implemented in GPU"; } @@ -141,10 +141,12 @@ inline void deformable_col2im(mshadow::Stream* s, template inline void deformable_col2im_coord(mshadow::Stream* s, - const DType* data_col, const DType* data_im, const DType* data_offset, const TShape& im_shape, - const TShape& col_shape, const TShape& kernel_shape, - const TShape& pad, const TShape& stride, - const TShape& dilation, const uint32_t deformable_group, DType* grad_offset, OpReqType req) { + const DType* data_col, const DType* data_im, + const DType* data_offset, const mxnet::TShape& im_shape, + const mxnet::TShape& col_shape, const mxnet::TShape& kernel_shape, + const mxnet::TShape& pad, const mxnet::TShape& stride, + const mxnet::TShape& dilation, const uint32_t deformable_group, + DType* grad_offset, OpReqType req) { LOG(FATAL) << "only implemented in GPU"; } diff --git a/src/operator/contrib/nnvm_to_onnx-inl.h b/src/operator/contrib/nnvm_to_onnx-inl.h index 0994f7e632f3..052948521ba8 100644 --- a/src/operator/contrib/nnvm_to_onnx-inl.h +++ b/src/operator/contrib/nnvm_to_onnx-inl.h @@ -58,7 +58,7 @@ namespace op { namespace nnvm_to_onnx { enum class TypeIO { Inputs = 0, Outputs = 1 }; using NameToIdx_t = std::map; - using InferenceTuple_t = std::tuple; + using InferenceTuple_t = std::tuple; using InferenceMap_t = std::map; } // namespace nnvm_to_onnx @@ -96,14 +96,14 @@ using namespace nnvm; using namespace ::onnx; using int64 = ::google::protobuf::int64; -std::unordered_map GetPlaceholderShapes(const ShapeVector& shape_inputs, +std::unordered_map GetPlaceholderShapes(const ShapeVector& shape_inputs, const nnvm::IndexedGraph& ig); std::unordered_map GetOutputLookup(const nnvm::IndexedGraph& ig); void ConvertPlaceholder( const std::string& node_name, - const std::unordered_map& placeholder_shapes, + const std::unordered_map& placeholder_shapes, GraphProto* graph_proto); void ConvertConstant(GraphProto* graph_proto, diff --git a/src/operator/contrib/nnvm_to_onnx.cc b/src/operator/contrib/nnvm_to_onnx.cc index 58a465455d42..0417a085616a 100644 --- a/src/operator/contrib/nnvm_to_onnx.cc +++ b/src/operator/contrib/nnvm_to_onnx.cc @@ -72,7 +72,7 @@ op::ONNXParam ConvertNnvmGraphToOnnx( const nnvm::IndexedGraph& ig = g.indexed_graph(); const auto& storage_types = g.GetAttr("storage_type"); const auto& dtypes = g.GetAttr("dtype"); - const auto& shape_inputs = g.GetAttr("shape_inputs"); + const auto& shape_inputs = g.GetAttr("shape_inputs"); // TODO(kellens): At the moment this check always passes no matter the weight dtypes used in your // graph. We should first iterate over datatypes by name and ensure they're valid types @@ -104,7 +104,7 @@ op::ONNXParam ConvertNnvmGraphToOnnx( auto subgraph_name_id = subgraph_count.fetch_add(1); graph_proto->set_name("MXNetTRTSubgraph" + std::to_string(subgraph_name_id)); - std::unordered_map placeholder_shapes = + std::unordered_map placeholder_shapes = GetPlaceholderShapes(shape_inputs, ig); std::unordered_map output_lookup = GetOutputLookup(ig); uint32_t current_input = 0; @@ -189,10 +189,10 @@ void ConvertConvolution(NodeProto* node_proto, const NodeAttrs& attrs, node_proto->set_op_type("Conv"); - const TShape kernel = conv_param.kernel; - const TShape stride = conv_param.stride; - const TShape dilate = conv_param.dilate; - const TShape pad = conv_param.pad; + const mxnet::TShape kernel = conv_param.kernel; + const mxnet::TShape stride = conv_param.stride; + const mxnet::TShape dilate = conv_param.dilate; + const mxnet::TShape pad = conv_param.pad; const uint32_t num_group = conv_param.num_group; // const bool no_bias = conv_param.no_bias; const dmlc::optional layout = conv_param.layout; @@ -244,9 +244,9 @@ void ConvertPooling(NodeProto* node_proto, const NodeAttrs& attrs, const array_view& /*inputs*/) { const auto& pooling_param = nnvm::get(attrs.parsed); - const TShape kernel = pooling_param.kernel; - const TShape stride = pooling_param.stride; - const TShape pad = pooling_param.pad; + const mxnet::TShape kernel = pooling_param.kernel; + const mxnet::TShape stride = pooling_param.stride; + const mxnet::TShape pad = pooling_param.pad; const int pool_type = pooling_param.pool_type; const bool global_pool = pooling_param.global_pool; @@ -411,12 +411,12 @@ void ConvertElementwiseAdd(NodeProto* node_proto, const NodeAttrs& /*attrs*/, node_proto->set_op_type("Add"); } -std::unordered_map GetPlaceholderShapes( +std::unordered_map GetPlaceholderShapes( const ShapeVector& shape_inputs, const nnvm::IndexedGraph& ig) { - std::unordered_map placeholder_shapes; + std::unordered_map placeholder_shapes; for (uint32_t i = 0; i < shape_inputs.size(); ++i) { std::string name = ig[ig.input_nodes()[i]].source->attrs.name; - TShape shp = shape_inputs[i]; + mxnet::TShape shp = shape_inputs[i]; if (shp.ndim() > 0) { placeholder_shapes.emplace(name, shp); } @@ -441,7 +441,7 @@ std::unordered_map GetOutputLookup( void ConvertPlaceholder( const std::string& node_name, - const std::unordered_map& placeholder_shapes, + const std::unordered_map& placeholder_shapes, GraphProto* const graph_proto) { auto val_info_proto = graph_proto->add_input(); auto type_proto = val_info_proto->mutable_type()->mutable_tensor_type(); @@ -470,7 +470,7 @@ void ConvertConstant( const NDArray nd = shared_buffer->find(node_name)->second; const TBlob& blob = nd.data(); - const TShape shape = blob.shape_; + const mxnet::TShape shape = blob.shape_; for (auto& dim : shape) { initializer_proto->add_dims(static_cast(dim)); @@ -506,7 +506,7 @@ void ConvertOutput( const StorageTypeVector& storage_types, const DTypeVector& dtypes) { const nnvm::IndexedGraph& ig = g.indexed_graph(); uint32_t out_idx = ig.entry_id(ig.outputs()[out_iter->second]); - TShape out_shape = g.GetAttr("shape")[out_idx]; + mxnet::TShape out_shape = g.GetAttr("shape")[out_idx]; int storage_type = storage_types[out_idx]; int dtype = dtypes[out_idx]; diff --git a/src/operator/contrib/nnz.cc b/src/operator/contrib/nnz.cc index a94f52fdaa5e..940c9e02219e 100644 --- a/src/operator/contrib/nnz.cc +++ b/src/operator/contrib/nnz.cc @@ -55,8 +55,8 @@ static bool NNZType(const nnvm::NodeAttrs& attrs, } inline bool NNZShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); // csr_matrix is 2-D @@ -178,7 +178,7 @@ This operator only supports CSR matrix on CPU. .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", NNZShape) +.set_attr("FInferShape", NNZShape) .set_attr("FInferType", NNZType) .set_attr("FInferStorageType", NNZStorageType) .set_attr("FComputeEx", NNZComputeEx) diff --git a/src/operator/contrib/optimizer_op.cc b/src/operator/contrib/optimizer_op.cc index 96f431bc569d..9f948bad81b6 100644 --- a/src/operator/contrib/optimizer_op.cc +++ b/src/operator/contrib/optimizer_op.cc @@ -35,8 +35,8 @@ DMLC_REGISTER_PARAMETER(GroupAdagradParam); * \brief Shape inference function for Group AdaGrad. */ inline bool GroupAdagradShape(const nnvm::NodeAttrs &attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 3U); CHECK_EQ(out_attrs->size(), 1U); @@ -72,7 +72,7 @@ Note that non-zero values for the weight decay option are not supported. .set_num_inputs(3) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", GroupAdagradShape) +.set_attr("FInferShape", GroupAdagradShape) .set_attr("FInferType", ElemwiseType<3, 1>) .set_attr("FInferStorageType", GroupAdagradStorageType) .set_attr("FMutateInputs", diff --git a/src/operator/contrib/proposal-inl.h b/src/operator/contrib/proposal-inl.h index a1f9e49e6cab..9908ca96ec5f 100644 --- a/src/operator/contrib/proposal-inl.h +++ b/src/operator/contrib/proposal-inl.h @@ -100,12 +100,12 @@ class ProposalProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 3) << "Input:[cls_prob, bbox_pred, im_info]"; - const TShape &dshape = in_shape->at(proposal::kClsProb); + const mxnet::TShape &dshape = in_shape->at(proposal::kClsProb); if (dshape.ndim() == 0) return false; Shape<4> bbox_pred_shape; bbox_pred_shape = Shape4(dshape[0], dshape[1] * 2, dshape[2], dshape[3]); @@ -133,7 +133,7 @@ class ProposalProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } diff --git a/src/operator/contrib/psroi_pooling-inl.h b/src/operator/contrib/psroi_pooling-inl.h index fb20ef0bdddc..50d812882043 100644 --- a/src/operator/contrib/psroi_pooling-inl.h +++ b/src/operator/contrib/psroi_pooling-inl.h @@ -49,7 +49,7 @@ enum PSROIPoolingOpOutputs {kOut}; } // psroipool struct PSROIPoolingParam : public dmlc::Parameter { - // TShape pooled_size; + // mxnet::TShape pooled_size; float spatial_scale; int output_dim; int pooled_size; @@ -168,18 +168,18 @@ class PSROIPoolingProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 2) << "Input:[data, rois]"; // data: [batch_size, c, h, w] - TShape dshape = in_shape->at(psroipool::kData); + mxnet::TShape dshape = in_shape->at(psroipool::kData); CHECK_EQ(dshape.ndim(), 4) << "data should be a 4D tensor"; // bbox: [num_rois, 5] - TShape bshape = in_shape->at(psroipool::kBox); + mxnet::TShape bshape = in_shape->at(psroipool::kBox); CHECK_EQ(bshape.ndim(), 2) << "bbox should be a 2D tensor of shape [batch, 5]"; CHECK_EQ(bshape[1], 5) << "bbox should be a 2D tensor of shape [batch, 5]"; @@ -227,7 +227,7 @@ class PSROIPoolingProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; diff --git a/src/operator/contrib/psroi_pooling.cc b/src/operator/contrib/psroi_pooling.cc index c3b66a15852b..ad9ef6dee9b9 100644 --- a/src/operator/contrib/psroi_pooling.cc +++ b/src/operator/contrib/psroi_pooling.cc @@ -241,9 +241,9 @@ Operator *CreateOp(PSROIPoolingParam param, int dtype) { return op; } -Operator *PSROIPoolingProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *PSROIPoolingProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferType(in_type, &out_type, &aux_type)); CHECK(InferShape(in_shape, &out_shape, &aux_shape)); diff --git a/src/operator/contrib/quadratic_op-inl.h b/src/operator/contrib/quadratic_op-inl.h index a6fa260f10e8..e679fedc8e57 100644 --- a/src/operator/contrib/quadratic_op-inl.h +++ b/src/operator/contrib/quadratic_op-inl.h @@ -53,8 +53,8 @@ struct QuadraticParam : public dmlc::Parameter { }; inline bool QuadraticOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); diff --git a/src/operator/contrib/quadratic_op.cc b/src/operator/contrib/quadratic_op.cc index 043379e44074..a023c27a4a8e 100644 --- a/src/operator/contrib/quadratic_op.cc +++ b/src/operator/contrib/quadratic_op.cc @@ -55,7 +55,7 @@ The storage type of ``quadratic`` output depends on storage types of inputs [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", QuadraticOpShape) +.set_attr("FInferShape", QuadraticOpShape) .set_attr("FInferType", QuadraticOpType) .set_attr("FInferStorageType", QuadraticOpStorageType) .set_attr("FCompute", QuadraticOpForward) diff --git a/src/operator/contrib/roi_align-inl.h b/src/operator/contrib/roi_align-inl.h index 9f4d7ce48827..b28e437a7e09 100644 --- a/src/operator/contrib/roi_align-inl.h +++ b/src/operator/contrib/roi_align-inl.h @@ -44,7 +44,7 @@ enum ROIAlignOpOutputs {kOut}; struct ROIAlignParam : public dmlc::Parameter { - TShape pooled_size; + mxnet::TShape pooled_size; float spatial_scale; int sample_ratio; bool position_sensitive; diff --git a/src/operator/contrib/roi_align.cc b/src/operator/contrib/roi_align.cc index e584ea30325d..53ddba02bc7b 100644 --- a/src/operator/contrib/roi_align.cc +++ b/src/operator/contrib/roi_align.cc @@ -547,16 +547,16 @@ He, Kaiming, et al. "Mask R-CNN." ICCV, 2017 return std::vector{"output"}; }) .set_attr_parser(ParamParser) -.set_attr("FInferShape", [](const nnvm::NodeAttrs& attrs, - std::vector *in_shape, std::vector *out_shape){ +.set_attr("FInferShape", [](const nnvm::NodeAttrs& attrs, + mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape){ using namespace mshadow; const ROIAlignParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_shape->size(), 2) << "Input:[data, rois]"; // data: [batch_size, c, h, w] - TShape dshape = in_shape->at(roialign::kData); + mxnet::TShape dshape = in_shape->at(roialign::kData); CHECK_EQ(dshape.ndim(), 4) << "data should be a 4D tensor"; // bbox: [num_rois, 5] - TShape bshape = in_shape->at(roialign::kBox); + mxnet::TShape bshape = in_shape->at(roialign::kBox); CHECK_EQ(bshape.ndim(), 2) << "bbox should be a 2D tensor of shape [batch, 5]"; CHECK_EQ(bshape[1], 5) << "bbox should be a 2D tensor of shape [batch, 5]"; // out: [num_rois, c, pooled_h, pooled_w] diff --git a/src/operator/contrib/sync_batch_norm-inl.h b/src/operator/contrib/sync_batch_norm-inl.h index 78f1c09dfe03..b94416640f55 100644 --- a/src/operator/contrib/sync_batch_norm-inl.h +++ b/src/operator/contrib/sync_batch_norm-inl.h @@ -469,15 +469,15 @@ class SyncBatchNormProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 3U) << "Input:[data, gamma, beta]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; - in_shape->at(1) = TShape(Shape1(dshape[1])); - in_shape->at(2) = TShape(Shape1(dshape[1])); + in_shape->at(1) = mxnet::TShape(Shape1(dshape[1])); + in_shape->at(2) = mxnet::TShape(Shape1(dshape[1])); out_shape->clear(); out_shape->push_back(dshape); out_shape->push_back(Shape1(dshape[1])); @@ -545,7 +545,7 @@ class SyncBatchNormProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -577,7 +577,7 @@ class SyncBatchNormProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; inline const SyncBatchNormParam& getParam() const { diff --git a/src/operator/contrib/sync_batch_norm.cc b/src/operator/contrib/sync_batch_norm.cc index 1b465d88b69e..418688e7c98a 100644 --- a/src/operator/contrib/sync_batch_norm.cc +++ b/src/operator/contrib/sync_batch_norm.cc @@ -34,9 +34,9 @@ Operator *CreateOp(SyncBatchNormParam param, int dtype) { } // DO_BIND_DISPATCH comes from operator_common.h -Operator *SyncBatchNormProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *SyncBatchNormProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferType(in_type, &out_type, &aux_type)); CHECK(InferShape(in_shape, &out_shape, &aux_shape)); diff --git a/src/operator/contrib/tensorrt.cc b/src/operator/contrib/tensorrt.cc index 88a65fba3ea3..5b3df70fd825 100644 --- a/src/operator/contrib/tensorrt.cc +++ b/src/operator/contrib/tensorrt.cc @@ -63,7 +63,7 @@ OpStatePtr GetPtrMapping(nvinfer1::ICudaEngine* trt_engine, } OpStatePtr TRTCreateState(const nnvm::NodeAttrs& attrs, Context /*ctx*/, - const std::vector& /*ishape*/, + const mxnet::ShapeVector& /*ishape*/, const std::vector& /*itype*/) { const auto& node_param = nnvm::get(attrs.parsed); @@ -110,8 +110,8 @@ void TRTParamParser(nnvm::NodeAttrs* attrs) { attrs->parsed = std::move(param_); } -inline bool TRTInferShape(const NodeAttrs& attrs, std::vector* /*in_shape*/, - std::vector* out_shape) { +inline bool TRTInferShape(const NodeAttrs& attrs, mxnet::ShapeVector* /*in_shape*/, + mxnet::ShapeVector* out_shape) { const auto &node_param = nnvm::get(attrs.parsed); for (auto& el : node_param.output_map) { (*out_shape)[std::get<0>(el.second)] = std::get<1>(el.second); @@ -168,7 +168,7 @@ NNVM_REGISTER_OP(_trt_op) return node_param.output_map.size(); }) .set_attr_parser(TRTParamParser) - .set_attr("FInferShape", TRTInferShape) + .set_attr("FInferShape", TRTInferShape) .set_attr("FInferType", TRTInferType) .set_attr("FListInputNames", TRTListInputNames) .set_attr("FListOutputNames", TRTListOutputNames) diff --git a/src/operator/control_flow.cc b/src/operator/control_flow.cc index 25c8f704cbc5..ac6fea7c143b 100644 --- a/src/operator/control_flow.cc +++ b/src/operator/control_flow.cc @@ -266,22 +266,22 @@ static void remap(const std::vector &op_in, size_t start, } } -static inline TShape SliceFirstDim(const TShape &s) { +static inline mxnet::TShape SliceFirstDim(const mxnet::TShape &s) { if (s.ndim() > 1) { - return TShape(s.begin() + 1, s.end()); + return mxnet::TShape(s.begin() + 1, s.end()); } else { - return TShape(mshadow::Shape1(1)); + return mxnet::TShape(mshadow::Shape1(1)); } } static bool ForeachShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { const ForeachParam& params = nnvm::get(attrs.parsed); CHECK_EQ(out_shape->size(), (size_t) params.num_outputs); CHECK_EQ(attrs.subgraphs.size(), 1U); - std::vector subg_in_shape(in_shape->size()); + mxnet::ShapeVector subg_in_shape(in_shape->size()); // data shape std::vector data_1d(params.in_data_locs.ndim(), false); for (size_t i = 0; i < params.in_data_locs.ndim(); i++) { @@ -297,9 +297,9 @@ static bool ForeachShape(const nnvm::NodeAttrs& attrs, remap(*in_shape, params.in_data_locs.ndim() + params.in_state_locs.ndim(), params.remain_locs, &subg_in_shape); - std::vector subg_out_shape = *out_shape; + mxnet::ShapeVector subg_out_shape = *out_shape; for (int i = 0; i < params.num_out_data; i++) { - TShape shape = subg_out_shape[i]; + mxnet::TShape shape = subg_out_shape[i]; // If we don't have shape info, we don't need to do anything. if (shape.ndim() == 0) continue; @@ -320,7 +320,7 @@ static bool ForeachShape(const nnvm::NodeAttrs& attrs, if (g_out_shape.ndim() == 0) continue; - auto out = TShape(g_out_shape.ndim() + 1); + auto out = mxnet::TShape(g_out_shape.ndim() + 1); out[0] = len; for (size_t i = 1; i < out.ndim(); i++) out[i] = g_out_shape[i - 1]; @@ -340,11 +340,11 @@ static bool ForeachShape(const nnvm::NodeAttrs& attrs, continue; if (data_1d[i]) { - TShape s(1); + mxnet::TShape s(1); s[0] = len; SHAPE_ASSIGN_CHECK(*in_shape, i, s); } else { - auto in = TShape(shape.ndim() + 1); + auto in = mxnet::TShape(shape.ndim() + 1); in[0] = len; for (size_t i = 1; i < in.ndim(); i++) in[i] = shape[i - 1]; @@ -465,7 +465,7 @@ static bool BackwardForeachStorageType(const nnvm::NodeAttrs& attrs, static OpStatePtr CreateForeachState(const NodeAttrs& attrs, Context ctx, - const std::vector& ishape, + const mxnet::ShapeVector& ishape, const std::vector& itype) { const ForeachParam& params = nnvm::get(attrs.parsed); return OpStatePtr::Create(*attrs.subgraphs[0], params); @@ -727,11 +727,11 @@ static void WhileLoopGradComputeExCPU(const OpStatePtr& state_ptr, } static bool WhileLoopShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { - using nnvm::ShapeVector; + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { + using mxnet::ShapeVector; const WhileLoopParam& params = nnvm::get(attrs.parsed); - static const std::function is_udf = is_shape_udf; + static const std::function is_udf = is_shape_udf; // sanity checks CHECK_EQ(in_shape->size() + 2U, (size_t) params.num_args); CHECK_EQ(out_shape->size(), (size_t) params.num_outputs); @@ -776,7 +776,7 @@ static bool WhileLoopShape(const nnvm::NodeAttrs& attrs, g.attrs["shape"] = std::make_shared(std::move(shapes)); g = exec::InferShape(std::move(g)); // now `shapes' won't be used anymore, use new_shapes instead - const auto& new_shapes = g.GetAttr("shape"); + const auto& new_shapes = g.GetAttr("shape"); // copy subg_in back to in_shape for (size_t i = 0; i < subg_in.size(); ++i) { auto eid = idx.entry_id(input_nids[i], 0); @@ -799,7 +799,7 @@ static bool WhileLoopShape(const nnvm::NodeAttrs& attrs, // when the shape is not fully inferred continue; } - auto out = TShape(g_out_shape.ndim() + 1); + auto out = mxnet::TShape(g_out_shape.ndim() + 1); out[0] = params.max_iterations; for (size_t i = 1; i < out.ndim(); i++) out[i] = g_out_shape[i - 1]; @@ -817,8 +817,8 @@ static bool WhileLoopShape(const nnvm::NodeAttrs& attrs, } return g.GetAttr("shape_num_unknown_nodes") == 0; }; - ShapeVector cond_out_shape{TShape(1U)}; // this means: [(1, )] - ShapeVector func_out_shape(params.num_outputs); + mxnet::ShapeVector cond_out_shape{mxnet::TShape(1U)}; // this means: [(1, )] + mxnet::ShapeVector func_out_shape(params.num_outputs); CHECK(params.sync_in_out(in_shape, out_shape, is_udf)); bool succ_0 = infer_subg(attrs.subgraphs[0], &cond_out_shape, params.cond_input_locs, 0, false); CHECK(params.sync_in_out(in_shape, out_shape, is_udf)); @@ -898,7 +898,7 @@ static bool BackwardWhileLoopStorageType(const nnvm::NodeAttrs& attrs, static OpStatePtr CreateWhileLoopState(const NodeAttrs& attrs, Context ctx, - const std::vector& ishape, + const mxnet::ShapeVector& ishape, const std::vector& itype) { const WhileLoopParam& params = nnvm::get(attrs.parsed); return OpStatePtr::Create(params, *attrs.subgraphs[0], *attrs.subgraphs[1]); @@ -1034,11 +1034,11 @@ static void CondGradComputeExCPU(const OpStatePtr& state_ptr, } static bool CondShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { - using nnvm::ShapeVector; + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { + using mxnet::ShapeVector; const CondParam& params = nnvm::get(attrs.parsed); - static const std::function is_udf = is_shape_udf; + static const std::function is_udf = is_shape_udf; // sanity checks CHECK_EQ(in_shape->size() + 3U, (size_t) params.num_args); CHECK_EQ(out_shape->size(), (size_t) params.num_outputs); @@ -1051,8 +1051,8 @@ static bool CondShape(const nnvm::NodeAttrs& attrs, const nnvm::Tuple &input_locs, bool fill_out_shape) { // create subg_in - ShapeVector subg_in; - ShapeVector &subg_out = *_subg_out; + mxnet::ShapeVector subg_in; + mxnet::ShapeVector &subg_out = *_subg_out; extract_by_loc(*in_shape, input_locs, &subg_in); // create an indexed graph nnvm::Graph g; @@ -1066,7 +1066,7 @@ static bool CondShape(const nnvm::NodeAttrs& attrs, CHECK_EQ(idx.input_nodes().size(), subg_in.size()); CHECK_EQ(idx.outputs().size(), subg_out.size()); // create empty shapes for inference - ShapeVector shapes(idx.num_node_entries()); + mxnet::ShapeVector shapes(idx.num_node_entries()); // copy subg_in into shapes for (size_t i = 0; i < subg_in.size(); ++i) { auto eid = idx.entry_id(input_nids[i], 0); @@ -1081,7 +1081,7 @@ static bool CondShape(const nnvm::NodeAttrs& attrs, g.attrs["shape"] = std::make_shared(std::move(shapes)); g = exec::InferShape(std::move(g)); // now `shapes' won't be used anymore, use new_shapes instead - const auto& new_shapes = g.GetAttr("shape"); + const auto& new_shapes = g.GetAttr("shape"); // copy subg_in back to in_shape for (size_t i = 0; i < subg_in.size(); ++i) { auto eid = idx.entry_id(input_nids[i], 0); @@ -1107,7 +1107,7 @@ static bool CondShape(const nnvm::NodeAttrs& attrs, } return g.GetAttr("shape_num_unknown_nodes") == 0; }; - ShapeVector cond_out_shape{TShape(1U)}; // this means: [(1, )] + ShapeVector cond_out_shape{mxnet::TShape(1U)}; // this means: [(1, )] ShapeVector then_out_shape(params.num_outputs); ShapeVector else_out_shape(params.num_outputs); bool succ_0 = infer_subg(attrs.subgraphs[0], &cond_out_shape, \ @@ -1234,7 +1234,7 @@ static bool BackwardCondStorageType(const nnvm::NodeAttrs& attrs, static OpStatePtr CreateCondState(const NodeAttrs& attrs, Context ctx, - const std::vector& ishape, + const mxnet::ShapeVector& ishape, const std::vector& itype) { const CondParam& params = nnvm::get(attrs.parsed); return OpStatePtr::Create( @@ -1279,7 +1279,7 @@ NNVM_REGISTER_OP(_foreach) }) .set_attr("FGradient", ForeachGradient) .set_attr("FCreateOpState", CreateForeachState) -.set_attr("FInferShape", ForeachShape) +.set_attr("FInferShape", ForeachShape) .set_attr("FInferType", ForeachType) .set_attr("FStatefulComputeEx", ForeachComputeExCPU) // Foreach operator works like an executor. Its code will always run on CPU. @@ -1342,7 +1342,7 @@ NNVM_REGISTER_OP(_while_loop) }) .set_attr("FGradient", WhileLoopGradient) .set_attr("FCreateOpState", CreateWhileLoopState) -.set_attr("FInferShape", WhileLoopShape) +.set_attr("FInferShape", WhileLoopShape) .set_attr("FInferType", WhileLoopType) .set_attr("FStatefulComputeEx", WhileLoopComputeExCPU) .set_attr("FExecType", [](const NodeAttrs& attrs) { @@ -1405,7 +1405,7 @@ NNVM_REGISTER_OP(_cond) }) .set_attr("FGradient", CondGradient) .set_attr("FCreateOpState", CreateCondState) -.set_attr("FInferShape", CondShape) +.set_attr("FInferShape", CondShape) .set_attr("FInferType", CondType) .set_attr("FStatefulComputeEx", CondComputeExCPU) .set_attr("FExecType", [](const NodeAttrs& attrs) { diff --git a/src/operator/convolution_v1-inl.h b/src/operator/convolution_v1-inl.h index 758ce12d8006..ed6748a9c85c 100644 --- a/src/operator/convolution_v1-inl.h +++ b/src/operator/convolution_v1-inl.h @@ -51,10 +51,10 @@ enum ConvolutionV1OpCudnnTune {kOff, kLimited, kFastest}; } struct ConvolutionV1Param : public dmlc::Parameter { - TShape kernel; - TShape stride; - TShape dilate; - TShape pad; + mxnet::TShape kernel; + mxnet::TShape stride; + mxnet::TShape dilate; + mxnet::TShape pad; uint32_t num_filter; uint32_t num_group; uint64_t workspace; @@ -64,11 +64,11 @@ struct ConvolutionV1Param : public dmlc::Parameter { dmlc::optional layout; DMLC_DECLARE_PARAMETER(ConvolutionV1Param) { DMLC_DECLARE_FIELD(kernel).describe("convolution kernel size: (h, w) or (d, h, w)"); - DMLC_DECLARE_FIELD(stride).set_default(TShape()) + DMLC_DECLARE_FIELD(stride).set_default(mxnet::TShape()) .describe("convolution stride: (h, w) or (d, h, w)"); - DMLC_DECLARE_FIELD(dilate).set_default(TShape()) + DMLC_DECLARE_FIELD(dilate).set_default(mxnet::TShape()) .describe("convolution dilate: (h, w) or (d, h, w)"); - DMLC_DECLARE_FIELD(pad).set_default(TShape()) + DMLC_DECLARE_FIELD(pad).set_default(mxnet::TShape()) .describe("pad for convolution: (h, w) or (d, h, w)"); DMLC_DECLARE_FIELD(num_filter).set_range(1, 100000) .describe("convolution filter(channel) number"); @@ -357,8 +357,8 @@ class ConvolutionV1Op : public Operator { template Operator* CreateOp(ConvolutionV1Param param, int dtype, - std::vector *in_shape, - std::vector *out_shape, + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, Context ctx); #if DMLC_USE_CXX11 @@ -393,9 +393,9 @@ class ConvolutionV1Prop : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; if (!param_.no_bias) { CHECK_EQ(in_shape->size(), 3U) << "Input:[data, weight, bias]"; @@ -403,8 +403,8 @@ class ConvolutionV1Prop : public OperatorProperty { CHECK_EQ(in_shape->size(), 2U) << "Input:[data, weight]"; } // CHECK_EQ(out_shape->size(), 1) << "Output: [output]"; - out_shape->resize(1, TShape()); - const TShape &dshp = (*in_shape)[conv_v1::kData]; + out_shape->resize(1, mxnet::TShape()); + const mxnet::TShape &dshp = (*in_shape)[conv_v1::kData]; if (dshp.ndim() == 0) return false; if (param_.kernel.ndim() == 2) { // 2d conv_v1 @@ -530,12 +530,12 @@ class ConvolutionV1Prop : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -544,7 +544,7 @@ class ConvolutionV1Prop : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/convolution_v1.cc b/src/operator/convolution_v1.cc index b6250a7a77f5..723dc867f52f 100644 --- a/src/operator/convolution_v1.cc +++ b/src/operator/convolution_v1.cc @@ -35,8 +35,8 @@ DMLC_REGISTER_PARAMETER(ConvolutionV1Param); template<> Operator* CreateOp(ConvolutionV1Param param, int dtype, - std::vector *in_shape, - std::vector *out_shape, + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, Context ctx) { Operator *op = nullptr; MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { @@ -47,9 +47,9 @@ Operator* CreateOp(ConvolutionV1Param param, int dtype, // DO_BIND_DISPATCH comes from operator_common.h Operator *ConvolutionV1Prop::CreateOperatorEx(Context ctx, - std::vector *in_shape, + mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferType(in_type, &out_type, &aux_type)); CHECK(InferShape(in_shape, &out_shape, &aux_shape)); diff --git a/src/operator/convolution_v1.cu b/src/operator/convolution_v1.cu index f3928ab451b6..81cf7f5b9ee4 100644 --- a/src/operator/convolution_v1.cu +++ b/src/operator/convolution_v1.cu @@ -34,8 +34,8 @@ namespace mxnet { namespace op { template<> Operator* CreateOp(ConvolutionV1Param param, int dtype, - std::vector *in_shape, - std::vector *out_shape, + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, Context ctx) { Operator *op = NULL; MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { diff --git a/src/operator/correlation-inl.h b/src/operator/correlation-inl.h index e1cc972d3bbb..3c7422365056 100644 --- a/src/operator/correlation-inl.h +++ b/src/operator/correlation-inl.h @@ -186,13 +186,13 @@ void Init(const std::vector >& kwargs) overr std::map GetParams() const override { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 2U) << "Input:[data1, data2]"; - TShape dshape1 = in_shape->at(Correlation::kData1); - TShape dshape2 = in_shape->at(Correlation::kData2); + mxnet::TShape dshape1 = in_shape->at(Correlation::kData1); + mxnet::TShape dshape2 = in_shape->at(Correlation::kData2); CHECK_EQ(dshape1.ndim(), 4U) << "data should be a 4D tensor"; CHECK_EQ(dshape2.ndim(), 4U) << "data should be a 4D tensor"; int paddedbottomheight; @@ -266,7 +266,7 @@ void Init(const std::vector >& kwargs) overr return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/correlation.cc b/src/operator/correlation.cc index d0c664ad4f9c..30a147177687 100644 --- a/src/operator/correlation.cc +++ b/src/operator/correlation.cc @@ -155,7 +155,7 @@ Operator *CreateOp(CorrelationParam param, int dtype) { }); return op; } -Operator* CorrelationProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator* CorrelationProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, in_type->at(0)); } diff --git a/src/operator/crop-inl.h b/src/operator/crop-inl.h index b6e49975bd1c..325807abb44e 100644 --- a/src/operator/crop-inl.h +++ b/src/operator/crop-inl.h @@ -45,8 +45,8 @@ enum CropOpOutputs {kOut}; struct CropParam : public dmlc::Parameter { int num_args; - TShape offset; - TShape h_w; + mxnet::TShape offset; + mxnet::TShape h_w; bool center_crop; DMLC_DECLARE_PARAMETER(CropParam) { DMLC_DECLARE_FIELD(num_args).set_range(1, 3) @@ -54,9 +54,9 @@ struct CropParam : public dmlc::Parameter { "for crop height and width, else if equals two, then we will use the height" "and width of the second input symbol, we name crop_like here"); int shape[] = {0, 0}; - DMLC_DECLARE_FIELD(offset).set_default(TShape(shape, shape + 2)) + DMLC_DECLARE_FIELD(offset).set_default(mxnet::TShape(shape, shape + 2)) .describe("crop offset coordinate: (y, x)"); - DMLC_DECLARE_FIELD(h_w).set_default(TShape(shape, shape + 2)) + DMLC_DECLARE_FIELD(h_w).set_default(mxnet::TShape(shape, shape + 2)) .describe("crop height and width: (h, w)"); DMLC_DECLARE_FIELD(center_crop).set_default(false) .describe("If set to true, then it will use be the center_crop," @@ -169,12 +169,12 @@ class CropProp : public OperatorProperty { return ret; } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), static_cast(param_.num_args)); - TShape data_shape = in_shape->at(crop_enum::kData); + mxnet::TShape data_shape = in_shape->at(crop_enum::kData); if (data_shape.ndim() == 0) return false; CHECK_EQ(data_shape.ndim(), 4U) << \ "Input data should be 4D in batch-num_filter-y-x"; @@ -191,7 +191,7 @@ class CropProp : public OperatorProperty { crop_shape.push_back(param_.h_w[0]); crop_shape.push_back(param_.h_w[1]); } else if (param_.num_args == 2) { - TShape crop_like_shape = in_shape->at(crop_enum::kCropLike); + mxnet::TShape crop_like_shape = in_shape->at(crop_enum::kCropLike); crop_shape.push_back(crop_like_shape[2]); crop_shape.push_back(crop_like_shape[3]); } diff --git a/src/operator/cross_device_copy.cc b/src/operator/cross_device_copy.cc index 08a7d52a9ac4..f8c7ced5058d 100644 --- a/src/operator/cross_device_copy.cc +++ b/src/operator/cross_device_copy.cc @@ -49,11 +49,11 @@ class CrossDeviceCopyProp : public OperatorProperty { return std::map(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { CHECK_EQ(in_shape->size(), 1) << "Input:[data]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; out_shape->clear(); out_shape->push_back(dshape); diff --git a/src/operator/custom/custom.cc b/src/operator/custom/custom.cc index 2643abbe9e5f..39cca4d7c436 100644 --- a/src/operator/custom/custom.cc +++ b/src/operator/custom/custom.cc @@ -128,8 +128,8 @@ void AttrParser(NodeAttrs* attrs) { } bool InferShape(const NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { const CustomParam& params = nnvm::get(attrs.parsed); size_t total = params.num_args + params.num_outs + params.num_auxs; @@ -153,19 +153,19 @@ bool InferShape(const NodeAttrs& attrs, params.info->contexts[kCustomOpPropInferShape])); for (size_t i = 0; i < params.num_args; ++i) { - SHAPE_ASSIGN_CHECK(*in_shape, i, TShape(shapes[i], shapes[i]+ndims[i])); + SHAPE_ASSIGN_CHECK(*in_shape, i, mxnet::TShape(shapes[i], shapes[i]+ndims[i])); } size_t base = params.num_args; for (size_t i = 0; i < params.num_outs; ++i) { SHAPE_ASSIGN_CHECK(*out_shape, i, - TShape(shapes[base+i], shapes[base+i]+ndims[base+i])); + mxnet::TShape(shapes[base+i], shapes[base+i]+ndims[base+i])); } base = params.num_args + params.num_outs; for (size_t i = 0; i < params.num_auxs; ++i) { SHAPE_ASSIGN_CHECK(*in_shape, params.num_args+i, - TShape(shapes[base+i], shapes[base+i]+ndims[base+i])); + mxnet::TShape(shapes[base+i], shapes[base+i]+ndims[base+i])); } return true; } @@ -255,7 +255,7 @@ std::vector Gradient( OpStatePtr CreateState(const NodeAttrs& attrs, Context ctx, - const std::vector& in_shape, + const mxnet::ShapeVector& in_shape, const std::vector& in_type) { const CustomParam& params = nnvm::get(attrs.parsed); @@ -554,7 +554,7 @@ Please check the tutorial here: http://mxnet.io/faq/new_op.html. return params.num_outs; }) .set_attr_parser(AttrParser) -.set_attr("FInferShape", InferShape) +.set_attr("FInferShape", InferShape) .set_attr("FInferType", InferType) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { std::vector args = List(attrs); diff --git a/src/operator/custom/native_op-inl.h b/src/operator/custom/native_op-inl.h index 8da04abc0a39..6fbbae18afe8 100644 --- a/src/operator/custom/native_op-inl.h +++ b/src/operator/custom/native_op-inl.h @@ -130,13 +130,13 @@ class NativeOp : public Operator { std::vector shapes; std::vector shapes_buffer_; std::vector tags; - std::map > > buffer_map; + std::map > > buffer_map; virtual void SyncBuffer(const TBlob &tblob, const std::string &name, mshadow::Stream *stream) { using namespace mshadow; - std::map > >::iterator buffer = + std::map > >::iterator buffer = buffer_map.find(name); if (buffer == buffer_map.end() || buffer->second.first != tblob.shape_) { if (buffer != buffer_map.end()) { @@ -144,7 +144,7 @@ class NativeOp : public Operator { buffer_map.erase(buffer); } buffer_map[name] = - std::pair >(tblob.shape_, + std::pair >(tblob.shape_, NewTensor(tblob.shape_.FlatTo2D(), 0.0f, false)); @@ -220,9 +220,9 @@ class NativeOpProp : public OperatorProperty { } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { std::vector shapes; std::vector ndims; size_t size = 0; @@ -239,11 +239,11 @@ class NativeOpProp : public OperatorProperty { param_.pinfo->infer_shape(shapes.size(), ndims.data(), shapes.data(), param_.pinfo->p_infer_shape); for (unsigned i = 0; i < in_shape->size(); ++i) { - SHAPE_ASSIGN_CHECK(*in_shape, i, TShape(shapes[i], shapes[i]+ndims[i])); + SHAPE_ASSIGN_CHECK(*in_shape, i, mxnet::TShape(shapes[i], shapes[i]+ndims[i])); } out_shape->clear(); for (unsigned i = param_.num_inputs_; i < shapes.size(); ++i) { - out_shape->push_back(TShape(shapes[i], shapes[i]+ndims[i])); + out_shape->push_back(mxnet::TShape(shapes[i], shapes[i]+ndims[i])); } return true; } diff --git a/src/operator/custom/ndarray_op-inl.h b/src/operator/custom/ndarray_op-inl.h index 5490747d7d4d..4973be9a1e3d 100644 --- a/src/operator/custom/ndarray_op-inl.h +++ b/src/operator/custom/ndarray_op-inl.h @@ -122,9 +122,9 @@ class NDArrayOpProp : public OperatorProperty { } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { std::vector shapes; std::vector ndims; size_t size = 0; @@ -141,11 +141,11 @@ class NDArrayOpProp : public OperatorProperty { CHECK(param_.pinfo->infer_shape(shapes.size(), ndims.data(), shapes.data(), param_.pinfo->p_infer_shape)); for (unsigned i = 0; i < in_shape->size(); ++i) { - SHAPE_ASSIGN_CHECK(*in_shape, i, TShape(shapes[i], shapes[i]+ndims[i])); + SHAPE_ASSIGN_CHECK(*in_shape, i, mxnet::TShape(shapes[i], shapes[i]+ndims[i])); } out_shape->clear(); for (unsigned i = param_.num_inputs_; i < shapes.size(); ++i) { - out_shape->push_back(TShape(shapes[i], shapes[i]+ndims[i])); + out_shape->push_back(mxnet::TShape(shapes[i], shapes[i]+ndims[i])); } return true; } diff --git a/src/operator/elemwise_op_common.h b/src/operator/elemwise_op_common.h index e622ce216ad0..2edaa55540c1 100644 --- a/src/operator/elemwise_op_common.h +++ b/src/operator/elemwise_op_common.h @@ -160,16 +160,16 @@ inline bool ElemwiseAttr(const nnvm::NodeAttrs& attrs, template inline bool ElemwiseShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { if (n_in != -1) { CHECK_EQ(in_attrs->size(), static_cast(n_in)) << " in operator " << attrs.name; } if (n_out != -1) { CHECK_EQ(out_attrs->size(), static_cast(n_out)) << " in operator " << attrs.name; } - return ElemwiseAttr( - attrs, in_attrs, out_attrs, TShape()); + return ElemwiseAttr( + attrs, in_attrs, out_attrs, mxnet::TShape()); } template diff --git a/src/operator/grid_generator-inl.h b/src/operator/grid_generator-inl.h index 258ec9ae9571..9083ae1009bc 100644 --- a/src/operator/grid_generator-inl.h +++ b/src/operator/grid_generator-inl.h @@ -50,7 +50,7 @@ enum GridGeneratorTransformType {kAffine, kWarp}; struct GridGeneratorParam : public dmlc::Parameter { int transform_type; - TShape target_shape; + mxnet::TShape target_shape; DMLC_DECLARE_PARAMETER(GridGeneratorParam) { int shape[] = {0, 0}; DMLC_DECLARE_FIELD(transform_type) @@ -59,7 +59,7 @@ struct GridGeneratorParam : public dmlc::Parameter { .describe("The type of transformation. For `affine`, input data should be an affine matrix " "of size (batch, 6). For `warp`, input data should be an optical flow of size " "(batch, 2, h, w)."); - DMLC_DECLARE_FIELD(target_shape).set_default(TShape(shape, shape + 2)) + DMLC_DECLARE_FIELD(target_shape).set_default(mxnet::TShape(shape, shape + 2)) .describe("Specifies the output shape (H, W). This is required if transformation type is " "`affine`. If transformation type is `warp`, this parameter is ignored."); } @@ -126,7 +126,7 @@ class GridGeneratorOp : public Operator { Assign(out, req[grid::kOut], (data + broadcast_with_axis(grid_dst, -1, data.shape_[0])) / broadcast_to(reshape(workspace, Shape4(1, 2, 1, 1)), - TShape(data.shape_)) - scalar(1)); + mxnet::TShape(data.shape_)) - scalar(1)); break; } } @@ -169,7 +169,7 @@ class GridGeneratorOp : public Operator { workspace[1] = scalar((DType(gdata.size(2)) - 1.0) / 2.0); Assign(gdata, req[grid::kData], grad / broadcast_to(reshape(workspace, Shape4(1, 2, 1, 1)), - TShape(gdata.shape_))); + mxnet::TShape(gdata.shape_))); break; } } @@ -209,12 +209,12 @@ class GridGeneratorProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 1U) << "Input:[data]"; - const TShape &lshape = (*in_shape)[grid::kData]; + const mxnet::TShape &lshape = (*in_shape)[grid::kData]; if (lshape.ndim() == 0) return false; out_shape->clear(); switch (param_.transform_type) { @@ -300,7 +300,7 @@ class GridGeneratorProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { switch (param_.transform_type) { case grid::kAffine: { return{}; @@ -313,7 +313,7 @@ class GridGeneratorProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { switch (param_.transform_type) { case grid::kAffine: { return {}; @@ -330,7 +330,7 @@ class GridGeneratorProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/grid_generator.cc b/src/operator/grid_generator.cc index 96ec5d5a7e7a..b1b6025b01be 100644 --- a/src/operator/grid_generator.cc +++ b/src/operator/grid_generator.cc @@ -39,7 +39,7 @@ Operator* CreateOp(GridGeneratorParam param, int dtype) { return op; } -Operator *GridGeneratorProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *GridGeneratorProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]); } diff --git a/src/operator/identity_attach_KL_sparse_reg-inl.h b/src/operator/identity_attach_KL_sparse_reg-inl.h index 591ea5956383..764853115a2c 100644 --- a/src/operator/identity_attach_KL_sparse_reg-inl.h +++ b/src/operator/identity_attach_KL_sparse_reg-inl.h @@ -129,12 +129,12 @@ class IdentityAttachKLSparseRegProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 1U); - const TShape &dshape = in_shape->at(sparsereg::kData); + const mxnet::TShape &dshape = in_shape->at(sparsereg::kData); if (dshape.ndim() == 0) return false; out_shape->clear(); out_shape->push_back(dshape); @@ -179,7 +179,7 @@ class IdentityAttachKLSparseRegProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } diff --git a/src/operator/image/image_random-inl.h b/src/operator/image/image_random-inl.h index 0f4d173be79a..c37324678120 100644 --- a/src/operator/image/image_random-inl.h +++ b/src/operator/image/image_random-inl.h @@ -87,21 +87,21 @@ void NormalizeBackwardImplCUDA(mshadow::Stream *s, // Shape and Type inference for image to tensor operator inline bool ToTensorShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); - TShape &shp = (*in_attrs)[0]; + mxnet::TShape &shp = (*in_attrs)[0]; if (!shp.ndim()) return false; CHECK((shp.ndim() == 3) || (shp.ndim() == 4)) << "Input image must have shape (height, width, channels), or " << "(N, height, width, channels) but got " << shp; if (shp.ndim() == 3) { - SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape({shp[2], shp[0], shp[1]})); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape({shp[2], shp[0], shp[1]})); } else if (shp.ndim() == 4) { - SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape({shp[0], shp[3], shp[1], shp[2]})); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape({shp[0], shp[3], shp[1], shp[2]})); } return true; @@ -234,8 +234,8 @@ struct NormalizeParam : public dmlc::Parameter { // Shape inference inline bool NormalizeOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const NormalizeParam ¶m = nnvm::get(attrs.parsed); const auto& dshape = (*in_attrs)[0]; @@ -532,9 +532,9 @@ inline uint8_t saturate_cast(const float& src) { } inline bool ImageShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { - TShape& dshape = (*in_attrs)[0]; + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { + mxnet::TShape& dshape = (*in_attrs)[0]; CHECK_EQ(dshape.ndim(), 3) << "Input image must have shape (height, width, channels), but got " << dshape; auto nchannels = dshape[dshape.ndim()-1]; @@ -546,7 +546,7 @@ inline bool ImageShape(const nnvm::NodeAttrs& attrs, } template -void FlipImpl(const TShape &shape, DType *src, DType *dst) { +void FlipImpl(const mxnet::TShape &shape, DType *src, DType *dst) { int head = 1, mid = shape[axis], tail = 1; for (int i = 0; i < axis; ++i) head *= shape[i]; for (uint32_t i = axis+1; i < shape.ndim(); ++i) tail *= shape[i]; @@ -1067,7 +1067,7 @@ inline void RandomLighting(const nnvm::NodeAttrs &attrs, [](const NodeAttrs& attrs){ \ return std::vector >{{0, 0}}; \ }) \ - .set_attr("FInferShape", ImageShape) \ + .set_attr("FInferShape", ImageShape) \ .set_attr("FInferType", ElemwiseType<1, 1>) \ .set_attr("FGradient", ElemwiseGradUseNone{ "_copy" }) \ .add_argument("data", "NDArray-or-Symbol", "The input.") diff --git a/src/operator/image/image_random.cc b/src/operator/image/image_random.cc index 810bffbdd7bb..0b95b198ae64 100644 --- a/src/operator/image/image_random.cc +++ b/src/operator/image/image_random.cc @@ -95,7 +95,7 @@ with values in the range [0, 1) [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", ToTensorShape) +.set_attr("FInferShape", ToTensorShape) .set_attr("FInferType", ToTensorType) .set_attr("FCompute", ToTensorOpForward) .set_attr("FGradient", ElemwiseGradUseNone{ "_copy" }) @@ -170,7 +170,7 @@ NNVM_REGISTER_OP(_image_normalize) [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", NormalizeOpShape) +.set_attr("FInferShape", NormalizeOpShape) .set_attr("FInferType", NormalizeOpType) .set_attr("FCompute", NormalizeOpForward) .set_attr("FInplaceOption", diff --git a/src/operator/image/resize-inl.h b/src/operator/image/resize-inl.h index 3e1310068073..de2189838d76 100644 --- a/src/operator/image/resize-inl.h +++ b/src/operator/image/resize-inl.h @@ -113,8 +113,8 @@ inline SizeParam GetHeightAndWidth(int data_h, } inline bool ResizeShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { // input attrs should only be (h, w, c) or (n, h, w, c) CHECK((in_attrs->at(0).ndim() == 3U) || (in_attrs->at(0).ndim() == 4U)) << "Input image dimension should be 3 or 4 but got " @@ -124,11 +124,11 @@ inline bool ResizeShape(const nnvm::NodeAttrs& attrs, SizeParam size; if (ishape.ndim() == 3) { size = GetHeightAndWidth(ishape[H], ishape[W], param); - SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape({size.height, size.width, ishape[C]})); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape({size.height, size.width, ishape[C]})); } else { size = GetHeightAndWidth(ishape[kH], ishape[kW], param); SHAPE_ASSIGN_CHECK(*out_attrs, 0, - TShape({ishape[N], size.height, size.width, ishape[kC]})); + mxnet::TShape({ishape[N], size.height, size.width, ishape[kC]})); } return true; } diff --git a/src/operator/image/resize.cc b/src/operator/image/resize.cc index d3b28f08008f..d93769faa8b3 100644 --- a/src/operator/image/resize.cc +++ b/src/operator/image/resize.cc @@ -71,7 +71,7 @@ to the given size .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ResizeShape) +.set_attr("FInferShape", ResizeShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FCompute", Resize) .set_attr("FGradient", ElemwiseGradUseNone{ "_copy" }) diff --git a/src/operator/instance_norm-inl.h b/src/operator/instance_norm-inl.h index 258c164450d0..b7e579e2d066 100644 --- a/src/operator/instance_norm-inl.h +++ b/src/operator/instance_norm-inl.h @@ -203,15 +203,15 @@ class InstanceNormProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 3U) << "Input:[data]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; - in_shape->at(1) = TShape(Shape1(dshape[1])); - in_shape->at(2) = TShape(Shape1(dshape[1])); + in_shape->at(1) = mxnet::TShape(Shape1(dshape[1])); + in_shape->at(2) = mxnet::TShape(Shape1(dshape[1])); out_shape->clear(); out_shape->push_back(dshape); out_shape->push_back(Shape2(dshape[0], dshape[1])); @@ -236,7 +236,7 @@ class InstanceNormProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -257,7 +257,7 @@ class InstanceNormProp : public OperatorProperty { return NULL; } - Operator *CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator *CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/instance_norm.cc b/src/operator/instance_norm.cc index 9305a74b0e07..53bc7c986d9e 100644 --- a/src/operator/instance_norm.cc +++ b/src/operator/instance_norm.cc @@ -35,7 +35,7 @@ Operator* CreateOp(InstanceNormParam param, int dtype) { // DO_BIND_DISPATCH comes from operator_common.h Operator* InstanceNormProp::CreateOperatorEx(Context ctx, - std::vector* in_shape, + mxnet::ShapeVector* in_shape, std::vector* in_type) const { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]); } diff --git a/src/operator/l2_normalization-inl.h b/src/operator/l2_normalization-inl.h index c7e71424ada9..975e81f78c25 100644 --- a/src/operator/l2_normalization-inl.h +++ b/src/operator/l2_normalization-inl.h @@ -85,7 +85,7 @@ class L2NormalizationOp : public Operator { CHECK_EQ(in_data.size(), 1U); CHECK_EQ(out_data.size(), 2U); Stream *s = ctx.get_stream(); - TShape orig_shape = in_data[l2_normalization::kData].shape_; + mxnet::TShape orig_shape = in_data[l2_normalization::kData].shape_; if (param_.mode == l2_normalization::kInstance) { Shape<2> dshape = Shape2(orig_shape[0], orig_shape.ProdShape(1, orig_shape.ndim())); @@ -156,7 +156,7 @@ class L2NormalizationOp : public Operator { CHECK_EQ(req.size(), 1U); Stream *s = ctx.get_stream(); - TShape orig_shape = out_data[l2_normalization::kOut].shape_; + mxnet::TShape orig_shape = out_data[l2_normalization::kOut].shape_; if (param_.mode == l2_normalization::kInstance) { Shape<2> dshape = Shape2(orig_shape[0], orig_shape.ProdShape(1, orig_shape.ndim())); @@ -260,12 +260,12 @@ class L2NormalizationProp : public OperatorProperty { return dtype != -1; } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 1U) << "L2Normalization layer only accepts data as input"; - const TShape &dshape = (*in_shape)[l2_normalization::kData]; + const mxnet::TShape &dshape = (*in_shape)[l2_normalization::kData]; // require data to be known if ((*in_shape)[l2_normalization::kData].ndim() == 0) return false; out_shape->clear(); @@ -274,7 +274,7 @@ class L2NormalizationProp : public OperatorProperty { out_shape->push_back(Shape1(dshape[0])); } else if (param_.mode == l2_normalization::kChannel) { CHECK_GE(dshape.ndim(), 3U) << "At lease 3 dimensions required in channel mode"; - TShape norm_shape = dshape; + mxnet::TShape norm_shape = dshape; norm_shape[1] = 1; out_shape->push_back(norm_shape); } else if (param_.mode == l2_normalization::kSpatial) { @@ -315,7 +315,7 @@ class L2NormalizationProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -324,7 +324,7 @@ class L2NormalizationProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/l2_normalization.cc b/src/operator/l2_normalization.cc index 6801a0a20576..92307af814d2 100644 --- a/src/operator/l2_normalization.cc +++ b/src/operator/l2_normalization.cc @@ -48,7 +48,7 @@ class L2NormalizationOpCPU : public L2NormalizationOp { CHECK_EQ(in_data.size(), 1U); CHECK_EQ(out_data.size(), 2U); Stream *s = ctx.get_stream(); - TShape orig_shape = in_data[l2_normalization::kData].shape_; + mxnet::TShape orig_shape = in_data[l2_normalization::kData].shape_; auto omp_threads = engine::OpenMP::Get()->GetRecommendedOMPThreadCount(); if (this->param_.mode == l2_normalization::kInstance) { Shape<2> dshape = Shape2(orig_shape[0], @@ -133,7 +133,7 @@ Operator* CreateOp(L2NormalizationParam param, int dtype) { } // DO_BIND_DISPATCH comes from static_operator_common.h -Operator* L2NormalizationProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator* L2NormalizationProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, this->param_, in_type->at(0)); } diff --git a/src/operator/leaky_relu-inl.h b/src/operator/leaky_relu-inl.h index fe2668959af1..c7fa3f0443ee 100644 --- a/src/operator/leaky_relu-inl.h +++ b/src/operator/leaky_relu-inl.h @@ -111,9 +111,9 @@ class LeakyReLUOp : public Operator { break; } case leakyrelu::kPReLU: { - TShape gshape = expand_shape(in_data[leakyrelu::kGamma].shape_, + mxnet::TShape gshape = expand_shape(in_data[leakyrelu::kGamma].shape_, in_data[leakyrelu::kData].shape_); - TShape new_lshape, new_rshape, new_oshape; + mxnet::TShape new_lshape, new_rshape, new_oshape; const int ndim = op::BinaryBroadcastShapeCompact(in_data[leakyrelu::kData].shape_, gshape, out_data[leakyrelu::kOut].shape_, @@ -237,9 +237,9 @@ class LeakyReLUOp : public Operator { break; } case leakyrelu::kPReLU: { - TShape gshape = expand_shape(in_grad[leakyrelu::kGamma].shape_, + mxnet::TShape gshape = expand_shape(in_grad[leakyrelu::kGamma].shape_, in_grad[leakyrelu::kData].shape_); - TShape new_lshape, new_rshape, new_oshape; + mxnet::TShape new_lshape, new_rshape, new_oshape; const bool need_bc = BinaryBroadcastShapeCompact(in_grad[leakyrelu::kData].shape_, gshape, out_grad[leakyrelu::kOut].shape_, @@ -297,8 +297,8 @@ class LeakyReLUOp : public Operator { static MSHADOW_XINLINE size_t minthree(const size_t a, const size_t b, const size_t c) { return a < b ? (a < c ? a : c) : (b < c ? b : c); } - static inline TShape expand_shape(const TShape& src, const TShape& dst) { - TShape result(dst.ndim()); + static inline mxnet::TShape expand_shape(const mxnet::TShape& src, const mxnet::TShape& dst) { + mxnet::TShape result(dst.ndim()); int s = src.ndim() - 1; for (int i = dst.ndim() - 1; i >= 0; i--) { if (s >= 0 && i <= 1 && (dst[i] == src[s] || src[s] == 1)) { @@ -328,21 +328,21 @@ class LeakyReLUProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; if (param_.act_type == leakyrelu::kPReLU) { CHECK_EQ(in_shape->size(), 2U) << "Input:[data, gamma]"; } else { CHECK_EQ(in_shape->size(), 1U) << "Input:[data]"; } - const TShape &dshape = in_shape->at(leakyrelu::kData); + const mxnet::TShape &dshape = in_shape->at(leakyrelu::kData); if (dshape.ndim() == 0) return false; if (param_.act_type == leakyrelu::kPReLU) { - const TShape &gshape = in_shape->at(leakyrelu::kGamma); + const mxnet::TShape &gshape = in_shape->at(leakyrelu::kGamma); if (gshape.ndim() == 0) { - in_shape->at(leakyrelu::kGamma) = TShape(Shape1(dshape[1])); + in_shape->at(leakyrelu::kGamma) = mxnet::TShape(Shape1(dshape[1])); } if (dshape == gshape) { SHAPE_ASSIGN_CHECK(*out_shape, 0, dshape); @@ -450,7 +450,7 @@ class LeakyReLUProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { if (param_.act_type == leakyrelu::kRReLU) { return {ResourceRequest::kRandom}; } else { @@ -459,7 +459,7 @@ class LeakyReLUProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -468,7 +468,7 @@ class LeakyReLUProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/leaky_relu.cc b/src/operator/leaky_relu.cc index 45f9511c9085..214e41a84611 100644 --- a/src/operator/leaky_relu.cc +++ b/src/operator/leaky_relu.cc @@ -38,7 +38,7 @@ Operator *CreateOp(LeakyReLUParam param, int dtype) { return op; } -Operator *LeakyReLUProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *LeakyReLUProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, in_type->at(0)); } diff --git a/src/operator/loss_binary_op-inl.h b/src/operator/loss_binary_op-inl.h index 1362997231a0..a3853c56359a 100644 --- a/src/operator/loss_binary_op-inl.h +++ b/src/operator/loss_binary_op-inl.h @@ -35,15 +35,15 @@ namespace op { // return a shape of scalar inline bool SoftmaxCrossEntropyShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ((*in_attrs)[0].ndim(), 2U) << "SoftmaxCrossEntropy only accept 2D data"; CHECK_EQ((*in_attrs)[1].ndim(), 1U) << "SoftmaxCrossEntropy only accept 1D label"; CHECK_EQ((*in_attrs)[0][0], (*in_attrs)[1][0]) << "SoftmaxCrossEntropy: data label shape mismatch"; - SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape(1)); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape(1)); return true; } diff --git a/src/operator/loss_binary_op.cc b/src/operator/loss_binary_op.cc index df8576cfbb83..696c8589a0dc 100644 --- a/src/operator/loss_binary_op.cc +++ b/src/operator/loss_binary_op.cc @@ -59,7 +59,7 @@ Example:: )code" ADD_FILELINE) .set_num_inputs(2) .set_num_outputs(1) -.set_attr("FInferShape", SoftmaxCrossEntropyShape) +.set_attr("FInferShape", SoftmaxCrossEntropyShape) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FResourceRequest", [](const NodeAttrs& attrs) { diff --git a/src/operator/make_loss-inl.h b/src/operator/make_loss-inl.h index b83e5b9b687b..d6f14b1f2d85 100644 --- a/src/operator/make_loss-inl.h +++ b/src/operator/make_loss-inl.h @@ -136,12 +136,12 @@ class MakeLossProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 1U); - const TShape &dshape = in_shape->at(make_loss_enum::kData); + const mxnet::TShape &dshape = in_shape->at(make_loss_enum::kData); if (dshape.ndim() == 0) return false; out_shape->clear(); out_shape->push_back(dshape); @@ -180,7 +180,7 @@ class MakeLossProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { if (param_.normalization == make_loss_enum::kValid) { return {ResourceRequest::kTempSpace}; } @@ -198,7 +198,7 @@ class MakeLossProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/make_loss.cc b/src/operator/make_loss.cc index 7e45f4ce4ff4..950f17ed955e 100644 --- a/src/operator/make_loss.cc +++ b/src/operator/make_loss.cc @@ -35,9 +35,9 @@ Operator *CreateOp(MakeLossParam param, int dtype) { return op; } -Operator *MakeLossProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *MakeLossProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferType(in_type, &out_type, &aux_type)); CHECK(InferShape(in_shape, &out_shape, &aux_shape)); diff --git a/src/operator/nn/activation.cc b/src/operator/nn/activation.cc index fb920c31ce37..10e736258ab1 100644 --- a/src/operator/nn/activation.cc +++ b/src/operator/nn/activation.cc @@ -191,7 +191,7 @@ NNVM_REGISTER_OP(_backward_Activation) #if MXNET_USE_MKLDNN == 1 .set_attr("FInferStorageType", BackwardActStorageType) #endif -.set_attr("FInferShape", ElemwiseShape<-1, 1>) +.set_attr("FInferShape", ElemwiseShape<-1, 1>) .set_attr("FInferType", ElemwiseType<-1, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs){ return std::vector >{{0, 0}}; diff --git a/src/operator/nn/batch_norm-inl.h b/src/operator/nn/batch_norm-inl.h index 3f47d58bb8c3..70e91c164090 100644 --- a/src/operator/nn/batch_norm-inl.h +++ b/src/operator/nn/batch_norm-inl.h @@ -304,7 +304,7 @@ class BNTensor3 { } } - inline BNTensor3(DType *p, const TShape& shape, const int indexOfChannel) + inline BNTensor3(DType *p, const mxnet::TShape& shape, const int indexOfChannel) : dptr_(p) , indexOfChannel_(static_cast(indexOfChannel < 0 ? (static_cast(shape.ndim()) + indexOfChannel) @@ -393,7 +393,7 @@ class BNTensor3 { size_t shape_[COUNT]; }; -inline int GetRealAxis(const TShape& shape, int axis) { +inline int GetRealAxis(const mxnet::TShape& shape, int axis) { if (axis < 0) { axis += shape.ndim(); } diff --git a/src/operator/nn/batch_norm.cc b/src/operator/nn/batch_norm.cc index 6254a1e18662..511fe455e946 100644 --- a/src/operator/nn/batch_norm.cc +++ b/src/operator/nn/batch_norm.cc @@ -317,13 +317,13 @@ void BatchNormBackwardImpl(mshadow::Stream *, DMLC_REGISTER_PARAMETER(BatchNormParam); static bool BatchNormShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { const BatchNormParam& param = nnvm::get(attrs.parsed); using namespace mshadow; CHECK_EQ(in_shape->size(), 5U) << "Input:[data, gamma, beta, MovingMean, MovingVar]"; CHECK_EQ(out_shape->size(), 3U); - const TShape &dshape = in_shape->at(batchnorm::kData); + const mxnet::TShape &dshape = in_shape->at(batchnorm::kData); const size_t channelAxis = static_cast(param.axis < 0 ? static_cast(dshape.ndim()) + param.axis @@ -336,10 +336,10 @@ static bool BatchNormShape(const nnvm::NodeAttrs& attrs, return false; } - in_shape->at(batchnorm::kGamma) = TShape(Shape1(channelCount)); - in_shape->at(batchnorm::kBeta) = TShape(Shape1(channelCount)); - in_shape->at(batchnorm::kInMovingMean) = TShape(Shape1(channelCount)); // kMovingMean - in_shape->at(batchnorm::kInMovingVar) = TShape(Shape1(channelCount)); // kMovingVar + in_shape->at(batchnorm::kGamma) = mxnet::TShape(Shape1(channelCount)); + in_shape->at(batchnorm::kBeta) = mxnet::TShape(Shape1(channelCount)); + in_shape->at(batchnorm::kInMovingMean) = mxnet::TShape(Shape1(channelCount)); // kMovingMean + in_shape->at(batchnorm::kInMovingVar) = mxnet::TShape(Shape1(channelCount)); // kMovingVar out_shape->clear(); out_shape->push_back(dshape); // kOut @@ -381,7 +381,7 @@ static bool BatchNormType(const nnvm::NodeAttrs& attrs, #if MXNET_USE_MKLDNN == 1 static inline bool SupportMKLDNNBN(const NDArray &input, const BatchNormParam ¶m) { - TShape shape = input.shape(); + mxnet::TShape shape = input.shape(); return SupportMKLDNN(input) && shape.ndim() == 4 && param.axis == mxnet::op::batchnorm::DEFAULT_AXIS && shape[param.axis] % 8 == 0 @@ -418,7 +418,7 @@ void BatchNormGradComputeExCPU(const nnvm::NodeAttrs &attrs, CHECK_EQ(inputs.size(), 8U); const BatchNormParam ¶m = nnvm::get(attrs.parsed); - TShape shape = inputs[0].shape(); + mxnet::TShape shape = inputs[0].shape(); // MKLDNN batchnorm only works well on the special MKLDNN layout. if (SupportMKLDNNBN(inputs[0], param) && (inputs[3].IsMKLDNNData() || inputs[0].IsMKLDNNData())) { @@ -591,7 +591,7 @@ then set ``gamma`` to 1 and its gradient to 0. .set_attr("FMutateInputs", [](const nnvm::NodeAttrs& attrs) { return std::vector{3, 4}; }) -.set_attr("FInferShape", BatchNormShape) +.set_attr("FInferShape", BatchNormShape) .set_attr("FInferType", BatchNormType) .set_attr("FInferStorageType", BatchNormStorageType) .set_attr("FCompute", BatchNormCompute) diff --git a/src/operator/nn/batch_norm.cu b/src/operator/nn/batch_norm.cu index 03962cbc0f33..1199ec7fcce5 100644 --- a/src/operator/nn/batch_norm.cu +++ b/src/operator/nn/batch_norm.cu @@ -664,7 +664,7 @@ void BatchNormCompute(const nnvm::NodeAttrs& attrs, std::vector in_data(inputs.begin(), inputs.begin() + 3); std::vector aux_states(inputs.begin() + 3, inputs.end()); int dtype = inputs[0].type_flag_; - TShape shape = inputs[0].shape_; + mxnet::TShape shape = inputs[0].shape_; param.axis = mxnet::op::batchnorm::GetRealAxis(shape, param.axis); #if MXNET_USE_CUDNN == 1 && CUDNN_MAJOR >= 5 @@ -693,7 +693,7 @@ void BatchNormGradCompute(const nnvm::NodeAttrs& attrs, CHECK_EQ(inputs.size(), 8U); BatchNormParam param = nnvm::get(attrs.parsed); int dtype = inputs[0].type_flag_; - TShape shape = inputs[0].shape_; + mxnet::TShape shape = inputs[0].shape_; param.axis = mxnet::op::batchnorm::GetRealAxis(shape, param.axis); #if MXNET_USE_CUDNN == 1 && CUDNN_MAJOR >= 5 diff --git a/src/operator/nn/concat.cc b/src/operator/nn/concat.cc index 711fe9c49fa4..fa441c45321e 100644 --- a/src/operator/nn/concat.cc +++ b/src/operator/nn/concat.cc @@ -33,17 +33,17 @@ namespace mxnet { namespace op { static bool ConcatShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { using namespace mshadow; const ConcatParam& param_ = nnvm::get(attrs.parsed); CHECK_EQ(in_shape->size(), static_cast(param_.num_args)); - TShape dshape; + mxnet::TShape dshape; index_t size = 0; bool has_zero = false; int axis = -1; for (int i = 0; i < param_.num_args; ++i) { - TShape tmp = (*in_shape)[i]; + mxnet::TShape tmp = (*in_shape)[i]; if (tmp.ndim()) { axis = CheckAxis(param_.dim, tmp.ndim()); has_zero = tmp[axis] == 0 || has_zero; @@ -53,7 +53,7 @@ static bool ConcatShape(const nnvm::NodeAttrs& attrs, } } - TShape tmp = (*out_shape)[0]; + mxnet::TShape tmp = (*out_shape)[0]; if (tmp.ndim()) { axis = CheckAxis(param_.dim, tmp.ndim()); tmp[axis] = 0; @@ -79,17 +79,17 @@ static bool ConcatShape(const nnvm::NodeAttrs& attrs, // The first (and sometimes the second) input may be unknown on the target axis. // If the two inputs are unknown, they always have the same shape. static bool RNNParamConcatShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { using namespace mshadow; const ConcatParam& param_ = nnvm::get(attrs.parsed); CHECK_EQ(in_shape->size(), static_cast(param_.num_args)); - TShape dshape; + mxnet::TShape dshape; index_t size = 0; std::vector zero_indices; int axis = -1; for (int i = 0; i < param_.num_args; ++i) { - TShape tmp = (*in_shape)[i]; + mxnet::TShape tmp = (*in_shape)[i]; if (tmp.ndim()) { axis = CheckAxis(param_.dim, tmp.ndim()); if (tmp[axis] == 0) { @@ -102,7 +102,7 @@ static bool RNNParamConcatShape(const nnvm::NodeAttrs& attrs, } } - TShape tmp = (*out_shape)[0]; + mxnet::TShape tmp = (*out_shape)[0]; if (tmp.ndim()) { axis = CheckAxis(param_.dim, tmp.ndim()); tmp[axis] = 0; @@ -373,7 +373,7 @@ Example:: .set_attr("TIsMKLDNN", true) #endif CONCAT_FORWARD_ATTRS -.set_attr("FInferShape", ConcatShape) +.set_attr("FInferShape", ConcatShape) .add_argument("data", "NDArray-or-Symbol[]", "List of arrays to concatenate") .add_arguments(ConcatParam::__FIELDS__()); @@ -406,7 +406,7 @@ NNVM_REGISTER_OP(_rnn_param_concat) }) #endif CONCAT_FORWARD_ATTRS -.set_attr("FInferShape", RNNParamConcatShape) +.set_attr("FInferShape", RNNParamConcatShape) .add_argument("data", "NDArray-or-Symbol[]", "List of arrays to concatenate") .add_arguments(ConcatParam::__FIELDS__()); diff --git a/src/operator/nn/convolution-inl.h b/src/operator/nn/convolution-inl.h index a5f384ec44a8..7ae34ae363b4 100644 --- a/src/operator/nn/convolution-inl.h +++ b/src/operator/nn/convolution-inl.h @@ -56,10 +56,10 @@ enum ConvolutionOpCudnnTune {kOff, kLimited, kFastest}; } struct ConvolutionParam : public dmlc::Parameter { - TShape kernel; - TShape stride; - TShape dilate; - TShape pad; + mxnet::TShape kernel; + mxnet::TShape stride; + mxnet::TShape dilate; + mxnet::TShape pad; uint32_t num_filter; uint32_t num_group; uint64_t workspace; @@ -69,11 +69,11 @@ struct ConvolutionParam : public dmlc::Parameter { dmlc::optional layout; DMLC_DECLARE_PARAMETER(ConvolutionParam) { DMLC_DECLARE_FIELD(kernel).describe("Convolution kernel size: (w,), (h, w) or (d, h, w)"); - DMLC_DECLARE_FIELD(stride).set_default(TShape()) + DMLC_DECLARE_FIELD(stride).set_default(mxnet::TShape()) .describe("Convolution stride: (w,), (h, w) or (d, h, w). Defaults to 1 for each dimension."); - DMLC_DECLARE_FIELD(dilate).set_default(TShape()) + DMLC_DECLARE_FIELD(dilate).set_default(mxnet::TShape()) .describe("Convolution dilate: (w,), (h, w) or (d, h, w). Defaults to 1 for each dimension."); - DMLC_DECLARE_FIELD(pad).set_default(TShape()) + DMLC_DECLARE_FIELD(pad).set_default(mxnet::TShape()) .describe("Zero pad for convolution: (w,), (h, w) or (d, h, w). Defaults to no padding."); DMLC_DECLARE_FIELD(num_filter).set_range(1, 100000) .describe("Convolution filter(channel) number"); @@ -209,7 +209,7 @@ class ConvolutionOp { Tensor workspace = ctx.requested[conv::kTempSpace] .get_space_typed(Shape1(col_buffer_size_), s); // calculate the shape of col_buffer - TShape col_buffer_shape(num_spatial_axes_ + 1); + mxnet::TShape col_buffer_shape(num_spatial_axes_ + 1); col_buffer_shape[0] = conv_in_channels_ * param_.kernel.Size(); for (index_t i = 1; i < col_buffer_shape.ndim(); ++i) { col_buffer_shape[i] = out_data[0].shape_[i+1]; @@ -295,7 +295,7 @@ class ConvolutionOp { Tensor workspace = ctx.requested[conv::kTempSpace] .get_space_typed(Shape1(col_buffer_size_), s); // calculate the shape of col_buffer - TShape col_buffer_shape(num_spatial_axes_ + 1); + mxnet::TShape col_buffer_shape(num_spatial_axes_ + 1); col_buffer_shape[0] = conv_in_channels_ * param_.kernel.Size(); for (index_t i = 1; i < col_buffer_shape.ndim(); ++i) { col_buffer_shape[i] = out_grad[conv::kData].shape_[i+1]; @@ -339,7 +339,7 @@ class ConvolutionOp { } private: - void LayerSetUp(const TShape& ishape, const TShape& oshape) { + void LayerSetUp(const mxnet::TShape& ishape, const mxnet::TShape& oshape) { channel_axis_ = 1; // hard code channel axis const index_t first_spatial_axis = channel_axis_ + 1; const index_t num_axes = param_.kernel.ndim() + 2; diff --git a/src/operator/nn/convolution.cc b/src/operator/nn/convolution.cc index 53b0c1380ed3..527a0073930f 100644 --- a/src/operator/nn/convolution.cc +++ b/src/operator/nn/convolution.cc @@ -84,8 +84,8 @@ static void ConvolutionGradComputeExCPU(const nnvm::NodeAttrs& attrs, #endif static bool ConvolutionShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { using namespace mshadow; const ConvolutionParam& param_ = nnvm::get(attrs.parsed); if (!param_.no_bias) { @@ -94,8 +94,8 @@ static bool ConvolutionShape(const nnvm::NodeAttrs& attrs, CHECK_EQ(in_shape->size(), 2U) << "Input:[data, weight]"; } // CHECK_EQ(out_shape->size(), 1) << "Output: [output]"; - out_shape->resize(1, TShape()); - const TShape &dshp = (*in_shape)[conv::kData]; + out_shape->resize(1, mxnet::TShape()); + const mxnet::TShape &dshp = (*in_shape)[conv::kData]; if (dshp.ndim() == 0) return false; if (param_.kernel.ndim() == 1) { @@ -477,7 +477,7 @@ There are other options to tune the performance. [](const NodeAttrs& attrs) { return std::vector{"output"}; }) -.set_attr("FInferShape", ConvolutionShape) +.set_attr("FInferShape", ConvolutionShape) .set_attr("FInferType", ConvolutionType) #if MXNET_USE_MKLDNN == 1 .set_attr("FInferStorageType", ConvStorageType) diff --git a/src/operator/nn/convolution.cu b/src/operator/nn/convolution.cu index daccc5518efc..010be8a208fb 100644 --- a/src/operator/nn/convolution.cu +++ b/src/operator/nn/convolution.cu @@ -39,8 +39,8 @@ template static CuDNNConvolutionOp& GetCuDNNConvOp(const ConvolutionParam& param, int forward_compute_type, int backward_compute_type, - const std::vector& in_shape, - const std::vector& out_shape, + const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape, const RunContext& rctx, bool add_to_weight) { #if DMLC_CXX11_THREAD_LOCAL @@ -115,8 +115,8 @@ void ConvolutionCompute(const nnvm::NodeAttrs& attrs, param.kernel.ndim() == 2 && param.dilate == mshadow::Shape2(1, 1) && dtype == mshadow::kFloat32) { - std::vector in_shape(inputs.size()); - std::vector out_shape(1, outputs[0].shape_); + mxnet::ShapeVector in_shape(inputs.size()); + mxnet::ShapeVector out_shape(1, outputs[0].shape_); for (size_t i = 0; i < in_shape.size(); i++) in_shape[i] = inputs[i].shape_; DepthwiseConvolutionOp op; @@ -142,8 +142,8 @@ void ConvolutionCompute(const nnvm::NodeAttrs& attrs, op.Init(param); op.Forward(ctx, inputs, req, outputs); } else { - std::vector in_shape(inputs.size()); - std::vector out_shape(1, outputs[0].shape_); + mxnet::ShapeVector in_shape(inputs.size()); + mxnet::ShapeVector out_shape(1, outputs[0].shape_); for (size_t i = 0; i < in_shape.size(); i++) in_shape[i] = inputs[i].shape_; // req[conv::kWeight] is only set for backward, so assume the typical 'write' for now. @@ -195,8 +195,8 @@ void ConvolutionGradCompute(const nnvm::NodeAttrs& attrs, param.dilate == mshadow::Shape2(1, 1) && dtype == mshadow::kFloat32) { // The first element stores out grad. - std::vector in_shape(in_data.size()); - std::vector out_shape(1, out_grad.shape_); + mxnet::ShapeVector in_shape(in_data.size()); + mxnet::ShapeVector out_shape(1, out_grad.shape_); for (size_t i = 0; i < in_shape.size(); i++) in_shape[i] = in_data[i].shape_; DepthwiseConvolutionOp op; @@ -223,8 +223,8 @@ void ConvolutionGradCompute(const nnvm::NodeAttrs& attrs, op.Backward(ctx, std::vector{out_grad}, in_data, req, in_grad); } else { // The first element stores out grad. - std::vector in_shape(in_data.size()); - std::vector out_shape(1, out_grad.shape_); + mxnet::ShapeVector in_shape(in_data.size()); + mxnet::ShapeVector out_shape(1, out_grad.shape_); for (size_t i = 0; i < in_shape.size(); i++) in_shape[i] = in_data[i].shape_; auto add_to_weight = req[conv::kWeight] == kAddTo; diff --git a/src/operator/nn/ctc_loss-inl.h b/src/operator/nn/ctc_loss-inl.h index 754cf8471b5d..357888dc30f1 100644 --- a/src/operator/nn/ctc_loss-inl.h +++ b/src/operator/nn/ctc_loss-inl.h @@ -208,14 +208,14 @@ inline uint32_t CTCLossOpNumInputs(const NodeAttrs& attrs) { } inline bool CTCLossOpShape(const nnvm::NodeAttrs &attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { const CTCLossOpParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), CTCLossOpNumInputs(attrs)); CHECK_EQ(out_attrs->size(), 2U); - const TShape &dshape = (*in_attrs)[ctc_loss::kData]; - const TShape &lshape = (*in_attrs)[ctc_loss::kLabel]; + const mxnet::TShape &dshape = (*in_attrs)[ctc_loss::kData]; + const mxnet::TShape &lshape = (*in_attrs)[ctc_loss::kLabel]; CHECK_EQ(dshape.ndim(), 3U) << "The number of dimensions of data array must be 3."; CHECK_EQ(lshape.ndim(), 2U) << "The number of dimensions of labels array must be 2."; CHECK_EQ(dshape[1], lshape[0]) @@ -223,14 +223,14 @@ inline bool CTCLossOpShape(const nnvm::NodeAttrs &attrs, if (param.use_data_lengths) { int kInputLength = 2; - const TShape &dlshape = (*in_attrs)[kInputLength]; + const mxnet::TShape &dlshape = (*in_attrs)[kInputLength]; CHECK_EQ(dlshape.ndim(), 1U) << "Data length array must be a vector."; CHECK_EQ(dlshape[0], dshape[1]) << "The batch size for the data and data lengths must be the same."; } if (param.use_label_lengths) { int kLabelLength = 2 + param.use_data_lengths; - const TShape &llshape = (*in_attrs)[kLabelLength]; + const mxnet::TShape &llshape = (*in_attrs)[kLabelLength]; CHECK_EQ(llshape.ndim(), 1U) << "Label length array must be a vector."; CHECK_EQ(llshape[0], lshape[0]) << "The batch size for the labels and label lengths must be the same."; @@ -239,7 +239,7 @@ inline bool CTCLossOpShape(const nnvm::NodeAttrs &attrs, "the maximum sequence length of the " "data."; - TShape oshape(1); + mxnet::TShape oshape(1); oshape[0] = dshape[1]; // batch size SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape); // forward output SHAPE_ASSIGN_CHECK(*out_attrs, 1, dshape); // grad output diff --git a/src/operator/nn/ctc_loss.cc b/src/operator/nn/ctc_loss.cc index d9c7606f2e28..f718b42bfaa4 100644 --- a/src/operator/nn/ctc_loss.cc +++ b/src/operator/nn/ctc_loss.cc @@ -110,7 +110,7 @@ information on the definition and the algorithm. [](const NodeAttrs& attrs) { return 1; }) -.set_attr("FInferShape", CTCLossOpShape) +.set_attr("FInferShape", CTCLossOpShape) .set_attr("FInferType", CTCLossOpType) .set_attr("FInferStorageType", CTCLossOpStorageType) .set_attr("FResourceRequest", [](const NodeAttrs& attrs) diff --git a/src/operator/nn/cudnn/cudnn_algoreg-inl.h b/src/operator/nn/cudnn/cudnn_algoreg-inl.h index 21d3a30ba7cd..cef9d6f86940 100644 --- a/src/operator/nn/cudnn/cudnn_algoreg-inl.h +++ b/src/operator/nn/cudnn/cudnn_algoreg-inl.h @@ -72,8 +72,8 @@ class CuDNNAlgoReg { CuDNNAlgo *)>; void FindOrElseRegister(const ParamType ¶m, - const std::vector &in_shape, - const std::vector &out_shape, + const mxnet::ShapeVector &in_shape, + const mxnet::ShapeVector &out_shape, cudnnDataType_t cudnn_data_type, cudnnDataType_t cudnn_forward_compute_type, cudnnDataType_t cudnn_backward_compute_type, @@ -127,7 +127,7 @@ class CuDNNAlgoReg { struct ParamKey { ParamType param; - TShape data_shape, weight_shape, out_shape; + mxnet::TShape data_shape, weight_shape, out_shape; cudnnDataType_t cudnn_data_type; cudnnDataType_t cudnn_forward_compute_type; cudnnDataType_t cudnn_backward_compute_type; diff --git a/src/operator/nn/cudnn/cudnn_batch_norm.cc b/src/operator/nn/cudnn/cudnn_batch_norm.cc index f1d229dd5421..5632028dd769 100644 --- a/src/operator/nn/cudnn/cudnn_batch_norm.cc +++ b/src/operator/nn/cudnn/cudnn_batch_norm.cc @@ -32,16 +32,16 @@ namespace mxnet { namespace op { #if MXNET_USE_CUDNN == 1 && CUDNN_MAJOR >= 4 -static bool BatchNormShape(const nnvm::NodeAttrs& attrs, std::vector *in_shape, - std::vector *out_shape) { +static bool BatchNormShape(const nnvm::NodeAttrs& attrs, mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { using namespace mshadow; CHECK_EQ(in_shape->size(), 5U) << "Input:[data, gamma, beta, moving_mean, moving_var]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; - in_shape->at(1) = TShape(Shape1(dshape[1])); - in_shape->at(2) = TShape(Shape1(dshape[1])); - in_shape->at(3) = TShape(Shape1(dshape[1])); - in_shape->at(4) = TShape(Shape1(dshape[1])); + in_shape->at(1) = mxnet::TShape(Shape1(dshape[1])); + in_shape->at(2) = mxnet::TShape(Shape1(dshape[1])); + in_shape->at(3) = mxnet::TShape(Shape1(dshape[1])); + in_shape->at(4) = mxnet::TShape(Shape1(dshape[1])); out_shape->clear(); out_shape->push_back(dshape); @@ -85,7 +85,7 @@ NNVM_REGISTER_OP(CuDNNBatchNorm) .set_attr("FMutateInputs", [](const nnvm::NodeAttrs& attrs) { return std::vector{3, 4}; }) -.set_attr("FInferShape", BatchNormShape) +.set_attr("FInferShape", BatchNormShape) .set_attr("FCompute", BatchNormCompute_CPU) .set_attr("FGradient", ElemwiseGradUseInOut{"_backward_CuDNNBatchNorm"}) .add_argument("data", "NDArray-or-Symbol", "Input data to batch normalization") diff --git a/src/operator/nn/cudnn/cudnn_convolution-inl.h b/src/operator/nn/cudnn/cudnn_convolution-inl.h index f68d2e3e8ead..e11f7cc81d25 100644 --- a/src/operator/nn/cudnn/cudnn_convolution-inl.h +++ b/src/operator/nn/cudnn/cudnn_convolution-inl.h @@ -59,8 +59,8 @@ class CuDNNConvolutionOp { void Init(const ConvolutionParam& param, int forward_compute_type, int backward_compute_type, - const std::vector& in_shape, - const std::vector& out_shape, + const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape, const RunContext& rctx, bool add_to_weight) { using namespace mshadow; @@ -430,8 +430,8 @@ class CuDNNConvolutionOp { return converted; } - void InitDescriptors(const std::vector& in_shape, - const std::vector& out_shape, + void InitDescriptors(const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape, cudnnDataType_t cudnn_forward_compute_type, cudnnDataType_t cudnn_backward_compute_type) { using namespace mshadow; @@ -439,10 +439,10 @@ class CuDNNConvolutionOp { CHECK_EQ(in_shape.size(), expected); CHECK_EQ(out_shape.size(), 1U); - TShape dshape = in_shape[conv::kData]; - TShape wshape = in_shape[conv::kWeight]; - TShape oshape = out_shape[conv::kOut]; - TShape dstride, ostride; + mxnet::TShape dshape = in_shape[conv::kData]; + mxnet::TShape wshape = in_shape[conv::kWeight]; + mxnet::TShape oshape = out_shape[conv::kOut]; + mxnet::TShape dstride, ostride; #if CUDNN_MAJOR <= 6 wshape[0] /= param_.num_group; #endif @@ -456,9 +456,12 @@ class CuDNNConvolutionOp { #endif if (param_.kernel.ndim() == 1 || param_.kernel.ndim() == 2) { // 1d or 2d conv - auto pad = param_.kernel.ndim() == 2 ? param_.pad : TShape({0, param_.pad[0]}); - auto stride = param_.kernel.ndim() == 2 ? param_.stride : TShape({1, param_.stride[0]}); - auto dilate = param_.kernel.ndim() == 2 ? param_.dilate : TShape({1, param_.dilate[0]}); + auto pad = param_.kernel.ndim() == 2 ? + param_.pad : mxnet::TShape({0, param_.pad[0]}); + auto stride = param_.kernel.ndim() == 2 ? + param_.stride : mxnet::TShape({1, param_.stride[0]}); + auto dilate = param_.kernel.ndim() == 2 ? + param_.dilate : mxnet::TShape({1, param_.dilate[0]}); CUDNN_CALL(cudnnSetConvolution2dDescriptor(forward_conv_desc_, pad[0], pad[1], @@ -501,15 +504,15 @@ class CuDNNConvolutionOp { oshape = ConvertLayout(oshape.get<4>(), param_.layout.value(), kNCHW); } else { wshape = ConvertLayout(wshape.get<3>(), param_.layout.value(), kNCW); - wshape = TShape({wshape[0], wshape[1], 1, wshape[2]}); + wshape = mxnet::TShape({wshape[0], wshape[1], 1, wshape[2]}); dstride = ConvertLayout(Strides<3>(dshape), param_.layout.value(), kNCW); - dstride = TShape({dstride[0], dstride[1], dstride[1], dstride[2]}); + dstride = mxnet::TShape({dstride[0], dstride[1], dstride[1], dstride[2]}); dshape = ConvertLayout(dshape.get<3>(), param_.layout.value(), kNCW); - dshape = TShape({dshape[0], dshape[1], 1, dshape[2]}); + dshape = mxnet::TShape({dshape[0], dshape[1], 1, dshape[2]}); ostride = ConvertLayout(Strides<3>(oshape), param_.layout.value(), kNCW); - ostride = TShape({ostride[0], ostride[1], ostride[1], ostride[2]}); + ostride = mxnet::TShape({ostride[0], ostride[1], ostride[1], ostride[2]}); oshape = ConvertLayout(oshape.get<3>(), param_.layout.value(), kNCW); - oshape = TShape({oshape[0], oshape[1], 1, oshape[2]}); + oshape = mxnet::TShape({oshape[0], oshape[1], 1, oshape[2]}); } CUDNN_CALL(cudnnSetFilter4dDescriptor(filter_desc_, dtype_, @@ -608,7 +611,7 @@ class CuDNNConvolutionOp { ostride_buffer.data())); if (!param_.no_bias) { - TShape bias = in_shape[conv::kBias]; + mxnet::TShape bias = in_shape[conv::kBias]; #if CUDNN_MAJOR >= 7 bias_offset_ = bias[0]; std::vector bias_shape = {1, @@ -634,8 +637,8 @@ class CuDNNConvolutionOp { } void CuDNNAlgoSetter(const RunContext& rctx, - const std::vector& in_shape, - const std::vector& out_shape, + const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape, cudnnDataType_t cudnn_forward_compute_type, cudnnDataType_t cudnn_backward_compute_type, CuDNNAlgo *fwd, @@ -845,8 +848,8 @@ class CuDNNConvolutionOp { } void SelectAlgo(const RunContext& rctx, - const std::vector& in_shape, - const std::vector& out_shape, + const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape, cudnnDataType_t cudnn_forward_compute_type, cudnnDataType_t cudnn_backward_compute_type) { auto algo_setter = [&](CuDNNAlgo *fwd, @@ -966,7 +969,7 @@ class CuDNNConvolutionOp { &forward_workspace_byte_)); } - int *CastTShapeToIntPtr(const TShape& s, std::vector *buffer) { + int *CastTShapeToIntPtr(const mxnet::TShape& s, std::vector *buffer) { buffer->resize(s.ndim()); nnvm::ShapeTypeCast(s.begin(), s.end(), buffer->data()); return buffer->data(); @@ -993,12 +996,12 @@ class CuDNNConvolutionOp { return data_ptr; } - // Converts a TShape to a Shape<> of strides. + // Converts a mxnet::TShape to a Shape<> of strides. // e.g. {shape[0], shape[1], shape[2]} -> {shape[1]*shape[2], shape[2], 1} template - inline Shape Strides(const TShape &s) { + inline Shape Strides(const mxnet::TShape &s) { uint32_t ndim = s.ndim(); - TShape strides(ndim); + mxnet::TShape strides(ndim); for (uint32_t i = 0; i != ndim; ++i) strides[i] = s.ProdShape(i+1, ndim); return strides.get(); @@ -1032,7 +1035,7 @@ class CuDNNConvolutionOp { } // Given a tensor shape of this operation, return the number of features 'c' - int64_t Features(const TShape &dshape) { + int64_t Features(const mxnet::TShape &dshape) { int c = 0; switch (dshape.ndim()) { case 3: c = ConvertLayout(dshape.get<3>(), param_.layout.value(), kNCW)[1]; break; diff --git a/src/operator/nn/cudnn/cudnn_deconvolution-inl.h b/src/operator/nn/cudnn/cudnn_deconvolution-inl.h index 72ba2c95fc6a..ec95d2be3309 100644 --- a/src/operator/nn/cudnn/cudnn_deconvolution-inl.h +++ b/src/operator/nn/cudnn/cudnn_deconvolution-inl.h @@ -55,8 +55,8 @@ class CuDNNDeconvolutionOp { void Init(DeconvolutionParam param, int forward_compute_type, int backward_compute_type, - const std::vector& in_shape, - const std::vector& out_shape, + const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape, const RunContext& rctx, bool add_to_weight) { using namespace mshadow; @@ -348,8 +348,8 @@ class CuDNNDeconvolutionOp { return converted; } - inline void InitDescriptors(const std::vector &in_shape, - const std::vector &out_shape, + inline void InitDescriptors(const mxnet::ShapeVector &in_shape, + const mxnet::ShapeVector &out_shape, cudnnDataType_t cudnn_forward_compute_type, cudnnDataType_t cudnn_backward_compute_type) { using namespace mshadow; @@ -357,10 +357,10 @@ class CuDNNDeconvolutionOp { CHECK_EQ(in_shape.size(), expected); CHECK_EQ(out_shape.size(), 1U); - TShape dshape = in_shape[deconv::kData]; - TShape wshape = in_shape[deconv::kWeight]; - TShape oshape = out_shape[deconv::kOut]; - TShape dstride, ostride; + mxnet::TShape dshape = in_shape[deconv::kData]; + mxnet::TShape wshape = in_shape[deconv::kWeight]; + mxnet::TShape oshape = out_shape[deconv::kOut]; + mxnet::TShape dstride, ostride; wshape[0] /= param_.num_group; #if CUDNN_MAJOR <= 5 // As of cuDNN_v6, the unsuffixed version of cudnnSetConvolution2dDescriptor() @@ -382,8 +382,10 @@ class CuDNNDeconvolutionOp { o_pad[0] = 0; o_pad[1] = o_pad_1D[0]; } - auto stride = param_.kernel.ndim() == 2 ? param_.stride : TShape({1, param_.stride[0]}); - auto dilate = param_.kernel.ndim() == 2 ? param_.dilate : TShape({1, param_.dilate[0]}); + auto stride = param_.kernel.ndim() == 2 ? + param_.stride : mxnet::TShape({1, param_.stride[0]}); + auto dilate = param_.kernel.ndim() == 2 ? + param_.dilate : mxnet::TShape({1, param_.dilate[0]}); CUDNN_CALL(cudnnSetConvolution2dDescriptor(forward_conv_desc_, o_pad[0], @@ -427,15 +429,15 @@ class CuDNNDeconvolutionOp { oshape = ConvertLayout(oshape.get<4>(), param_.layout.value(), kNCHW); } else { wshape = ConvertLayout(wshape.get<3>(), param_.layout.value(), kNCW); - wshape = TShape({wshape[0], wshape[1], 1, wshape[2]}); + wshape = mxnet::TShape({wshape[0], wshape[1], 1, wshape[2]}); dstride = ConvertLayout(Strides<3>(dshape), param_.layout.value(), kNCW); - dstride = TShape({dstride[0], dstride[1], dstride[1], dstride[2]}); + dstride = mxnet::TShape({dstride[0], dstride[1], dstride[1], dstride[2]}); dshape = ConvertLayout(dshape.get<3>(), param_.layout.value(), kNCW); - dshape = TShape({dshape[0], dshape[1], 1, dshape[2]}); + dshape = mxnet::TShape({dshape[0], dshape[1], 1, dshape[2]}); ostride = ConvertLayout(Strides<3>(oshape), param_.layout.value(), kNCW); - ostride = TShape({ostride[0], ostride[1], ostride[1], ostride[2]}); + ostride = mxnet::TShape({ostride[0], ostride[1], ostride[1], ostride[2]}); oshape = ConvertLayout(oshape.get<3>(), param_.layout.value(), kNCW); - oshape = TShape({oshape[0], oshape[1], 1, oshape[2]}); + oshape = mxnet::TShape({oshape[0], oshape[1], 1, oshape[2]}); } CUDNN_CALL(cudnnSetFilter4dDescriptor(filter_desc_, dtype_, @@ -521,7 +523,7 @@ class CuDNNDeconvolutionOp { CastTShapeToIntPtr(ostride, &ostride_buffer))); if (!param_.no_bias) { - TShape bias = in_shape[deconv::kBias]; + mxnet::TShape bias = in_shape[deconv::kBias]; bias_offset_ = bias[0] / param_.num_group; std::vector bias_shape = {1, static_cast(bias[0] / param_.num_group), @@ -540,8 +542,8 @@ class CuDNNDeconvolutionOp { } void CuDNNAlgoSetter(const RunContext& rctx, - const std::vector& in_shape, - const std::vector& out_shape, + const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape, cudnnDataType_t cudnn_forward_compute_type, cudnnDataType_t cudnn_backward_compute_type, CuDNNAlgo *fwd, @@ -755,8 +757,8 @@ class CuDNNDeconvolutionOp { } void SelectAlgo(const RunContext& rctx, - const std::vector& in_shape, - const std::vector& out_shape, + const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape, cudnnDataType_t cudnn_forward_compute_type, cudnnDataType_t cudnn_backward_compute_type) { auto algo_setter = [&](CuDNNAlgo *fwd, @@ -884,7 +886,7 @@ class CuDNNDeconvolutionOp { back_filter_algo_workspace_size); } - int *CastTShapeToIntPtr(const TShape& s, std::vector *buffer) { + int *CastTShapeToIntPtr(const mxnet::TShape& s, std::vector *buffer) { buffer->resize(s.ndim()); nnvm::ShapeTypeCast(s.begin(), s.end(), buffer->data()); return buffer->data(); @@ -911,12 +913,12 @@ class CuDNNDeconvolutionOp { return data_ptr; } - // Converts a TShape to a Shape<> of strides. + // Converts a mxnet::TShape to a Shape<> of strides. // e.g. {shape[0], shape[1], shape[2]} -> {shape[1]*shape[2], shape[2], 1} template - inline Shape Strides(const TShape &s) { + inline Shape Strides(const mxnet::TShape &s) { uint32_t ndim = s.ndim(); - TShape strides(ndim); + mxnet::TShape strides(ndim); for (uint32_t i = 0; i != ndim; ++i) strides[i] = s.ProdShape(i+1, ndim); return strides.get(); @@ -943,7 +945,7 @@ class CuDNNDeconvolutionOp { // Given a tensor shape of this operation, return the number of features 'c' - int64_t Features(const TShape &dshape) { + int64_t Features(const mxnet::TShape &dshape) { int c = 0; switch (dshape.ndim()) { case 3: c = ConvertLayout(dshape.get<3>(), param_.layout.value(), kNCW)[1]; break; @@ -980,8 +982,8 @@ class CuDNNDeconvolutionOp { int forward_compute_type_; int backward_compute_type_; - const std::vector in_shapes_; - const std::vector out_shapes_; + const mxnet::ShapeVector in_shapes_; + const mxnet::ShapeVector out_shapes_; // Temp workspace size in bytes needed for Forward() operation. Note that // in deconvolution, this is handled by the cuDNN backprop-to-data kernel. diff --git a/src/operator/nn/deconvolution-inl.h b/src/operator/nn/deconvolution-inl.h index d89a489c0183..5248c1211ac7 100644 --- a/src/operator/nn/deconvolution-inl.h +++ b/src/operator/nn/deconvolution-inl.h @@ -49,12 +49,12 @@ namespace deconv { } struct DeconvolutionParam : public dmlc::Parameter { - TShape kernel; - TShape stride; - TShape dilate; - TShape pad; - TShape adj; - TShape target_shape; + mxnet::TShape kernel; + mxnet::TShape stride; + mxnet::TShape dilate; + mxnet::TShape pad; + mxnet::TShape adj; + mxnet::TShape target_shape; uint32_t num_filter; uint32_t num_group; uint64_t workspace; @@ -65,13 +65,13 @@ struct DeconvolutionParam : public dmlc::Parameter { DMLC_DECLARE_PARAMETER(DeconvolutionParam) { DMLC_DECLARE_FIELD(kernel).describe("Deconvolution kernel size: (w,), (h, w) or (d, h, w). " "This is same as the kernel size used for the corresponding convolution"); - DMLC_DECLARE_FIELD(stride).set_default(TShape()) + DMLC_DECLARE_FIELD(stride).set_default(mxnet::TShape()) .describe("The stride used for the corresponding convolution: (w,), (h, w) or (d, h, w). " "Defaults to 1 for each dimension."); - DMLC_DECLARE_FIELD(dilate).set_default(TShape()) + DMLC_DECLARE_FIELD(dilate).set_default(mxnet::TShape()) .describe("Dilation factor for each dimension of the input: (w,), (h, w) or (d, h, w). " "Defaults to 1 for each dimension."); - DMLC_DECLARE_FIELD(pad).set_default(TShape()) + DMLC_DECLARE_FIELD(pad).set_default(mxnet::TShape()) .describe("The amount of implicit zero padding added during convolution for each " "dimension of the input: " "(w,), (h, w) or (d, h, w). " @@ -79,11 +79,11 @@ struct DeconvolutionParam : public dmlc::Parameter { "If `target_shape` is set, " "`pad` will be ignored and a padding that will generate the target shape " "will be used. Defaults to no padding."); - DMLC_DECLARE_FIELD(adj).set_default(TShape()) + DMLC_DECLARE_FIELD(adj).set_default(mxnet::TShape()) .describe("Adjustment for output shape: (w,), (h, w) or (d, h, w). " "If `target_shape` is set, " "`adj` will be ignored and computed accordingly."); - DMLC_DECLARE_FIELD(target_shape).set_default(TShape()) + DMLC_DECLARE_FIELD(target_shape).set_default(mxnet::TShape()) .describe("Shape of the output tensor: (w,), (h, w) or (d, h, w)."); DMLC_DECLARE_FIELD(num_filter).set_range(1, 100000) .describe("Number of output filters."); @@ -118,7 +118,7 @@ struct DeconvolutionParam : public dmlc::Parameter { } template - void InferPad(TShape input, index_t (&o_pad)[ndim], index_t (&o_adj)[ndim] ) const { + void InferPad(mxnet::TShape input, index_t (&o_pad)[ndim], index_t (&o_adj)[ndim] ) const { // Modified by Li.bs // Use tag to control the calculation of pad bool bCal = false; @@ -231,7 +231,7 @@ class DeconvolutionOp { Tensor out = TBlobTo4DTensor(out_data[deconv::kOut], s); index_t o_pad[2], o_adj[2]; if (param_.kernel.ndim() == 2) { - param_.InferPad(TShape({in_data_shape[2], in_data_shape[3]}), o_pad, o_adj); + param_.InferPad(mxnet::TShape({in_data_shape[2], in_data_shape[3]}), o_pad, o_adj); } else { index_t o_pad_1D[1], o_adj_1D[1]; param_.InferPad({in_data_shape[2]}, o_pad_1D, o_adj_1D); @@ -240,9 +240,9 @@ class DeconvolutionOp { o_adj[0] = 0; o_adj[1] = o_adj_1D[0]; } - auto stride = param_.kernel.ndim() == 2 ? param_.stride : TShape({1, param_.stride[0]}); - auto dilate = param_.kernel.ndim() == 2 ? param_.dilate : TShape({1, param_.dilate[0]}); - auto kernel = param_.kernel.ndim() == 2 ? param_.kernel : TShape({1, param_.kernel[0]}); + auto stride = param_.kernel.ndim() == 2 ? param_.stride : mxnet::TShape({1, param_.stride[0]}); + auto dilate = param_.kernel.ndim() == 2 ? param_.dilate : mxnet::TShape({1, param_.dilate[0]}); + auto kernel = param_.kernel.ndim() == 2 ? param_.kernel : mxnet::TShape({1, param_.kernel[0]}); auto kernel_size = kernel.Size(); Shape<3> wmat_shape = @@ -351,7 +351,7 @@ class DeconvolutionOp { index_t o_pad[2], o_adj[2]; if (param_.kernel.ndim() == 2) { - param_.InferPad(TShape({in_data_shape[2], in_data_shape[3]}), o_pad, o_adj); + param_.InferPad(mxnet::TShape({in_data_shape[2], in_data_shape[3]}), o_pad, o_adj); } else { index_t o_pad_1D[1], o_adj_1D[1]; param_.InferPad({in_data_shape[2]}, o_pad_1D, o_adj_1D); @@ -360,9 +360,9 @@ class DeconvolutionOp { o_adj[0] = 0; o_adj[1] = o_adj_1D[0]; } - auto stride = param_.kernel.ndim() == 2 ? param_.stride : TShape({1, param_.stride[0]}); - auto dilate = param_.kernel.ndim() == 2 ? param_.dilate : TShape({1, param_.dilate[0]}); - auto kernel = param_.kernel.ndim() == 2 ? param_.kernel : TShape({1, param_.kernel[0]}); + auto stride = param_.kernel.ndim() == 2 ? param_.stride : mxnet::TShape({1, param_.stride[0]}); + auto dilate = param_.kernel.ndim() == 2 ? param_.dilate : mxnet::TShape({1, param_.dilate[0]}); + auto kernel = param_.kernel.ndim() == 2 ? param_.kernel : mxnet::TShape({1, param_.kernel[0]}); auto kernel_size = kernel.Size(); Shape<3> wmat_shape = diff --git a/src/operator/nn/deconvolution.cc b/src/operator/nn/deconvolution.cc index 039c732c831d..27928b9b41c3 100644 --- a/src/operator/nn/deconvolution.cc +++ b/src/operator/nn/deconvolution.cc @@ -36,8 +36,8 @@ namespace mxnet { namespace op { static bool DeconvolutionShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { const DeconvolutionParam& param_ = nnvm::get(attrs.parsed); #if MXNET_USE_CUDNN == 0 if (param_.kernel.ndim() > 2) { @@ -52,8 +52,8 @@ static bool DeconvolutionShape(const nnvm::NodeAttrs& attrs, } else { CHECK_EQ(in_shape->size(), 2U) << "Input:[data, weight]"; } - out_shape->resize(1, TShape()); - const TShape &dshape = (*in_shape)[deconv::kData]; + out_shape->resize(1, mxnet::TShape()); + const mxnet::TShape &dshape = (*in_shape)[deconv::kData]; if (dshape.ndim() == 0) return false; if (param_.kernel.ndim() == 1) { @@ -403,7 +403,7 @@ NNVM_REGISTER_OP(Deconvolution) [](const NodeAttrs& attrs) { return std::vector{"output"}; }) -.set_attr("FInferShape", DeconvolutionShape) +.set_attr("FInferShape", DeconvolutionShape) .set_attr("FInferType", DeconvolutionType) #if MXNET_USE_MKLDNN == 1 .set_attr("FInferStorageType", DeconvStorageType) diff --git a/src/operator/nn/deconvolution.cu b/src/operator/nn/deconvolution.cu index 1c3970b9e716..6332c1f9078f 100644 --- a/src/operator/nn/deconvolution.cu +++ b/src/operator/nn/deconvolution.cu @@ -37,8 +37,8 @@ template static CuDNNDeconvolutionOp &GetCuDNNDeconvOp(const DeconvolutionParam& param, int forward_compute_type, int backward_compute_type, - const std::vector& in_shape, - const std::vector& out_shape, + const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape, const RunContext& rctx, bool add_to_weight) { #if DMLC_CXX11_THREAD_LOCAL @@ -109,8 +109,8 @@ void DeconvolutionCompute(const nnvm::NodeAttrs& attrs, op.Init(param); op.Forward(ctx, inputs, req, outputs); } else { - std::vector in_shape(inputs.size()); - std::vector out_shape(1, outputs[0].shape_); + mxnet::ShapeVector in_shape(inputs.size()); + mxnet::ShapeVector out_shape(1, outputs[0].shape_); for (size_t i = 0; i < in_shape.size(); i++) { in_shape[i] = inputs[i].shape_; } @@ -158,8 +158,8 @@ void DeconvolutionGradCompute(const nnvm::NodeAttrs& attrs, op.Init(param); op.Backward(ctx, std::vector{out_grad}, in_data, req, in_grad); } else { - std::vector in_shape(in_data.size()); - std::vector out_shape(1, out_grad.shape_); + mxnet::ShapeVector in_shape(in_data.size()); + mxnet::ShapeVector out_shape(1, out_grad.shape_); for (size_t i = 0; i < in_shape.size(); i++) { in_shape[i] = in_data[i].shape_; } diff --git a/src/operator/nn/depthwise_convolution-inl.h b/src/operator/nn/depthwise_convolution-inl.h index 69e6f693b852..9db2650491a8 100644 --- a/src/operator/nn/depthwise_convolution-inl.h +++ b/src/operator/nn/depthwise_convolution-inl.h @@ -42,8 +42,8 @@ template class DepthwiseConvolutionOp { public: void Init(const ConvolutionParam& param, - const std::vector& in_shape, - const std::vector& out_shape) { + const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape) { args_.batch = in_shape[conv::kData][0]; args_.in_channel = in_shape[conv::kData][1]; args_.in_height = in_shape[conv::kData][2]; diff --git a/src/operator/nn/dropout-inl.h b/src/operator/nn/dropout-inl.h index 2a828994fb44..f184fbdc2282 100644 --- a/src/operator/nn/dropout-inl.h +++ b/src/operator/nn/dropout-inl.h @@ -64,7 +64,7 @@ const int MAX_DIM = 5; struct DropoutParam : public dmlc::Parameter { float p; int mode; - TShape axes; + mxnet::TShape axes; dmlc::optional cudnn_off; DMLC_DECLARE_PARAMETER(DropoutParam) { DMLC_DECLARE_FIELD(p).set_default(0.5) @@ -75,7 +75,7 @@ struct DropoutParam : public dmlc::Parameter { .add_enum("always", dropout::kAlways) .set_default(dropout::kTraining) .describe("Whether to only turn on dropout during training or to also turn on for inference."); - DMLC_DECLARE_FIELD(axes).set_default(TShape()) + DMLC_DECLARE_FIELD(axes).set_default(mxnet::TShape()) .describe("Axes for variational dropout kernel."); DMLC_DECLARE_FIELD(cudnn_off).set_default(dmlc::optional(true)) .describe("Whether to turn off cudnn in dropout operator. " @@ -370,7 +370,7 @@ class DropoutOp { mask.dptr(), this->pkeep_); // broadcast mul - TShape new_lshape, new_rshape, new_oshape; + mxnet::TShape new_lshape, new_rshape, new_oshape; int ndim = BinaryBroadcastShapeCompact(in.shape_, mask.shape_, out.shape_, &new_lshape, &new_rshape, &new_oshape); @@ -438,7 +438,7 @@ class DropoutOp { return; } else { // broardcast mul - TShape new_lshape, new_rshape, new_oshape; + mxnet::TShape new_lshape, new_rshape, new_oshape; int ndim = BinaryBroadcastShapeCompact(grad.shape_, mask.shape_, gdata.shape_, &new_lshape, &new_rshape, &new_oshape); @@ -475,7 +475,7 @@ class DropoutOp { /*! \brief Dropout mode */ dropout::DropoutOpMode mode_; /*! \brief Axes on which dropout mask is shared in the form of broadcast multiply */ - TShape axes_; + mxnet::TShape axes_; /*! \brief Flag to record whether forward is executed in pass-through mode */ bool dropout_passthrough_; #if MXNET_USE_CUDNN_DROPOUT @@ -491,7 +491,7 @@ class DropoutOp { static OpStatePtr CreateDropoutState(const nnvm::NodeAttrs &attrs, const Context ctx, - const std::vector &in_shapes, + const mxnet::ShapeVector &in_shapes, const std::vector &in_types) { const DropoutParam& param = nnvm::get(attrs.parsed); OpStatePtr state; diff --git a/src/operator/nn/dropout.cc b/src/operator/nn/dropout.cc index d6cbeb4e561d..5fdc672d766e 100644 --- a/src/operator/nn/dropout.cc +++ b/src/operator/nn/dropout.cc @@ -89,12 +89,12 @@ Example:: [](const NodeAttrs& attrs) { return 1; }) -.set_attr("FInferShape", [](const nnvm::NodeAttrs& attrs, - std::vector *in_shape, std::vector *out_shape){ +.set_attr("FInferShape", [](const nnvm::NodeAttrs& attrs, + mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape){ using namespace mshadow; CHECK_EQ(in_shape->size(), 1U); const DropoutParam& param = nnvm::get(attrs.parsed); - TShape dshape(in_shape->at(0)); + mxnet::TShape dshape(in_shape->at(0)); if (dshape.ndim() == 0) return false; out_shape->clear(); out_shape->push_back(dshape); diff --git a/src/operator/nn/fully_connected-inl.h b/src/operator/nn/fully_connected-inl.h index 2b75419d2a81..93d384d51e6f 100644 --- a/src/operator/nn/fully_connected-inl.h +++ b/src/operator/nn/fully_connected-inl.h @@ -84,8 +84,8 @@ void FCForward(const OpContext &ctx, const FullyConnectedParam ¶m, CHECK_EQ(s->blas_handle_ownership_, Stream::OwnHandle) << "Must init CuBLAS handle in stream"; #endif // __CUDACC__ - const TShape& ishape = in_data[fullc::kData].shape_; - const TShape& oshape = out_data[fullc::kOut].shape_; + const mxnet::TShape& ishape = in_data[fullc::kData].shape_; + const mxnet::TShape& oshape = out_data[fullc::kOut].shape_; Tensor wmat = in_data[fullc::kWeight].get(s); Tensor data, out; @@ -128,8 +128,8 @@ void FCBackward(const OpContext &ctx, const FullyConnectedParam ¶m, // TODO(bing): check the BLAS Handle, be careful // maybe need blas handle from context Stream *s = ctx.get_stream(); - const TShape& ishape = in_data[fullc::kData].shape_; - const TShape& oshape = out_grad[fullc::kOut].shape_; + const mxnet::TShape& ishape = in_data[fullc::kData].shape_; + const mxnet::TShape& oshape = out_grad[fullc::kOut].shape_; Tensor wmat = in_data[fullc::kWeight].get(s); Tensor data, grad, gdata; diff --git a/src/operator/nn/fully_connected.cc b/src/operator/nn/fully_connected.cc index a178b2759bf9..2e02de300e8f 100644 --- a/src/operator/nn/fully_connected.cc +++ b/src/operator/nn/fully_connected.cc @@ -33,8 +33,8 @@ namespace mxnet { namespace op { static bool FullyConnectedShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { const FullyConnectedParam& param = nnvm::get(attrs.parsed); using namespace mshadow; if (!param.no_bias) { @@ -43,8 +43,8 @@ static bool FullyConnectedShape(const nnvm::NodeAttrs& attrs, CHECK_EQ(in_shape->size(), 2U) << "Input:[data, weight]"; } CHECK_EQ(out_shape->size(), 1U); - TShape dshape = (*in_shape)[fullc::kData]; - TShape oshape = (*out_shape)[0]; + mxnet::TShape dshape = (*in_shape)[fullc::kData]; + mxnet::TShape oshape = (*out_shape)[0]; // require data to be known if (dshape.ndim() == 0) return false; @@ -63,7 +63,7 @@ static bool FullyConnectedShape(const nnvm::NodeAttrs& attrs, } if (!param.flatten) { - TShape result_shape(dshape); + mxnet::TShape result_shape(dshape); result_shape[dshape.ndim()-1] = param.num_hidden; SHAPE_ASSIGN_CHECK(*out_shape, 0, result_shape); } else { @@ -294,7 +294,7 @@ If ``no_bias`` is set to be true, then the ``bias`` term is ignored. return std::vector{ResourceRequest::kTempSpace}; }) #endif -.set_attr("FInferShape", FullyConnectedShape) +.set_attr("FInferShape", FullyConnectedShape) .set_attr("FInferType", FullyConnectedType) .set_attr("FCompute", FullyConnectedCompute) .set_attr("FComputeEx", FullyConnectedComputeExCPU) diff --git a/src/operator/nn/im2col.cuh b/src/operator/nn/im2col.cuh index f9b601c5971b..d013996a79b7 100644 --- a/src/operator/nn/im2col.cuh +++ b/src/operator/nn/im2col.cuh @@ -282,10 +282,10 @@ __global__ void im2col_nd_gpu_kernel(const int n, const DType* data_im, */ template inline void im2col(mshadow::Stream* s, - const DType* data_im, const TShape& im_shape, - const TShape& col_shape, const TShape& kernel_shape, - const TShape& pad, const TShape& stride, - const TShape& dilation, DType* data_col) { + const DType* data_im, const mxnet::TShape& im_shape, + const mxnet::TShape& col_shape, const mxnet::TShape& kernel_shape, + const mxnet::TShape& pad, const mxnet::TShape& stride, + const mxnet::TShape& dilation, DType* data_col) { // num_axes should be smaller than block size index_t num_spatial_axes = kernel_shape.ndim(); CHECK_LT(num_spatial_axes, mshadow::cuda::kBaseThreadNum); @@ -468,10 +468,10 @@ __global__ void col2im_nd_gpu_kernel(const int n, const DType* data_col, */ template inline void col2im(mshadow::Stream* s, - const DType* data_col, const TShape& im_shape, - const TShape& col_shape, const TShape& kernel_shape, - const TShape& pad, const TShape& stride, - const TShape& dilation, DType* data_im, OpReqType req) { + const DType* data_col, const mxnet::TShape& im_shape, + const mxnet::TShape& col_shape, const mxnet::TShape& kernel_shape, + const mxnet::TShape& pad, const mxnet::TShape& stride, + const mxnet::TShape& dilation, DType* data_im, OpReqType req) { index_t num_spatial_axes = kernel_shape.ndim(); index_t im_size = im_shape.ProdShape(1, im_shape.ndim()); // num_axes should be smaller than block size diff --git a/src/operator/nn/im2col.h b/src/operator/nn/im2col.h index ce4d9e31db9c..0059a420726d 100644 --- a/src/operator/nn/im2col.h +++ b/src/operator/nn/im2col.h @@ -148,9 +148,9 @@ inline void im2col_cpu(const DType* data_im, const int channels, */ template inline void im2col_nd_core_cpu(const DType* data_input, const bool im2col, - const TShape& im_shape, const TShape& col_shape, - const TShape& kernel_shape, const TShape& pad, const TShape& stride, - const TShape& dilation, DType* data_output, OpReqType req = mxnet::kWriteTo) { + const mxnet::TShape& im_shape, const mxnet::TShape& col_shape, + const mxnet::TShape& kernel_shape, const mxnet::TShape& pad, const mxnet::TShape& stride, + const mxnet::TShape& dilation, DType* data_output, OpReqType req = mxnet::kWriteTo) { if (mxnet::kNullOp == req) return; index_t num_spatial_axes = kernel_shape.ndim(); if (!im2col) { @@ -234,10 +234,10 @@ inline void im2col_nd_core_cpu(const DType* data_input, const bool im2col, */ template inline void im2col(mshadow::Stream* s, - const DType* data_im, const TShape& im_shape, - const TShape& col_shape, const TShape& kernel_shape, - const TShape& pad, const TShape& stride, - const TShape& dilation, DType* data_col) { + const DType* data_im, const mxnet::TShape& im_shape, + const mxnet::TShape& col_shape, const mxnet::TShape& kernel_shape, + const mxnet::TShape& pad, const mxnet::TShape& stride, + const mxnet::TShape& dilation, DType* data_col) { if (2 == kernel_shape.ndim()) { im2col_cpu(data_im, im_shape[1], im_shape[2], im_shape[3], kernel_shape[0], kernel_shape[1], pad[0], pad[1], @@ -315,10 +315,10 @@ inline void col2im_cpu(const DType* data_col, const int channels, */ template inline void col2im(mshadow::Stream* s, - const DType* data_col, const TShape& im_shape, - const TShape& col_shape, const TShape& kernel_shape, - const TShape& pad, const TShape& stride, - const TShape& dilation, DType* data_im, OpReqType req) { + const DType* data_col, const mxnet::TShape& im_shape, + const mxnet::TShape& col_shape, const mxnet::TShape& kernel_shape, + const mxnet::TShape& pad, const mxnet::TShape& stride, + const mxnet::TShape& dilation, DType* data_im, OpReqType req) { index_t num_spatial_axes = kernel_shape.ndim(); if (2 == num_spatial_axes) { col2im_cpu(data_col, im_shape[1], im_shape[2], im_shape[3], diff --git a/src/operator/nn/layer_norm-inl.h b/src/operator/nn/layer_norm-inl.h index 18f088f758e4..dc4914bf2457 100644 --- a/src/operator/nn/layer_norm-inl.h +++ b/src/operator/nn/layer_norm-inl.h @@ -82,7 +82,7 @@ void LayerNormCompute(const nnvm::NodeAttrs& attrs, CHECK_EQ(inputs.size(), 3U); Stream *s = ctx.get_stream(); // Reshape gamma and beta to be broadcastable - TShape new_param_shape(inputs[0].shape_.begin(), inputs[0].shape_.end()); + mxnet::TShape new_param_shape(inputs[0].shape_.begin(), inputs[0].shape_.end()); for (int i = 0; i < inputs[0].ndim(); i++) { if (i != axis) { new_param_shape[i] = 1; @@ -91,7 +91,7 @@ void LayerNormCompute(const nnvm::NodeAttrs& attrs, const TBlob gamma = inputs[1].reshape(new_param_shape); const TBlob beta = inputs[2].reshape(new_param_shape); // Compute necessary data for the reduce operation. - TShape red_src_shape, red_dst_shape; + mxnet::TShape red_src_shape, red_dst_shape; BroadcastReduceShapeCompact(inputs[0].shape_, outputs[layernorm::kMean].shape_, &red_src_shape, &red_dst_shape); const TBlob in_data = inputs[0].reshape(red_src_shape); @@ -172,7 +172,7 @@ void LayerNormGradCompute(const nnvm::NodeAttrs& attrs, CHECK(axis >= 0 && axis < inputs[0].ndim()) << "Channel axis out of range: " << param.axis; Stream *s = ctx.get_stream(); // Reshape gamma to be broadcastable - TShape new_param_shape(inputs[0].shape_.begin(), inputs[0].shape_.end()); + mxnet::TShape new_param_shape(inputs[0].shape_.begin(), inputs[0].shape_.end()); for (int i = 0; i < inputs[0].ndim(); i++) { if (i != axis) { new_param_shape[i] = 1; @@ -184,7 +184,7 @@ void LayerNormGradCompute(const nnvm::NodeAttrs& attrs, const TBlob mean = inputs[3]; const TBlob std = inputs[4]; // Prepare the necessary shapes for reduction - TShape red_src_shape, red_dst_shape, red_exclude_src_shape, red_exclude_dst_shape; + mxnet::TShape red_src_shape, red_dst_shape, red_exclude_src_shape, red_exclude_dst_shape; BroadcastReduceShapeCompact(ograd.shape_, mean.shape_, &red_src_shape, &red_dst_shape); BroadcastReduceShapeCompact(ograd.shape_, gamma.shape_, &red_exclude_src_shape, &red_exclude_dst_shape); diff --git a/src/operator/nn/layer_norm.cc b/src/operator/nn/layer_norm.cc index 3a24242419dc..d4c308398cb7 100644 --- a/src/operator/nn/layer_norm.cc +++ b/src/operator/nn/layer_norm.cc @@ -33,12 +33,12 @@ namespace op { DMLC_REGISTER_PARAMETER(LayerNormParam); static bool LayerNormShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { const LayerNormParam& param = nnvm::get(attrs.parsed); using namespace mshadow; CHECK_EQ(in_shape->size(), 3U) << "Input:[data, gamma, beta]"; - const TShape &dshape = in_shape->at(layernorm::kData); + const mxnet::TShape &dshape = in_shape->at(layernorm::kData); int axis = param.axis; if (axis < 0) { axis += static_cast(dshape.ndim()); @@ -52,12 +52,12 @@ static bool LayerNormShape(const nnvm::NodeAttrs& attrs, return false; } - in_shape->at(layernorm::kGamma) = TShape(Shape1(channelCount)); - in_shape->at(layernorm::kBeta) = TShape(Shape1(channelCount)); + in_shape->at(layernorm::kGamma) = mxnet::TShape(Shape1(channelCount)); + in_shape->at(layernorm::kBeta) = mxnet::TShape(Shape1(channelCount)); out_shape->clear(); out_shape->push_back(dshape); // kOut - TShape moments_shape(dshape.begin(), dshape.end()); + mxnet::TShape moments_shape(dshape.begin(), dshape.end()); moments_shape[axis] = 1; out_shape->push_back(moments_shape); // kMean out_shape->push_back(moments_shape); // kInvstd @@ -108,7 +108,7 @@ axis to be the last item in the input shape. const LayerNormParam& param = nnvm::get(attrs.parsed); return param.output_mean_var ? 3 : 1; }) -.set_attr("FInferShape", LayerNormShape) +.set_attr("FInferShape", LayerNormShape) .set_attr("FInferType", ElemwiseType<3, 3>) .set_attr("FCompute", LayerNormCompute) .set_attr("FGradient", [](const nnvm::NodePtr& n, diff --git a/src/operator/nn/lrn.cc b/src/operator/nn/lrn.cc index 020cb479acc6..410bdab667e5 100644 --- a/src/operator/nn/lrn.cc +++ b/src/operator/nn/lrn.cc @@ -35,11 +35,11 @@ namespace mxnet { namespace op { bool LRNShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { using namespace mshadow; CHECK_EQ(in_shape->size(), 1U) << "Input:[data]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; out_shape->clear(); out_shape->push_back(dshape); @@ -167,7 +167,7 @@ number of kernels in the layer. .set_attr("FNumVisibleOutputs", [](const NodeAttrs& attrs) { return 1; }) .set_attr_parser(ParamParser) -.set_attr("FInferShape", LRNShape) +.set_attr("FInferShape", LRNShape) .set_attr("FInferType", LRNType) #if MXNET_USE_MKLDNN == 1 .set_attr("FInferStorageType", LRNForwardInferStorageType) diff --git a/src/operator/nn/mkldnn/mkldnn_base-inl.h b/src/operator/nn/mkldnn/mkldnn_base-inl.h index bf220b847c0e..0a89c0f31981 100644 --- a/src/operator/nn/mkldnn/mkldnn_base-inl.h +++ b/src/operator/nn/mkldnn/mkldnn_base-inl.h @@ -115,7 +115,7 @@ struct data_type_enum { enum { type = mkldnn::memory::data_type::u8 }; }; -static inline bool SupportMKLDNNArray(int dtype, const TShape &shape) { +static inline bool SupportMKLDNNArray(int dtype, const mxnet::TShape &shape) { int ndim = shape.ndim(); bool support = ndim == 1 || ndim == 2 || ndim == 4; support = support && (dtype == mshadow::kFloat32 || dtype == mshadow::kInt32 @@ -127,7 +127,7 @@ static inline bool SupportStorageMKLDNN(int stype) { return stype == kDefaultStorage; } -static inline bool SupportMKLDNN(int dtype, const TShape &shape) { +static inline bool SupportMKLDNN(int dtype, const mxnet::TShape &shape) { int ndim = shape.ndim(); return dtype == mshadow::kFloat32 && (ndim == 1 || ndim == 2 || ndim == 4); } @@ -461,7 +461,7 @@ mkldnn_memory_format_t GetDefaultFormat(int num_dims); mkldnn::memory::primitive_desc GetPrimitiveDesc(mkldnn::memory::primitive_desc pd, mkldnn_memory_format_t format); -inline bool same_shape(const TShape &shape, const mkldnn_dims_t dims, int ndims) { +inline bool same_shape(const mxnet::TShape &shape, const mkldnn_dims_t dims, int ndims) { if (shape.ndim() != (size_t)ndims) return false; for (int i = 0; i < ndims; i++) @@ -480,7 +480,7 @@ inline bool same_shape(const mkldnn::memory::desc &desc1, return true; } -inline bool same_shape(const TShape &shape, int dtype, +inline bool same_shape(const mxnet::TShape &shape, int dtype, const mkldnn::memory::desc &desc) { return same_shape(shape, desc.data.dims, desc.data.ndims) && get_mkldnn_type(dtype) == desc.data.data_type; @@ -553,7 +553,7 @@ class MKLDNNMemory { return mem->get_primitive_desc() == pd; } - bool SameFormat(const TShape &shape, int dtype) const { + bool SameFormat(const mxnet::TShape &shape, int dtype) const { return same_shape(shape, dtype, desc); } diff --git a/src/operator/nn/mkldnn/mkldnn_fully_connected.cc b/src/operator/nn/mkldnn/mkldnn_fully_connected.cc index 5f672cd51fd5..05ef7ebd6573 100644 --- a/src/operator/nn/mkldnn/mkldnn_fully_connected.cc +++ b/src/operator/nn/mkldnn/mkldnn_fully_connected.cc @@ -182,8 +182,8 @@ void MKLDNNFCForward(const nnvm::NodeAttrs& attrs, const OpContext &ctx, const std::vector &out_data) { TmpMemMgr::Get()->Init(ctx.requested[fullc::kTempSpace]); const FullyConnectedParam& param = nnvm::get(attrs.parsed); - const TShape& ishape = in_data[fullc::kData].shape(); - const TShape& oshape = out_data[fullc::kOut].shape(); + const mxnet::TShape& ishape = in_data[fullc::kData].shape(); + const mxnet::TShape& oshape = out_data[fullc::kOut].shape(); NDArray weight = in_data[fullc::kWeight]; NDArray data = in_data[fullc::kData]; // If the input data is a view of an MKLDNN array, we should create a new @@ -232,8 +232,8 @@ void MKLDNNFCBackward(const nnvm::NodeAttrs& attrs, const OpContext &ctx, TmpMemMgr::Get()->Init(ctx.requested[fullc::kTempSpace]); const std::vector &in_grad = outputs; const FullyConnectedParam& param = nnvm::get(attrs.parsed); - const TShape& ishape = inputs[fullc::kData + 1].shape(); - const TShape& oshape = inputs[fullc::kOut].shape(); + const mxnet::TShape& ishape = inputs[fullc::kData + 1].shape(); + const mxnet::TShape& oshape = inputs[fullc::kOut].shape(); NDArray weight = inputs[fullc::kWeight + 1]; NDArray data = inputs[fullc::kData + 1]; diff --git a/src/operator/nn/mkldnn/mkldnn_pooling-inl.h b/src/operator/nn/mkldnn/mkldnn_pooling-inl.h index de3d63e24f6c..9b9f0193979b 100644 --- a/src/operator/nn/mkldnn/mkldnn_pooling-inl.h +++ b/src/operator/nn/mkldnn/mkldnn_pooling-inl.h @@ -109,7 +109,7 @@ inline bool SupportMKLDNNPooling(const PoolingParam ¶m) { } inline bool SupportMKLDNNPooling(const PoolingParam ¶m, - const TShape &dshape) { + const mxnet::TShape &dshape) { bool ret = SupportMKLDNNPooling(param); if (!ret) return false; diff --git a/src/operator/nn/mkldnn/mkldnn_slice.cc b/src/operator/nn/mkldnn/mkldnn_slice.cc index f3c8a14e0c63..3f3d82020598 100644 --- a/src/operator/nn/mkldnn/mkldnn_slice.cc +++ b/src/operator/nn/mkldnn/mkldnn_slice.cc @@ -35,8 +35,8 @@ namespace op { MKLDNNSliceFwd::MKLDNNSliceFwd(const SliceParam ¶m, const NDArray &in, const NDArray &out) { - const TShape ishape = in.shape(); - const TShape oshape = out.shape(); + const mxnet::TShape ishape = in.shape(); + const mxnet::TShape oshape = out.shape(); uint32_t N = ishape.ndim(); mkldnn::memory::dims dims(N); mkldnn::memory::dims offsets(N); diff --git a/src/operator/nn/pool.cuh b/src/operator/nn/pool.cuh index 671bc7932ef9..e771b3681573 100644 --- a/src/operator/nn/pool.cuh +++ b/src/operator/nn/pool.cuh @@ -731,9 +731,9 @@ __global__ void unpool_sum_3d_gpu_kernel(const int nthreads, const DType* out_gr * \param count_include_pad for avg pooling, should 0 pad values be averaged in the window */ template -inline void pool(mshadow::Stream* s, const DType* in_data, const TShape& ishape, - const TShape& oshape, const TShape& kernel, const TShape& pad, - const TShape& stride, const int pool_type, OpReqType req_type, +inline void pool(mshadow::Stream* s, const DType* in_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, const mxnet::TShape& pad, + const mxnet::TShape& stride, const int pool_type, OpReqType req_type, DType* out_data, const bool count_include_pad) { CHECK_EQ(req_type, kWriteTo) << "Only support req=kWriteTo in pooling operations"; using namespace mxnet_op; @@ -866,15 +866,15 @@ inline void pool(mshadow::Stream* s, const DType* in_data, const TShape& is * \param layout I/O tensor layout, e.g. NCHW vs. NHWC */ template -inline void pool(mshadow::Stream* s, const DType* in_data, const TShape& ishape, - const TShape& oshape, const TShape& kernel, const TShape& pad, - const TShape& stride, const int pool_type, OpReqType req_type, +inline void pool(mshadow::Stream* s, const DType* in_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, const mxnet::TShape& pad, + const mxnet::TShape& stride, const int pool_type, OpReqType req_type, DType* out_data, const bool count_include_pad, int layout) { if (kernel.ndim() == 1) { if (layout == mshadow::kNWC) { // standardize shapes to NCW to aid templated kernel invocation - TShape ishape_ncw = ConvertLayout(ishape.get<3>(), mshadow::kNWC, mshadow::kNCW); - TShape oshape_ncw = ConvertLayout(oshape.get<3>(), mshadow::kNWC, mshadow::kNCW); + mxnet::TShape ishape_ncw = ConvertLayout(ishape.get<3>(), mshadow::kNWC, mshadow::kNCW); + mxnet::TShape oshape_ncw = ConvertLayout(oshape.get<3>(), mshadow::kNWC, mshadow::kNCW); pool(s, in_data, ishape_ncw, oshape_ncw, kernel, pad, stride, pool_type, req_type, out_data, count_include_pad); } else if (layout == mshadow::kNCW) { @@ -886,8 +886,8 @@ inline void pool(mshadow::Stream* s, const DType* in_data, const TShape& is } else if (kernel.ndim() == 2) { if (layout == mshadow::kNHWC) { // standardize shapes to NCHW to aid templated kernel invocation - TShape ishape_nchw = ConvertLayout(ishape.get<4>(), mshadow::kNHWC, mshadow::kNCHW); - TShape oshape_nchw = ConvertLayout(oshape.get<4>(), mshadow::kNHWC, mshadow::kNCHW); + mxnet::TShape ishape_nchw = ConvertLayout(ishape.get<4>(), mshadow::kNHWC, mshadow::kNCHW); + mxnet::TShape oshape_nchw = ConvertLayout(oshape.get<4>(), mshadow::kNHWC, mshadow::kNCHW); pool(s, in_data, ishape_nchw, oshape_nchw, kernel, pad, stride, pool_type, req_type, out_data, count_include_pad); } else if (layout == mshadow::kNCHW) { @@ -899,8 +899,8 @@ inline void pool(mshadow::Stream* s, const DType* in_data, const TShape& is } else if (kernel.ndim() == 3) { if (layout == mshadow::kNDHWC) { // standardize shapes to NCDHW to aid templated kernel invocation - TShape ishape_ncdhw = ConvertLayout(ishape.get<5>(), mshadow::kNDHWC, mshadow::kNCDHW); - TShape oshape_ncdhw = ConvertLayout(oshape.get<5>(), mshadow::kNDHWC, mshadow::kNCDHW); + mxnet::TShape ishape_ncdhw = ConvertLayout(ishape.get<5>(), mshadow::kNDHWC, mshadow::kNCDHW); + mxnet::TShape oshape_ncdhw = ConvertLayout(oshape.get<5>(), mshadow::kNDHWC, mshadow::kNCDHW); pool(s, in_data, ishape_ncdhw, oshape_ncdhw, kernel, pad, stride, pool_type, req_type, out_data, count_include_pad); } else if (layout == mshadow::kNCDHW) { @@ -932,8 +932,8 @@ inline void pool(mshadow::Stream* s, const DType* in_data, const TShape& is */ template inline void unpool(mshadow::Stream* s, const DType* out_grad, const DType* in_data, - const DType* out_data, const TShape& ishape, const TShape& oshape, - const TShape& kernel, const TShape& pad, const TShape& stride, + const DType* out_data, const mxnet::TShape& ishape, const mxnet::TShape& oshape, + const mxnet::TShape& kernel, const mxnet::TShape& pad, const mxnet::TShape& stride, const int pool_type, OpReqType req_type, DType* in_grad, const bool count_include_pad) { if (mxnet::kNullOp == req_type) return; @@ -1086,15 +1086,15 @@ inline void unpool(mshadow::Stream* s, const DType* out_grad, const DType* */ template inline void unpool(mshadow::Stream* s, const DType* out_grad, const DType* in_data, - const DType* out_data, const TShape& ishape, const TShape& oshape, - const TShape& kernel, const TShape& pad, const TShape& stride, + const DType* out_data, const mxnet::TShape& ishape, const mxnet::TShape& oshape, + const mxnet::TShape& kernel, const mxnet::TShape& pad, const mxnet::TShape& stride, const int pool_type, OpReqType req_type, DType* in_grad, const bool count_include_pad, int layout) { if (kernel.ndim() == 1) { if (layout == mshadow::kNWC) { // standardize shapes to NCW to aid templated kernel invocation - TShape ishape_ncw = ConvertLayout(ishape.get<3>(), mshadow::kNWC, mshadow::kNCW); - TShape oshape_ncw = ConvertLayout(oshape.get<3>(), mshadow::kNWC, mshadow::kNCW); + mxnet::TShape ishape_ncw = ConvertLayout(ishape.get<3>(), mshadow::kNWC, mshadow::kNCW); + mxnet::TShape oshape_ncw = ConvertLayout(oshape.get<3>(), mshadow::kNWC, mshadow::kNCW); unpool(s, out_grad, in_data, out_data, ishape_ncw, oshape_ncw, kernel, pad, stride, pool_type, req_type, in_grad, count_include_pad); } else if (layout == mshadow::kNCW) { @@ -1106,8 +1106,8 @@ inline void unpool(mshadow::Stream* s, const DType* out_grad, const DType* } else if (kernel.ndim() == 2) { if (layout == mshadow::kNHWC) { // standardize shapes to NCHW to aid templated kernel invocation - TShape ishape_nchw = ConvertLayout(ishape.get<4>(), mshadow::kNHWC, mshadow::kNCHW); - TShape oshape_nchw = ConvertLayout(oshape.get<4>(), mshadow::kNHWC, mshadow::kNCHW); + mxnet::TShape ishape_nchw = ConvertLayout(ishape.get<4>(), mshadow::kNHWC, mshadow::kNCHW); + mxnet::TShape oshape_nchw = ConvertLayout(oshape.get<4>(), mshadow::kNHWC, mshadow::kNCHW); unpool(s, out_grad, in_data, out_data, ishape_nchw, oshape_nchw, kernel, pad, stride, pool_type, req_type, in_grad, count_include_pad); } else if (layout == mshadow::kNCHW) { @@ -1119,8 +1119,8 @@ inline void unpool(mshadow::Stream* s, const DType* out_grad, const DType* } else if (kernel.ndim() == 3) { if (layout == mshadow::kNDHWC) { // standardize shapes to NCDHW to aid templated kernel invocation - TShape ishape_ncdhw = ConvertLayout(ishape.get<5>(), mshadow::kNDHWC, mshadow::kNCDHW); - TShape oshape_ncdhw = ConvertLayout(oshape.get<5>(), mshadow::kNDHWC, mshadow::kNCDHW); + mxnet::TShape ishape_ncdhw = ConvertLayout(ishape.get<5>(), mshadow::kNDHWC, mshadow::kNCDHW); + mxnet::TShape oshape_ncdhw = ConvertLayout(oshape.get<5>(), mshadow::kNDHWC, mshadow::kNCDHW); unpool(s, out_grad, in_data, out_data, ishape_ncdhw, oshape_ncdhw, kernel, pad, stride, pool_type, req_type, in_grad, count_include_pad); } else if (layout == mshadow::kNCDHW) { diff --git a/src/operator/nn/pool.h b/src/operator/nn/pool.h index 3c8c19a02607..4ea39c3db166 100644 --- a/src/operator/nn/pool.h +++ b/src/operator/nn/pool.h @@ -82,8 +82,9 @@ enum PoolingOpPadConventionType {kValid, kFull, kSame}; * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_max_1d_ncw_cpu(const DType *in_data, const TShape &ishape, const TShape &oshape, - const TShape &kernel, const TShape &pad, const TShape &stride, +inline void pool_max_1d_ncw_cpu(const DType *in_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *out_data) { using mshadow::red::limits::MinValue; const int width = ishape[2]; @@ -118,9 +119,10 @@ inline void pool_max_1d_ncw_cpu(const DType *in_data, const TShape &ishape, cons * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_max_1d_nwc_cpu(const DType* in_data, const TShape& ishape, const TShape& oshape, - const TShape& kernel, const TShape& pad, const TShape& stride, - DType* out_data) { +inline void pool_max_1d_nwc_cpu(const DType* in_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, + const mxnet::TShape& pad, const mxnet::TShape& stride, + DType* out_data) { using mshadow::red::limits::MinValue; const int width = ishape[1]; const int pooled_width = oshape[1]; @@ -157,8 +159,9 @@ inline void pool_max_1d_nwc_cpu(const DType* in_data, const TShape& ishape, cons * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_max_2d_nchw_cpu(const DType *in_data, const TShape &ishape, const TShape &oshape, - const TShape &kernel, const TShape &pad, const TShape &stride, +inline void pool_max_2d_nchw_cpu(const DType *in_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *out_data) { using mshadow::red::limits::MinValue; const int height = ishape[2], width = ishape[3]; @@ -202,9 +205,10 @@ inline void pool_max_2d_nchw_cpu(const DType *in_data, const TShape &ishape, con * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_max_2d_nhwc_cpu(const DType* in_data, const TShape& ishape, const TShape& oshape, - const TShape& kernel, const TShape& pad, const TShape& stride, - DType* out_data) { +inline void pool_max_2d_nhwc_cpu(const DType* in_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, + const mxnet::TShape& pad, const mxnet::TShape& stride, + DType* out_data) { using mshadow::red::limits::MinValue; const int height = ishape[1], width = ishape[2]; const int pooled_height = oshape[1], pooled_width = oshape[2]; @@ -250,8 +254,9 @@ inline void pool_max_2d_nhwc_cpu(const DType* in_data, const TShape& ishape, con * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_max_3d_ncdhw_cpu(const DType *in_data, const TShape &ishape, const TShape &oshape, - const TShape &kernel, const TShape &pad, const TShape &stride, +inline void pool_max_3d_ncdhw_cpu(const DType *in_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *out_data) { using mshadow::red::limits::MinValue; const int depth = ishape[2], height = ishape[3], width = ishape[4]; @@ -302,9 +307,10 @@ inline void pool_max_3d_ncdhw_cpu(const DType *in_data, const TShape &ishape, co * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_max_3d_ndhwc_cpu(const DType* in_data, const TShape& ishape, const TShape& oshape, - const TShape& kernel, const TShape& pad, const TShape& stride, - DType* out_data) { +inline void pool_max_3d_ndhwc_cpu(const DType* in_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, + const mxnet::TShape& pad, const mxnet::TShape& stride, + DType* out_data) { using mshadow::red::limits::MinValue; const int depth = ishape[1], height = ishape[2], width = ishape[3]; const int pooled_depth = oshape[1], pooled_height = oshape[2], pooled_width = oshape[3]; @@ -357,8 +363,9 @@ inline void pool_max_3d_ndhwc_cpu(const DType* in_data, const TShape& ishape, co * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_sum_1d_ncw_cpu(const DType *in_data, const TShape &ishape, const TShape &oshape, - const TShape &kernel, const TShape &pad, const TShape &stride, +inline void pool_sum_1d_ncw_cpu(const DType *in_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *out_data, const bool get_avg = false, const bool count_include_pad = true) { using AccType = typename PoolingTypes::AccType; @@ -397,10 +404,11 @@ inline void pool_sum_1d_ncw_cpu(const DType *in_data, const TShape &ishape, cons * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_sum_1d_nwc_cpu(const DType* in_data, const TShape& ishape, const TShape& oshape, - const TShape& kernel, const TShape& pad, const TShape& stride, - DType* out_data, - const bool get_avg = false, const bool count_include_pad = true) { +inline void pool_sum_1d_nwc_cpu(const DType* in_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, + const mxnet::TShape& pad, const mxnet::TShape& stride, + DType* out_data, + const bool get_avg = false, const bool count_include_pad = true) { using AccType = typename PoolingTypes::AccType; const int width = ishape[1]; const int pooled_width = oshape[1]; @@ -440,8 +448,9 @@ inline void pool_sum_1d_nwc_cpu(const DType* in_data, const TShape& ishape, cons * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_sum_2d_nchw_cpu(const DType *in_data, const TShape &ishape, const TShape &oshape, - const TShape &kernel, const TShape &pad, const TShape &stride, +inline void pool_sum_2d_nchw_cpu(const DType *in_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *out_data, const bool get_avg = false, const bool count_include_pad = true) { using AccType = typename PoolingTypes::AccType; @@ -488,10 +497,11 @@ inline void pool_sum_2d_nchw_cpu(const DType *in_data, const TShape &ishape, con * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_sum_2d_nhwc_cpu(const DType* in_data, const TShape& ishape, const TShape& oshape, - const TShape& kernel, const TShape& pad, const TShape& stride, - DType* out_data, - const bool get_avg = false, const bool count_include_pad = true) { +inline void pool_sum_2d_nhwc_cpu(const DType* in_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, + const mxnet::TShape& pad, const mxnet::TShape& stride, + DType* out_data, + const bool get_avg = false, const bool count_include_pad = true) { using AccType = typename PoolingTypes::AccType; const int height = ishape[1], width = ishape[2]; const int pooled_height = oshape[1], pooled_width = oshape[2]; @@ -541,8 +551,9 @@ inline void pool_sum_2d_nhwc_cpu(const DType* in_data, const TShape& ishape, con * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_sum_3d_ncdhw_cpu(const DType *in_data, const TShape &ishape, const TShape &oshape, - const TShape &kernel, const TShape &pad, const TShape &stride, +inline void pool_sum_3d_ncdhw_cpu(const DType *in_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *out_data, const bool get_avg = false, const bool count_include_pad = true) { using AccType = typename PoolingTypes::AccType; @@ -599,10 +610,11 @@ inline void pool_sum_3d_ncdhw_cpu(const DType *in_data, const TShape &ishape, co * Do not call this kernel directly. Use the interface pool(). */ template -inline void pool_sum_3d_ndhwc_cpu(const DType* in_data, const TShape& ishape, const TShape& oshape, - const TShape& kernel, const TShape& pad, const TShape& stride, - DType* out_data, - const bool get_avg = false, const bool count_include_pad = true) { +inline void pool_sum_3d_ndhwc_cpu(const DType* in_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, + const mxnet::TShape& pad, const mxnet::TShape& stride, + DType* out_data, + const bool get_avg = false, const bool count_include_pad = true) { using AccType = typename PoolingTypes::AccType; const int depth = ishape[1], height = ishape[2], width = ishape[3]; const int pooled_depth = oshape[1], pooled_height = oshape[2], pooled_width = oshape[3]; @@ -663,9 +675,9 @@ inline void pool_sum_3d_ndhwc_cpu(const DType* in_data, const TShape& ishape, co */ template inline void unpool_max_1d_ncw_cpu(const DType *out_grad, const DType *in_data, - const DType *out_data, const TShape &ishape, - const TShape &oshape, const TShape &kernel, - const TShape &pad, const TShape &stride, + const DType *out_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *in_grad) { const int width = ishape[2]; const int pooled_width = oshape[2]; @@ -707,9 +719,9 @@ inline void unpool_max_1d_ncw_cpu(const DType *out_grad, const DType *in_data, */ template inline void unpool_max_1d_nwc_cpu(const DType* out_grad, const DType* in_data, - const DType* out_data, const TShape& ishape, - const TShape& oshape, const TShape& kernel, - const TShape& pad, const TShape& stride, + const DType* out_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, + const mxnet::TShape& pad, const mxnet::TShape& stride, DType* in_grad) { const int width = ishape[1]; const int pooled_width = oshape[1]; @@ -755,9 +767,9 @@ inline void unpool_max_1d_nwc_cpu(const DType* out_grad, const DType* in_data, */ template inline void unpool_max_2d_nchw_cpu(const DType *out_grad, const DType *in_data, - const DType *out_data, const TShape &ishape, - const TShape &oshape, const TShape &kernel, - const TShape &pad, const TShape &stride, + const DType *out_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *in_grad) { const int height = ishape[2], width = ishape[3]; const int pooled_height = oshape[2], pooled_width = oshape[3]; @@ -811,9 +823,9 @@ inline void unpool_max_2d_nchw_cpu(const DType *out_grad, const DType *in_data, */ template inline void unpool_max_2d_nhwc_cpu(const DType* out_grad, const DType* in_data, - const DType* out_data, const TShape& ishape, - const TShape& oshape, const TShape& kernel, - const TShape& pad, const TShape& stride, + const DType* out_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, + const mxnet::TShape& pad, const mxnet::TShape& stride, DType* in_grad) { const int height = ishape[1], width = ishape[2]; const int pooled_height = oshape[1], pooled_width = oshape[2]; @@ -871,9 +883,9 @@ inline void unpool_max_2d_nhwc_cpu(const DType* out_grad, const DType* in_data, */ template inline void unpool_max_3d_ncdhw_cpu(const DType *out_grad, const DType *in_data, - const DType *out_data, const TShape &ishape, - const TShape &oshape, const TShape &kernel, - const TShape &pad, const TShape &stride, + const DType *out_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *in_grad) { const int depth = ishape[2], height = ishape[3], width = ishape[4]; const int pooled_depth = oshape[2], pooled_height = oshape[3], pooled_width = oshape[4]; @@ -935,9 +947,9 @@ inline void unpool_max_3d_ncdhw_cpu(const DType *out_grad, const DType *in_data, */ template inline void unpool_max_3d_ndhwc_cpu(const DType* out_grad, const DType* in_data, - const DType* out_data, const TShape& ishape, - const TShape& oshape, const TShape& kernel, - const TShape& pad, const TShape& stride, + const DType* out_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, + const mxnet::TShape& pad, const mxnet::TShape& stride, DType* in_grad) { const int depth = ishape[1], height = ishape[2], width = ishape[3]; const int pooled_depth = oshape[1], pooled_height = oshape[2], pooled_width = oshape[3]; @@ -1004,8 +1016,9 @@ inline void unpool_max_3d_ndhwc_cpu(const DType* out_grad, const DType* in_data, template inline void unpool_sum_1d_ncw_cpu(const DType *out_grad, const DType *in_data, const DType *out_data, - const TShape &ishape, const TShape &oshape, const TShape &kernel, - const TShape &pad, const TShape &stride, DType *in_grad, + const mxnet::TShape &ishape, const mxnet::TShape &oshape, + const mxnet::TShape &kernel, const mxnet::TShape &pad, + const mxnet::TShape &stride, DType *in_grad, const bool is_avg = false, const bool count_include_pad = true) { const int width = ishape[2]; const int pooled_width = oshape[2]; @@ -1043,9 +1056,9 @@ inline void unpool_sum_1d_ncw_cpu(const DType *out_grad, const DType *in_data, */ template inline void unpool_sum_1d_nwc_cpu(const DType* out_grad, const DType* in_data, - const DType *out_data, const TShape &ishape, - const TShape &oshape, const TShape &kernel, - const TShape &pad, const TShape &stride, + const DType *out_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *in_grad, const bool is_avg = false, const bool count_include_pad = true) { const int width = ishape[1]; @@ -1088,9 +1101,9 @@ inline void unpool_sum_1d_nwc_cpu(const DType* out_grad, const DType* in_data, */ template inline void unpool_sum_2d_nchw_cpu(const DType *out_grad, const DType *in_data, - const DType *out_data, const TShape &ishape, - const TShape &oshape, const TShape &kernel, - const TShape &pad, const TShape &stride, + const DType *out_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *in_grad, const bool is_avg = false, const bool count_include_pad = true) { const int height = ishape[2], width = ishape[3]; @@ -1141,9 +1154,9 @@ inline void unpool_sum_2d_nchw_cpu(const DType *out_grad, const DType *in_data, */ template inline void unpool_sum_2d_nhwc_cpu(const DType* out_grad, const DType* in_data, - const DType *out_data, const TShape &ishape, - const TShape &oshape, const TShape &kernel, - const TShape &pad, const TShape &stride, + const DType *out_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *in_grad, const bool is_avg = false, const bool count_include_pad = true) { const int height = ishape[1], width = ishape[2]; @@ -1196,9 +1209,9 @@ inline void unpool_sum_2d_nhwc_cpu(const DType* out_grad, const DType* in_data, */ template inline void unpool_sum_3d_ncdhw_cpu(const DType *out_grad, const DType *in_data, - const DType *out_data, const TShape &ishape, - const TShape &oshape, const TShape &kernel, - const TShape &pad, const TShape &stride, + const DType *out_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *in_grad, const bool is_avg = false, const bool count_include_pad = true) { const int depth = ishape[2], height = ishape[3], width = ishape[4]; @@ -1257,9 +1270,9 @@ inline void unpool_sum_3d_ncdhw_cpu(const DType *out_grad, const DType *in_data, */ template inline void unpool_sum_3d_ndhwc_cpu(const DType* out_grad, const DType* in_data, - const DType *out_data, const TShape &ishape, - const TShape &oshape, const TShape &kernel, - const TShape &pad, const TShape &stride, + const DType *out_data, const mxnet::TShape &ishape, + const mxnet::TShape &oshape, const mxnet::TShape &kernel, + const mxnet::TShape &pad, const mxnet::TShape &stride, DType *in_grad, const bool is_avg = false, const bool count_include_pad = true) { const int depth = ishape[1], height = ishape[2], width = ishape[3]; @@ -1329,9 +1342,9 @@ inline void unpool_sum_3d_ndhwc_cpu(const DType* out_grad, const DType* in_data, * \param p_value value of p for Lp pooling */ template -inline void pool(mshadow::Stream* s, const DType* in_data, const TShape& ishape, - const TShape& oshape, const TShape& kernel, const TShape& pad, - const TShape& stride, const int pool_type, OpReqType req_type, +inline void pool(mshadow::Stream* s, const DType* in_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, const mxnet::TShape& pad, + const mxnet::TShape& stride, const int pool_type, OpReqType req_type, DType* out_data, const bool count_include_pad, int layout) { CHECK_EQ(req_type, kWriteTo) << "Only support req=kWriteTo in pooling operations"; if (kernel.ndim() == 1) { @@ -1447,8 +1460,9 @@ inline void pool(mshadow::Stream* s, const DType* in_data, const TShape& is */ template inline void unpool(mshadow::Stream* s, const DType* out_grad, const DType* in_data, - const DType* out_data, const TShape& ishape, const TShape& oshape, - const TShape& kernel, const TShape& pad, const TShape& stride, + const DType* out_data, const mxnet::TShape& ishape, + const mxnet::TShape& oshape, const mxnet::TShape& kernel, + const mxnet::TShape& pad, const mxnet::TShape& stride, const int pool_type, OpReqType req_type, DType* in_grad, const bool count_include_pad, int layout) { if (mxnet::kNullOp == req_type) return; diff --git a/src/operator/nn/pooling-inl.h b/src/operator/nn/pooling-inl.h index af00fd5cfa3c..9e1e73bf19e2 100644 --- a/src/operator/nn/pooling-inl.h +++ b/src/operator/nn/pooling-inl.h @@ -44,9 +44,9 @@ namespace op { void PoolingParamParser(nnvm::NodeAttrs *attrs); struct PoolingParam : public dmlc::Parameter { - TShape kernel; - TShape stride; - TShape pad; + mxnet::TShape kernel; + mxnet::TShape stride; + mxnet::TShape pad; int pool_type; int pooling_convention; bool global_pool; @@ -55,7 +55,7 @@ struct PoolingParam : public dmlc::Parameter { dmlc::optional count_include_pad; dmlc::optional layout; DMLC_DECLARE_PARAMETER(PoolingParam) { - DMLC_DECLARE_FIELD(kernel).set_default(TShape()) // add default value here + DMLC_DECLARE_FIELD(kernel).set_default(mxnet::TShape()) // add default value here .enforce_nonzero() .describe("Pooling kernel size: (y, x) or (d, y, x)"); @@ -78,11 +78,11 @@ struct PoolingParam : public dmlc::Parameter { .add_enum("same", pool_enum::kSame) .describe("Pooling convention to be applied."); - DMLC_DECLARE_FIELD(stride).set_default(TShape()) + DMLC_DECLARE_FIELD(stride).set_default(mxnet::TShape()) .enforce_nonzero() .describe("Stride: for pooling (y, x) or (d, y, x). Defaults to 1 for each dimension."); - DMLC_DECLARE_FIELD(pad).set_default(TShape()) + DMLC_DECLARE_FIELD(pad).set_default(mxnet::TShape()) .describe("Pad for pooling: (y, x) or (d, y, x). Defaults to no padding."); DMLC_DECLARE_FIELD(p_value).set_default(dmlc::optional()) @@ -185,26 +185,26 @@ class PoolingOp { const OpReqType& req, const TBlob& out_data) { using namespace mshadow; Stream *s = ctx.get_stream(); - const TShape& ishape = in_data.shape_; - TShape kernel = param_.kernel; - TShape padding = param_.pad; - TShape stride = param_.stride; + const mxnet::TShape& ishape = in_data.shape_; + mxnet::TShape kernel = param_.kernel; + mxnet::TShape padding = param_.pad; + mxnet::TShape stride = param_.stride; int layout = param_.GetLayout(ishape.ndim()); if (param_.global_pool) { // with global pooling, kernel shape corresponds to input shape with 'N' and 'C' removed if (layout == mshadow::kNWC || layout == mshadow::kNHWC || layout == mshadow::kNDHWC) { - kernel = TShape(ishape.data() + 1, + kernel = mxnet::TShape(ishape.data() + 1, ishape.data() + ishape.ndim() - 1); } else { - kernel = TShape(ishape.data() + 2, + kernel = mxnet::TShape(ishape.data() + 2, ishape.data() + ishape.ndim()); } - padding = TShape(ishape.ndim() - 2); + padding = mxnet::TShape(ishape.ndim() - 2); for (index_t i = 0; i < ishape.ndim() - 2; i++) { padding[i] = 0; } - stride = TShape(ishape.ndim() - 2); + stride = mxnet::TShape(ishape.ndim() - 2); } const int p_value = (param_.pool_type == pool_enum::kLpPooling && param_.p_value.has_value()) ? param_.p_value.value() : 1; @@ -242,26 +242,26 @@ class PoolingOp { const OpReqType& req, const TBlob& in_grad) { using namespace mshadow; Stream *s = ctx.get_stream(); - const TShape& ishape = in_data.shape_; - TShape kernel = param_.kernel; - TShape padding = param_.pad; - TShape stride = param_.stride; + const mxnet::TShape& ishape = in_data.shape_; + mxnet::TShape kernel = param_.kernel; + mxnet::TShape padding = param_.pad; + mxnet::TShape stride = param_.stride; int layout = param_.GetLayout(ishape.ndim()); if (param_.global_pool) { // with global pooling, kernel shape corresponds to input shape with 'N' and 'C' removed if (layout == mshadow::kNWC || layout == mshadow::kNHWC || layout == mshadow::kNDHWC) { - kernel = TShape(ishape.data() + 1, + kernel = mxnet::TShape(ishape.data() + 1, ishape.data() + ishape.ndim() - 1); } else { - kernel = TShape(ishape.data() + 2, + kernel = mxnet::TShape(ishape.data() + 2, ishape.data() + ishape.ndim()); } - padding = TShape(ishape.ndim() - 2); + padding = mxnet::TShape(ishape.ndim() - 2); for (index_t i = 0; i < ishape.ndim() - 2; i++) { padding[i] = 0; } - stride = TShape(ishape.ndim() - 2); + stride = mxnet::TShape(ishape.ndim() - 2); } const int p_value = (param_.pool_type == pool_enum::kLpPooling && param_.p_value.has_value()) ? diff --git a/src/operator/nn/pooling.cc b/src/operator/nn/pooling.cc index 9e9af4d97fd9..2d16604baa20 100644 --- a/src/operator/nn/pooling.cc +++ b/src/operator/nn/pooling.cc @@ -91,14 +91,14 @@ static bool PoolingType(const nnvm::NodeAttrs& attrs, } static bool PoolingShape(const nnvm::NodeAttrs &attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { const PoolingParam ¶m = nnvm::get(attrs.parsed); CHECK_EQ(in_shape->size(), 1U); if (param.pool_type == pool_enum::kLpPooling) { CHECK(param.p_value.has_value()); } - const TShape &dshape = (*in_shape)[0]; + const mxnet::TShape &dshape = (*in_shape)[0]; if (param.pooling_convention == pool_enum::kSame) { CHECK_EQ(dshape.ndim(), 3U) << "Pooling: Input data should be 3D in (batch, channel, x)" @@ -117,7 +117,7 @@ static bool PoolingShape(const nnvm::NodeAttrs &attrs, if (dshape.ndim() == 0) return false; int layout = param.GetLayout(dshape.ndim()); if (param.global_pool) { - TShape oshape = dshape; + mxnet::TShape oshape = dshape; size_t c_index = 0; switch (layout) { case mshadow::kNCW: @@ -171,7 +171,7 @@ static bool PoolingShape(const nnvm::NodeAttrs &attrs, param.stride[0])); } // Convert back from standard (NCW) layout space to the actual layout type - TShape oshape = (layout == mshadow::kNWC) ? + mxnet::TShape oshape = (layout == mshadow::kNWC) ? ConvertLayout(oshape_ncw, mshadow::kNCW, mshadow::kNWC) : oshape_ncw; out_shape->clear(); out_shape->push_back(oshape); // save output shape @@ -209,7 +209,7 @@ static bool PoolingShape(const nnvm::NodeAttrs &attrs, param.stride[1])); } // Convert back from standard (NCHW) layout space to the actual layout type - TShape oshape = (layout == mshadow::kNHWC) ? + mxnet::TShape oshape = (layout == mshadow::kNHWC) ? ConvertLayout(oshape_nchw, mshadow::kNCHW, mshadow::kNHWC) : oshape_nchw; out_shape->clear(); out_shape->push_back(oshape); // save output shape @@ -251,7 +251,7 @@ static bool PoolingShape(const nnvm::NodeAttrs &attrs, param.stride[2])); } // Convert back from standard (NCDHW) layout space to the actual layout type - TShape oshape = (layout == mshadow::kNDHWC) ? + mxnet::TShape oshape = (layout == mshadow::kNDHWC) ? ConvertLayout(oshape_ncdhw, mshadow::kNCDHW, mshadow::kNDHWC) : oshape_ncdhw; out_shape->clear(); out_shape->push_back(oshape); // save output shape @@ -440,7 +440,7 @@ For each window ``X``, the mathematical expression for Lp pooling is: .set_attr("FInferStorageType", PoolingStorageType) #endif .set_attr("FInferType", PoolingType) -.set_attr("FInferShape", PoolingShape) +.set_attr("FInferShape", PoolingShape) .set_attr("FCompute", PoolingCompute) #if MXNET_USE_MKLDNN == 1 .set_attr("TIsMKLDNN", true) diff --git a/src/operator/nn/softmax-inl.h b/src/operator/nn/softmax-inl.h index 90950bc9e92e..096d87416081 100644 --- a/src/operator/nn/softmax-inl.h +++ b/src/operator/nn/softmax-inl.h @@ -332,8 +332,8 @@ static inline bool SoftmaxOpType(const nnvm::NodeAttrs& attrs, } static inline bool SoftmaxGradOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { if (softmax_has_dtype_override(attrs)) { return ElemwiseShape<3, 1>(attrs, in_attrs, out_attrs); } else { @@ -409,7 +409,7 @@ void SoftmaxCompute(const nnvm::NodeAttrs& attrs, int axis = CheckAxis(param.axis, inputs[0].ndim()); const double temperature = param.temperature.has_value() ? param.temperature.value() : 1.0; - TShape shape = AxisShapeCompact(inputs[0].shape_, &axis, true); + mxnet::TShape shape = AxisShapeCompact(inputs[0].shape_, &axis, true); MXNET_REAL_ACC_TYPE_SWITCH(inputs[0].type_flag_, DType, AType, { MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, OType, { if (shape.ndim() == 2) { @@ -440,7 +440,7 @@ void SoftmaxGradCompute(const nnvm::NodeAttrs& attrs, int axis = CheckAxis(param.axis, inputs[0].ndim()); const double temperature = param.temperature.has_value() ? param.temperature.value() : 1.0; - TShape shape = AxisShapeCompact(inputs[0].shape_, &axis, true); + mxnet::TShape shape = AxisShapeCompact(inputs[0].shape_, &axis, true); int out_idx = softmax_has_dtype_override(attrs) ? 2 : 1; diff --git a/src/operator/nn/softmax.cc b/src/operator/nn/softmax.cc index c88f738c356d..b84dd93300f8 100644 --- a/src/operator/nn/softmax.cc +++ b/src/operator/nn/softmax.cc @@ -106,7 +106,7 @@ Example:: .set_attr("FInferType", SoftmaxOpType) .set_num_inputs(1) .set_num_outputs(1) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs){ return std::vector >{{0, 0}}; @@ -118,7 +118,7 @@ NNVM_REGISTER_OP(_backward_softmax) .set_num_inputs(SoftmaxGradOpNumInputs) .set_num_outputs(1) .set_attr("FListInputNames", SoftmaxGradOpInputNames) -.set_attr("FInferShape", SoftmaxGradOpShape) +.set_attr("FInferShape", SoftmaxGradOpShape) .set_attr("FInferType", SoftmaxGradOpType) .set_attr("FInplaceOption", SoftmaxGradOpInplaceOption) .add_argument("args", "NDArray-or-Symbol[]", "Positional input arguments") @@ -161,7 +161,7 @@ Example:: .set_attr("FInferType", SoftmaxOpType) .set_num_inputs(1) .set_num_outputs(1) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs){ return std::vector >{{0, 0}}; @@ -173,7 +173,7 @@ NNVM_REGISTER_OP(_backward_softmin) .set_num_inputs(SoftmaxGradOpNumInputs) .set_num_outputs(1) .set_attr("FListInputNames", SoftmaxGradOpInputNames) -.set_attr("FInferShape", SoftmaxGradOpShape) +.set_attr("FInferShape", SoftmaxGradOpShape) .set_attr("FInferType", SoftmaxGradOpType) .set_attr("FInplaceOption", SoftmaxGradOpInplaceOption) .add_argument("args", "NDArray-or-Symbol[]", "Positional input arguments") @@ -204,7 +204,7 @@ Examples:: .set_attr("FInferType", SoftmaxOpType) .set_num_inputs(1) .set_num_outputs(1) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs){ return std::vector >{{0, 0}}; @@ -216,7 +216,7 @@ NNVM_REGISTER_OP(_backward_log_softmax) .set_num_inputs(SoftmaxGradOpNumInputs) .set_num_outputs(1) .set_attr("FListInputNames", SoftmaxGradOpInputNames) -.set_attr("FInferShape", SoftmaxGradOpShape) +.set_attr("FInferShape", SoftmaxGradOpShape) .set_attr("FInferType", SoftmaxGradOpType) .set_attr("FInplaceOption", SoftmaxGradOpInplaceOption) .add_argument("args", "NDArray-or-Symbol[]", "Positional input arguments") diff --git a/src/operator/nn/upsampling-inl.h b/src/operator/nn/upsampling-inl.h index feb44c894a7a..662ba78cd84a 100644 --- a/src/operator/nn/upsampling-inl.h +++ b/src/operator/nn/upsampling-inl.h @@ -177,13 +177,13 @@ static inline DeconvolutionParam GetDeconvolutionParam(const UpSamplingParam& pa p.num_filter = param.num_filter; p.no_bias = true; int shape[] = {1, 1}; - p.dilate = TShape(shape, shape + 2); + p.dilate = mxnet::TShape(shape, shape + 2); shape[0] = shape[1] = kernel; - p.kernel = TShape(shape, shape + 2); + p.kernel = mxnet::TShape(shape, shape + 2); shape[0] = shape[1] = stride; - p.stride = TShape(shape, shape + 2); + p.stride = mxnet::TShape(shape, shape + 2); shape[0] = shape[1] = pad; - p.pad = TShape(shape, shape + 2); + p.pad = mxnet::TShape(shape, shape + 2); return p; } diff --git a/src/operator/nn/upsampling.cc b/src/operator/nn/upsampling.cc index b6b3d873df7d..d09017bf713e 100644 --- a/src/operator/nn/upsampling.cc +++ b/src/operator/nn/upsampling.cc @@ -32,11 +32,11 @@ namespace mxnet { namespace op { static bool UpSamplingShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, std::vector *out_shape) { + mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape) { const UpSamplingParam& param_ = nnvm::get(attrs.parsed); CHECK_GE(in_shape->size(), 1U); - const TShape &dshape = (*in_shape)[0]; - TShape oshape = dshape; + const mxnet::TShape &dshape = (*in_shape)[0]; + mxnet::TShape oshape = dshape; if (param_.sample_type == up_enum::kNearest) { CHECK_EQ(in_shape->size(), static_cast(param_.num_args)); oshape[1] = 0; @@ -136,7 +136,7 @@ NNVM_REGISTER_OP(UpSampling) [](const NodeAttrs& attrs) { return std::vector{"output"}; }) -.set_attr("FInferShape", UpSamplingShape) +.set_attr("FInferShape", UpSamplingShape) .set_attr("FInferType", UpSamplingType) .set_attr("FResourceRequest", [](const NodeAttrs& n) { const UpSamplingParam& param = nnvm::get(n.parsed); diff --git a/src/operator/nnpack/nnpack_fully_connected-inl.h b/src/operator/nnpack/nnpack_fully_connected-inl.h index b6a60f760265..422334949c48 100644 --- a/src/operator/nnpack/nnpack_fully_connected-inl.h +++ b/src/operator/nnpack/nnpack_fully_connected-inl.h @@ -64,8 +64,8 @@ class NNPACKFullyConnectedOp : public FullyConnectedOp { size_t expected = param_.no_bias ? 2 : 3; CHECK_EQ(in_data.size(), expected); CHECK_EQ(out_data.size(), 1); - const TShape& ishape = in_data[fullc::kData].shape_; - const TShape& oshape = out_data[fullc::kOut].shape_; + const mxnet::TShape& ishape = in_data[fullc::kData].shape_; + const mxnet::TShape& oshape = out_data[fullc::kOut].shape_; Stream *s = ctx.get_stream(); Tensor data = in_data[fullc::kData].get_with_shape( Shape2(ishape[0], ishape.ProdShape(1, ishape.ndim())), s); diff --git a/src/operator/operator_common.h b/src/operator/operator_common.h index b1822647cf01..f629534dabd0 100644 --- a/src/operator/operator_common.h +++ b/src/operator/operator_common.h @@ -104,7 +104,7 @@ struct InferStorageTypeError : public dmlc::Error { }; /*! \brief check if shape is empty or contains unknown (0) dim. */ -inline bool shape_is_none(const TShape& x) { +inline bool shape_is_none(const mxnet::TShape& x) { return x.ndim() == 0 || x.Size() == 0; } @@ -119,12 +119,12 @@ inline bool storage_type_is_none(const int& x) { } /*! \brief check if shape is scalar({1}). */ -inline bool shape_is_scalar(const TShape& x) { +inline bool shape_is_scalar(const mxnet::TShape& x) { return x.ndim() == 1 && x.Size() == 1; } /*! \brief get string representation of shape */ -inline std::string shape_string(const TShape& x) { +inline std::string shape_string(const mxnet::TShape& x) { std::ostringstream os; os << x; return os.str(); @@ -158,7 +158,7 @@ inline std::string type_string(const int& x) { * \param x source shape. * \return whether x and y are compatible. */ -inline bool shape_assign(TShape *y, const TShape& x) { +inline bool shape_assign(mxnet::TShape *y, const mxnet::TShape& x) { if (y->ndim() == 0) { *y = x; return true; @@ -221,7 +221,7 @@ inline bool dispatch_mode_assign(DispatchMode *y, const DispatchMode& x) { */ #define SHAPE_ASSIGN_CHECK(shape_array, index, shape) \ { \ - if (!::mxnet::op::shape_assign(&(shape_array)[index], TShape(shape))) { \ + if (!::mxnet::op::shape_assign(&(shape_array)[index], mxnet::TShape(shape))) { \ std::ostringstream os; \ os << "Shape inconsistent, Provided = " << (shape_array)[index] << ','\ << " inferred shape=" << shape; \ @@ -556,13 +556,13 @@ class OpSignature { #endif } - void AddSign(const std::vector &shapes) { + void AddSign(const mxnet::ShapeVector &shapes) { for (auto &shape : shapes) { AddSign(shape); } } - void AddSign(const TShape &shape) { + void AddSign(const mxnet::TShape &shape) { for (size_t i = 0; i < shape.ndim(); i++) { hash = hash * 2 + shape[i]; eles.push_back(shape[i]); diff --git a/src/operator/operator_util.cc b/src/operator/operator_util.cc index 0c6f176a023a..b87428ca2b64 100644 --- a/src/operator/operator_util.cc +++ b/src/operator/operator_util.cc @@ -392,12 +392,12 @@ class SimpleOpPropBase : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return source->resource_requests_; } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return source->resource_requests_; } @@ -468,7 +468,7 @@ void SimpleOpRegEntryImpl::RegisterSourceImperative() { } // shape inference. CHECK(source_shape_ != nullptr); - TShape dshape = source_shape_(env); + mxnet::TShape dshape = source_shape_(env); // check output shape. CHECK(!out->is_none()); CHECK(out->shape() == dshape) << "target shape mismatch " @@ -551,9 +551,9 @@ struct SimpleSourceOperator : public Operator { class SimpleSourceOpProp : public SimpleOpPropBase { public: - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { CHECK_EQ(in_shape->size(), 0) << in_shape->size(); CHECK(source->source_shape_ != nullptr); @@ -631,7 +631,7 @@ void SimpleOpRegEntryImpl::RegisterUnaryImperative() { << "operator " << this->name << " do not take keyword arguments"; } // shape inference. - TShape dshape; + mxnet::TShape dshape; if (unary_shape_ != nullptr) { dshape = unary_shape_(src.shape(), env); } else { @@ -768,12 +768,12 @@ struct SimpleUnaryOperator : public Operator { class SimpleUnaryOpProp : public SimpleOpPropBase { public: - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 1) << "Input:[data]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; out_shape->clear(); if (source->unary_shape_ == nullptr) { @@ -892,7 +892,7 @@ void SimpleOpRegEntryImpl::RegisterBinaryImperative() { } // shape inference. - TShape dshape; + mxnet::TShape dshape; if (binary_shape_ != nullptr) { dshape = binary_shape_(lhs.shape(), rhs.shape(), env); } else { @@ -1046,13 +1046,13 @@ struct SimpleBinaryOperator : public Operator { class SimpleBinaryOpProp : public SimpleOpPropBase { public: - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 2) << "Input:[lhs, rhs]"; - const TShape& lshape = in_shape->at(0); - const TShape& rshape = in_shape->at(1); + const mxnet::TShape& lshape = in_shape->at(0); + const mxnet::TShape& rshape = in_shape->at(1); out_shape->clear(); if (source->binary_shape_ == nullptr) { if (in_shape->at(0).ndim() != 0) { diff --git a/src/operator/optimizer_op-inl.h b/src/operator/optimizer_op-inl.h index 223a1aa6c37d..49eb96b9f8b2 100644 --- a/src/operator/optimizer_op-inl.h +++ b/src/operator/optimizer_op-inl.h @@ -142,8 +142,8 @@ struct MultiSGDMomParam : public dmlc::Parameter { template inline bool MultiSGDShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const ParamType& param = dmlc::get(attrs.parsed); CHECK_EQ(in_attrs->size(), input_stride * param.num_weights); CHECK_EQ(out_attrs->size(), param.num_weights); @@ -163,8 +163,8 @@ inline bool MultiSGDShape(const nnvm::NodeAttrs& attrs, << param.num_weights << ", and got " << param.wds.ndim(); // Weights and gradients for (int i = 0; i < param.num_weights; ++i) { - std::vector input_vec; - std::vector output_vec({output_shapes[i]}); + mxnet::ShapeVector input_vec; + mxnet::ShapeVector output_vec({output_shapes[i]}); for (int j = 0; j < input_stride; ++j) { input_vec.push_back(input_shapes[i * input_stride + j]); } diff --git a/src/operator/optimizer_op.cc b/src/operator/optimizer_op.cc index 982995ad2f95..367b91b2646c 100644 --- a/src/operator/optimizer_op.cc +++ b/src/operator/optimizer_op.cc @@ -60,7 +60,7 @@ It updates the weights using:: .set_num_inputs(2) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<2, 1>) +.set_attr("FInferShape", ElemwiseShape<2, 1>) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FCompute", SignSGDUpdate) .add_argument("weight", "NDArray-or-Symbol", "Weight") @@ -89,7 +89,7 @@ Where the parameter ``momentum`` is the decay rate of momentum estimates at each .set_num_inputs(3) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<3, 1>) +.set_attr("FInferShape", ElemwiseShape<3, 1>) .set_attr("FInferType", ElemwiseType<3, 1>) .set_attr("FMutateInputs", [](const nnvm::NodeAttrs& attrs) { @@ -332,7 +332,7 @@ It updates the weights using:: return static_cast(param.num_weights); }) .set_attr_parser(ParamParser) -.set_attr("FInferShape", MultiSGDShape) +.set_attr("FInferShape", MultiSGDShape) .set_attr("FInferType", ElemwiseType<-1, -1>) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { @@ -377,7 +377,7 @@ Where the parameter ``momentum`` is the decay rate of momentum estimates at each return static_cast(param.num_weights); }) .set_attr_parser(ParamParser) -.set_attr("FInferShape", MultiSGDShape) +.set_attr("FInferShape", MultiSGDShape) .set_attr("FInferType", ElemwiseType<-1, -1>) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { @@ -420,7 +420,7 @@ It updates the weights using:: return static_cast(param.num_weights); }) .set_attr_parser(ParamParser) -.set_attr("FInferShape", MultiSGDShape) +.set_attr("FInferShape", MultiSGDShape) .set_attr("FInferType", MP_MultiSGD_InferType) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { @@ -475,7 +475,7 @@ Where the parameter ``momentum`` is the decay rate of momentum estimates at each return static_cast(param.num_weights); }) .set_attr_parser(ParamParser) -.set_attr("FInferShape", MultiSGDShape) +.set_attr("FInferShape", MultiSGDShape) .set_attr("FInferType", MP_MultiSGD_InferType) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { @@ -521,7 +521,7 @@ only the row slices whose indices appear in grad.indices are updated:: .set_num_inputs(2) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<2, 1>) +.set_attr("FInferShape", ElemwiseShape<2, 1>) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FInferStorageType", SGDStorageType) .set_attr("FCompute", SGDUpdate) @@ -562,7 +562,7 @@ only the row slices whose indices appear in grad.indices are updated (for both w .set_num_inputs(3) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<3, 1>) +.set_attr("FInferShape", ElemwiseShape<3, 1>) .set_attr("FInferType", ElemwiseType<3, 1>) .set_attr("FInferStorageType", StdOptStorageType<1, SGDMomParam>) .set_attr("FMutateInputs", @@ -589,7 +589,7 @@ NNVM_REGISTER_OP(mp_sgd_update) .set_num_inputs(3) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<3, 1>) +.set_attr("FInferShape", ElemwiseShape<3, 1>) .set_attr("FInferType", MP_SGD_InferType<2, 1, 3>) .set_attr("FCompute", MP_SGDUpdate) .set_attr("FMutateInputs", @@ -606,7 +606,7 @@ NNVM_REGISTER_OP(mp_sgd_mom_update) .set_num_inputs(4) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<4, 1>) +.set_attr("FInferShape", ElemwiseShape<4, 1>) .set_attr("FInferType", MP_SGD_InferType<2, 1, 4>) .set_attr("FMutateInputs", [](const nnvm::NodeAttrs& attrs) { @@ -637,7 +637,7 @@ available at http://proceedings.mlr.press/v70/zheng17a/zheng17a.pdf. .set_num_inputs(5) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<5, 1>) +.set_attr("FInferShape", ElemwiseShape<5, 1>) .set_attr("FInferType", ElemwiseType<5, 1>) .set_attr("FMutateInputs", [](const nnvm::NodeAttrs& attrs) { @@ -685,7 +685,7 @@ only the row slices whose indices appear in grad.indices are updated (for w, m a .set_num_inputs(4) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<4, 1>) +.set_attr("FInferShape", ElemwiseShape<4, 1>) .set_attr("FResourceRequest", [](const NodeAttrs& attrs) { return std::vector{ResourceRequest::kTempSpace}; @@ -743,7 +743,7 @@ Hinton suggests the momentum term :math:`\gamma` to be 0.9 and the learning rate .set_num_inputs(3) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<3, 1>) +.set_attr("FInferShape", ElemwiseShape<3, 1>) .set_attr("FInferType", ElemwiseType<3, 1>) .set_attr("FMutateInputs", [](const nnvm::NodeAttrs &attrs) { @@ -782,7 +782,7 @@ to be 0.9 and the learning rate :math:`\eta` to be 0.0001. .set_num_inputs(5) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<5, 1>) +.set_attr("FInferShape", ElemwiseShape<5, 1>) .set_attr("FInferType", ElemwiseType<5, 1>) .set_attr("FMutateInputs", [](const nnvm::NodeAttrs& attrs) { @@ -822,7 +822,7 @@ only the row slices whose indices appear in grad.indices are updated (for w, z a .set_num_inputs(4) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<4, 1>) +.set_attr("FInferShape", ElemwiseShape<4, 1>) .set_attr("FInferType", ElemwiseType<4, 1>) .set_attr("FInferStorageType", ElemwiseStorageType<4, 1, false, true, false>) .set_attr("FMutateInputs", @@ -855,7 +855,7 @@ Note that non-zero values for the weight decay option are not supported. .set_num_inputs(3) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<3, 1>) +.set_attr("FInferShape", ElemwiseShape<3, 1>) .set_attr("FInferType", ElemwiseType<3, 1>) .set_attr("FInferStorageType", AdagradStorageType) .set_attr("FMutateInputs", diff --git a/src/operator/pad-inl.h b/src/operator/pad-inl.h index 0b43e2d0cfd2..140d7099e817 100644 --- a/src/operator/pad-inl.h +++ b/src/operator/pad-inl.h @@ -50,7 +50,7 @@ enum PadOpOutputs { kOut }; struct PadParam : public dmlc::Parameter { int mode; double constant_value; - TShape pad_width; + mxnet::TShape pad_width; DMLC_DECLARE_PARAMETER(PadParam) { DMLC_DECLARE_FIELD(mode) .add_enum("constant", pad_enum::kConstant) @@ -200,12 +200,12 @@ class PadProp : public OperatorProperty { return dtype != -1; } - bool InferShape(std::vector *in_shape, std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 1U) << "Can only be one input to symbol."; - const TShape &dshape = (*in_shape)[pad_enum::kData]; + const mxnet::TShape &dshape = (*in_shape)[pad_enum::kData]; auto rank = dshape.ndim(); auto pad = param_.pad_width; @@ -229,7 +229,7 @@ class PadProp : public OperatorProperty { "only supports padding sizes smaller than the input size."; } } - TShape oshape = dshape; + mxnet::TShape oshape = dshape; for (size_t i = 0; i < dshape.ndim(); ++i) { oshape[i] = param_.pad_width[2 * i] + param_.pad_width[2 * i + 1] + dshape[i]; @@ -258,7 +258,7 @@ class PadProp : public OperatorProperty { return NULL; } - Operator *CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator *CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/pad.cc b/src/operator/pad.cc index 6c66b29082c4..9a5d7561ac01 100644 --- a/src/operator/pad.cc +++ b/src/operator/pad.cc @@ -674,7 +674,7 @@ Operator *CreateOp(PadParam param, int dtype) { } // DO_BIND_DISPATCH comes from operator_common.h -Operator *PadProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *PadProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]); } diff --git a/src/operator/pooling_v1-inl.h b/src/operator/pooling_v1-inl.h index 8942ddc0d716..4e0ccc1caeb9 100644 --- a/src/operator/pooling_v1-inl.h +++ b/src/operator/pooling_v1-inl.h @@ -48,14 +48,14 @@ enum PoolingV1OpPadConventionType {kValid, kFull}; } // namespace pool_v1_enum struct PoolingV1Param : public dmlc::Parameter { - TShape kernel; - TShape stride; - TShape pad; + mxnet::TShape kernel; + mxnet::TShape stride; + mxnet::TShape pad; int pool_type; int pooling_convention; bool global_pool; DMLC_DECLARE_PARAMETER(PoolingV1Param) { - DMLC_DECLARE_FIELD(kernel).set_default(TShape()) + DMLC_DECLARE_FIELD(kernel).set_default(mxnet::TShape()) .enforce_nonzero() .describe("pooling kernel size: (y, x) or (d, y, x)"); @@ -73,11 +73,11 @@ struct PoolingV1Param : public dmlc::Parameter { .add_enum("valid", pool_v1_enum::kValid) .describe("Pooling convention to be applied."); - DMLC_DECLARE_FIELD(stride).set_default(TShape()) + DMLC_DECLARE_FIELD(stride).set_default(mxnet::TShape()) .enforce_nonzero() .describe("stride: for pooling (y, x) or (d, y, x)"); - DMLC_DECLARE_FIELD(pad).set_default(TShape()) + DMLC_DECLARE_FIELD(pad).set_default(mxnet::TShape()) .describe("pad for pooling: (y, x) or (d, y, x)"); } }; @@ -104,8 +104,8 @@ class PoolingV1Op : public Operator { } // reset padding size for global pooling - TShape padding = param_.pad; - // TShape kernel = param_.kernel; + mxnet::TShape padding = param_.pad; + // mxnet::TShape kernel = param_.kernel; if (param_.global_pool) { padding[0] = padding[1] = 0; // kernel[0] = kernel[1] = 0; @@ -159,7 +159,7 @@ class PoolingV1Op : public Operator { } // reset padding size for global pooling - TShape padding = param_.pad; + mxnet::TShape padding = param_.pad; if (param_.global_pool) { padding[0] = padding[1] = 0; } @@ -237,16 +237,16 @@ class PoolingV1Prop : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { CHECK_EQ(in_shape->size(), 1U); - const TShape &dshape = (*in_shape)[0]; + const mxnet::TShape &dshape = (*in_shape)[0]; CHECK_GE(dshape.ndim(), 4U) << "Pooling: Input data should be 4D in (batch, channel, y, x) " << "Or 5D in (batch, channel, d, y, x)"; CHECK_LE(dshape.ndim(), 5U) << "Pooling: Input data should be 4D in (batch, channel, y, x) " << "Or 5D in (batch, channel, d, y, x)"; - TShape oshape = dshape; + mxnet::TShape oshape = dshape; if (dshape.ndim() == 0) return false; if (param_.global_pool) { if (dshape.ndim() == 4) { @@ -364,7 +364,7 @@ class PoolingV1Prop : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/pooling_v1.cc b/src/operator/pooling_v1.cc index afb51d762ddd..9e350e88c9ee 100644 --- a/src/operator/pooling_v1.cc +++ b/src/operator/pooling_v1.cc @@ -52,9 +52,9 @@ Operator *CreateOp(PoolingV1Param param, int dtype) { } // DO_BIND_DISPATCH comes from operator_common.h -Operator* PoolingV1Prop::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator* PoolingV1Prop::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; std::vector out_type, aux_type; CHECK(InferType(in_type, &out_type, &aux_type)); CHECK(InferShape(in_shape, &out_shape, &aux_shape)); diff --git a/src/operator/quantization/dequantize-inl.h b/src/operator/quantization/dequantize-inl.h index 799e13665664..dcda5a8b4bef 100644 --- a/src/operator/quantization/dequantize-inl.h +++ b/src/operator/quantization/dequantize-inl.h @@ -93,13 +93,13 @@ void DequantizeCompute(const nnvm::NodeAttrs& attrs, } inline bool DequantizeShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 3U); CHECK_EQ(out_attrs->size(), 1U); for (size_t i = 1; i < 3; ++i) { - SHAPE_ASSIGN_CHECK(*in_attrs, i, TShape({1})); + SHAPE_ASSIGN_CHECK(*in_attrs, i, mxnet::TShape({1})); } SHAPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); diff --git a/src/operator/quantization/dequantize.cc b/src/operator/quantization/dequantize.cc index e20bc1722213..a4d57b9b4461 100644 --- a/src/operator/quantization/dequantize.cc +++ b/src/operator/quantization/dequantize.cc @@ -68,7 +68,7 @@ by keep zero centered for the quantized value: .set_attr_parser(ParamParser) .set_num_inputs(3) .set_num_outputs(1) -.set_attr("FInferShape", DequantizeShape) +.set_attr("FInferShape", DequantizeShape) .set_attr("FInferType", DequantizeType) .set_attr("FInferStorageType", DequantizeStorageType) #if MXNET_USE_MKLDNN == 1 diff --git a/src/operator/quantization/mkldnn/mkldnn_requantize-inl.h b/src/operator/quantization/mkldnn/mkldnn_requantize-inl.h index 409c53dd3b9a..45713589dd48 100644 --- a/src/operator/quantization/mkldnn/mkldnn_requantize-inl.h +++ b/src/operator/quantization/mkldnn/mkldnn_requantize-inl.h @@ -111,11 +111,11 @@ static void MKLDNNRequantizeForward(const nnvm::NodeAttrs& attrs, MKLDNNRequantizeForwardKer(attrs, ctx, inputs, req, outputs, real_range); // Model is not calibrated } else { - TShape src_shape, dst_shape; + mxnet::TShape src_shape, dst_shape; const size_t actual_float_size = sizeof(float); const size_t actual_quantized_size = sizeof(SrcDType); const size_t temp_reduce_size = ConfigReduce(s, - inputs[0].shape(), TShape({1}), &src_shape, &dst_shape); + inputs[0].shape(), mxnet::TShape({1}), &src_shape, &dst_shape); Tensor temp_space = ctx.requested[0].get_space_typed( Shape1(2*actual_float_size+2*actual_quantized_size+temp_reduce_size), s); diff --git a/src/operator/quantization/quantization_utils.h b/src/operator/quantization/quantization_utils.h index efc841009706..c540ea441431 100644 --- a/src/operator/quantization/quantization_utils.h +++ b/src/operator/quantization/quantization_utils.h @@ -174,10 +174,10 @@ struct QuantizationRangeForMultiplicationStruct { template inline size_t ConfigReduce(mshadow::Stream* s, - const TShape& data_shape, - const TShape& out_shape, - TShape* src_shape, - TShape* dst_shape) { + const mxnet::TShape& data_shape, + const mxnet::TShape& out_shape, + mxnet::TShape* src_shape, + mxnet::TShape* dst_shape) { BroadcastReduceShapeCompact(data_shape, out_shape, src_shape, dst_shape); constexpr int NDim = 2; CHECK_EQ(src_shape->ndim(), NDim); diff --git a/src/operator/quantization/quantize-inl.h b/src/operator/quantization/quantize-inl.h index 8b7a11cc5a89..747deadd68fe 100644 --- a/src/operator/quantization/quantize-inl.h +++ b/src/operator/quantization/quantize-inl.h @@ -110,18 +110,18 @@ void QuantizeCompute(const nnvm::NodeAttrs& attrs, } inline bool QuantizeShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 3U); CHECK_EQ(out_attrs->size(), 3U); for (size_t i = 1; i < 3; ++i) { - SHAPE_ASSIGN_CHECK(*in_attrs, i, TShape({1})); + SHAPE_ASSIGN_CHECK(*in_attrs, i, mxnet::TShape({1})); } SHAPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); - SHAPE_ASSIGN_CHECK(*out_attrs, 1, TShape{1}); - SHAPE_ASSIGN_CHECK(*out_attrs, 2, TShape{1}); + SHAPE_ASSIGN_CHECK(*out_attrs, 1, mxnet::TShape{1}); + SHAPE_ASSIGN_CHECK(*out_attrs, 2, mxnet::TShape{1}); return !shape_is_none(out_attrs->at(0)); } diff --git a/src/operator/quantization/quantize.cc b/src/operator/quantization/quantize.cc index e486f058bfd5..c28d8c860924 100644 --- a/src/operator/quantization/quantize.cc +++ b/src/operator/quantization/quantize.cc @@ -79,7 +79,7 @@ where [](const NodeAttrs& attrs) { return std::vector{"data", "min_range", "max_range"}; }) -.set_attr("FInferShape", QuantizeShape) +.set_attr("FInferShape", QuantizeShape) .set_attr("FInferType", QuantizeType) .set_attr("FInferStorageType", QuantizeStorageType) #if MXNET_USE_MKLDNN == 1 diff --git a/src/operator/quantization/quantize_v2-inl.h b/src/operator/quantization/quantize_v2-inl.h index 5ae10a7e4fa8..7a0998383824 100644 --- a/src/operator/quantization/quantize_v2-inl.h +++ b/src/operator/quantization/quantize_v2-inl.h @@ -152,10 +152,11 @@ void QuantizeV2Compute(const nnvm::NodeAttrs &attrs, const OpContext &ctx, LOG(FATAL) << "quantize op only supports int8 and uint8 as output type"; } } else { // model is not calibrated - TShape src_shape, dst_shape; + mxnet::TShape src_shape, dst_shape; const size_t actual_float_size = sizeof(float); const size_t temp_reduce_size = - ConfigReduce(s, inputs[0].shape_, TShape({1}), &src_shape, &dst_shape); + ConfigReduce(s, inputs[0].shape_, mxnet::TShape({1}), + &src_shape, &dst_shape); Tensor temp_space = ctx.requested[0].get_space_typed( Shape1(2 * actual_float_size + temp_reduce_size), s); const int dev_id = ctx.run_ctx.ctx.dev_id; @@ -185,14 +186,14 @@ void QuantizeV2Compute(const nnvm::NodeAttrs &attrs, const OpContext &ctx, } } -static inline bool QuantizeV2Shape(const nnvm::NodeAttrs &attrs, std::vector *in_attrs, - std::vector *out_attrs) { +static inline bool QuantizeV2Shape(const nnvm::NodeAttrs &attrs, mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 3U); SHAPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); - SHAPE_ASSIGN_CHECK(*out_attrs, 1, TShape{1}); - SHAPE_ASSIGN_CHECK(*out_attrs, 2, TShape{1}); + SHAPE_ASSIGN_CHECK(*out_attrs, 1, mxnet::TShape{1}); + SHAPE_ASSIGN_CHECK(*out_attrs, 2, mxnet::TShape{1}); return !shape_is_none(out_attrs->at(0)); } diff --git a/src/operator/quantization/quantize_v2.cc b/src/operator/quantization/quantize_v2.cc index 21410933d35e..e221d580d228 100644 --- a/src/operator/quantization/quantize_v2.cc +++ b/src/operator/quantization/quantize_v2.cc @@ -80,7 +80,7 @@ If min_calib_range isn't presented, the output type will be int8. .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", QuantizeV2Shape) +.set_attr("FInferShape", QuantizeV2Shape) .set_attr("FInferType", QuantizeV2Type) .set_attr("FInferStorageType", QuantizeV2StorageType) #if MXNET_USE_MKLDNN == 1 diff --git a/src/operator/quantization/quantized_concat.cc b/src/operator/quantization/quantized_concat.cc index 3504df82d243..f5c1e8e6ceae 100644 --- a/src/operator/quantization/quantized_concat.cc +++ b/src/operator/quantization/quantized_concat.cc @@ -28,17 +28,17 @@ namespace mxnet { namespace op { -static bool ConcatShape(const nnvm::NodeAttrs& attrs, std::vector* in_shape, - std::vector* out_shape) { +static bool ConcatShape(const nnvm::NodeAttrs& attrs, mxnet::ShapeVector* in_shape, + mxnet::ShapeVector* out_shape) { const ConcatParam& param_ = nnvm::get(attrs.parsed); CHECK_EQ(in_shape->size(), static_cast(param_.num_args * 3)); CHECK_EQ(out_shape->size(), 3U); - TShape dshape; + mxnet::TShape dshape; index_t size = 0; bool has_zero = false; int axis = -1; for (int i = 0; i < param_.num_args; ++i) { - TShape tmp = (*in_shape)[i]; + mxnet::TShape tmp = (*in_shape)[i]; if (tmp.ndim()) { axis = CheckAxis(param_.dim, tmp.ndim()); has_zero = tmp[axis] == 0 || has_zero; @@ -48,7 +48,7 @@ static bool ConcatShape(const nnvm::NodeAttrs& attrs, std::vector* in_sh } } - TShape tmp = (*out_shape)[0]; + mxnet::TShape tmp = (*out_shape)[0]; if (tmp.ndim()) { axis = CheckAxis(param_.dim, tmp.ndim()); tmp[axis] = 0; @@ -67,10 +67,10 @@ static bool ConcatShape(const nnvm::NodeAttrs& attrs, std::vector* in_sh << "Incompatible output shape: expected " << dshape << ", got " << (*out_shape)[0]; for (int i = param_.num_args; i < param_.num_args * 3; ++i) { - SHAPE_ASSIGN_CHECK(*in_shape, i, TShape{1}); + SHAPE_ASSIGN_CHECK(*in_shape, i, mxnet::TShape{1}); } - SHAPE_ASSIGN_CHECK(*out_shape, 1, TShape{1}); - SHAPE_ASSIGN_CHECK(*out_shape, 2, TShape{1}); + SHAPE_ASSIGN_CHECK(*out_shape, 1, mxnet::TShape{1}); + SHAPE_ASSIGN_CHECK(*out_shape, 2, mxnet::TShape{1}); return dshape.Size() != 0; } @@ -128,7 +128,7 @@ If any input holds int8, then the output will be int8. Otherwise output will be return std::vector{"output", "min_output", "max_output"}; }) .set_attr("FInferType", ConcatType) -.set_attr("FInferShape", ConcatShape) +.set_attr("FInferShape", ConcatShape) .set_attr("key_var_num_args", "num_args") .add_argument("data", "NDArray-or-Symbol[]", "List of arrays to concatenate") .add_arguments(ConcatParam::__FIELDS__()); diff --git a/src/operator/quantization/quantized_conv.cc b/src/operator/quantization/quantized_conv.cc index ed62228b9249..7841c3acb47c 100644 --- a/src/operator/quantization/quantized_conv.cc +++ b/src/operator/quantization/quantized_conv.cc @@ -32,8 +32,8 @@ namespace mxnet { namespace op { bool QuantizedConvShape(const nnvm::NodeAttrs& attrs, - std::vector* in_shape, - std::vector* out_shape) { + mxnet::ShapeVector* in_shape, + mxnet::ShapeVector* out_shape) { using namespace mshadow; const ConvolutionParam& param = nnvm::get(attrs.parsed); CHECK_EQ(param.num_group, 1U) << "quantized_conv only supports num_group=1 for now"; @@ -45,7 +45,7 @@ bool QuantizedConvShape(const nnvm::NodeAttrs& attrs, CHECK_EQ(param.kernel.ndim(), 2U) << "quantized_conv only supports 2D convolution for now"; CHECK(param.dilate.ndim() == 0U || param.dilate.Size() == 1U) << "quantized_conv only supports dilation=1 for all dimensions"; - const TShape& dshape = in_shape->at(0); + const mxnet::TShape& dshape = in_shape->at(0); CHECK_EQ(dshape.ndim(), 4U); if (dshape.ndim() == 0U) return false; @@ -55,7 +55,7 @@ bool QuantizedConvShape(const nnvm::NodeAttrs& attrs, CHECK_EQ(param.num_filter % 4, 0U) << "for 8bit cudnn conv, the number of channel must be multiple of 4"; - TShape wshape{0, 0, 0, 0}; + mxnet::TShape wshape{0, 0, 0, 0}; wshape[N] = param.num_filter; wshape[H] = param.kernel[0]; wshape[W] = param.kernel[1]; @@ -64,22 +64,22 @@ bool QuantizedConvShape(const nnvm::NodeAttrs& attrs, const int start = param.no_bias? 2 : 3; const int end = param.no_bias? 6 : 9; for (int i = start; i < end; ++i) { - SHAPE_ASSIGN_CHECK(*in_shape, i, TShape{1}); + SHAPE_ASSIGN_CHECK(*in_shape, i, mxnet::TShape{1}); } if (!param.no_bias) { SHAPE_ASSIGN_CHECK(*in_shape, 2, Shape1(param.num_filter)); } auto AddPad = [](index_t dsize, index_t pad) { return dsize + 2 * pad; }; - TShape oshape{1, 1, 1, 1}; + mxnet::TShape oshape{1, 1, 1, 1}; oshape[N] = dshape[N]; oshape[C] = wshape[N]; oshape[H] = (AddPad(dshape[H], param.pad[0]) - wshape[H]) / param.stride[0] + 1; oshape[W] = (AddPad(dshape[W], param.pad[1]) - wshape[W]) / param.stride[1] + 1; SHAPE_ASSIGN_CHECK(*out_shape, 0, oshape); - SHAPE_ASSIGN_CHECK(*out_shape, 1, TShape({1})); - SHAPE_ASSIGN_CHECK(*out_shape, 2, TShape({1})); + SHAPE_ASSIGN_CHECK(*out_shape, 1, mxnet::TShape({1})); + SHAPE_ASSIGN_CHECK(*out_shape, 2, mxnet::TShape({1})); return true; } @@ -157,7 +157,7 @@ and max thresholds representing the threholds for quantizing the float32 output [](const NodeAttrs& attrs) { return std::vector{"output", "min_output", "max_output"}; }) -.set_attr("FInferShape", QuantizedConvShape) +.set_attr("FInferShape", QuantizedConvShape) .set_attr("FInferType", QuantizedConvType) .set_attr("FInferStorageType", QuantizedConvStorageType) .set_attr("FResourceRequest", diff --git a/src/operator/quantization/quantized_conv.cu b/src/operator/quantization/quantized_conv.cu index a76782b8baa4..ee688c0648c8 100644 --- a/src/operator/quantization/quantized_conv.cu +++ b/src/operator/quantization/quantized_conv.cu @@ -62,8 +62,8 @@ class QuantizedCuDNNConvOp { void Init(const ConvolutionParam& param, const OpContext& ctx, - const std::vector& in_shape, - const std::vector& out_shape) { + const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape) { param_ = param; CHECK_EQ(param_.kernel.ndim(), 2U) << "QuantizedCuDNNConvOp only supports 2D convolution for now"; @@ -106,9 +106,9 @@ class QuantizedCuDNNConvOp { const TBlob& data = in_data[0]; const TBlob& filter = in_data[1]; const TBlob& out = out_data[0]; - const TShape& dshape = data.shape_; - const TShape& fshape = filter.shape_; - const TShape& oshape = out.shape_; + const mxnet::TShape& dshape = data.shape_; + const mxnet::TShape& fshape = filter.shape_; + const mxnet::TShape& oshape = out.shape_; // allocate workspace const int dev_id = ctx.run_ctx.ctx.dev_id; @@ -123,24 +123,24 @@ class QuantizedCuDNNConvOp { ctx.requested[0].get_space_typed(mshadow::Shape1(total_temp_bytes), s); char* temp_dptr = temp_space.dptr_; TBlob data_(reinterpret_cast(temp_dptr), - TShape({dshape[N], dshape[H], dshape[W], dshape[C]}), + mxnet::TShape({dshape[N], dshape[H], dshape[W], dshape[C]}), dev_mask, DataType::kFlag, dev_id); temp_dptr += data_size * sizeof(SrcType); TBlob filter_(reinterpret_cast(temp_dptr), - TShape({fshape[N], fshape[H], fshape[W], fshape[C]}), + mxnet::TShape({fshape[N], fshape[H], fshape[W], fshape[C]}), dev_mask, DataType::kFlag, dev_id); temp_dptr += weight_size * sizeof(SrcType); // input: [NCHW] => [NHWC](batch, in_height, in_width, in_channels) // filter: [NCHW] => [NHWC](out_channels, filter_height, filter_width, in_channels) - TransposeImpl(ctx.run_ctx, data, data_, TShape({N, H, W, C})); - TransposeImpl(ctx.run_ctx, filter, filter_, TShape({N, H, W, C})); + TransposeImpl(ctx.run_ctx, data, data_, mxnet::TShape({N, H, W, C})); + TransposeImpl(ctx.run_ctx, filter, filter_, mxnet::TShape({N, H, W, C})); TBlob out_(reinterpret_cast(temp_dptr), - TShape({oshape[N], oshape[H], oshape[W], oshape[C]}), + mxnet::TShape({oshape[N], oshape[H], oshape[W], oshape[C]}), dev_mask, DataType::kFlag, dev_id); temp_dptr += output_size * sizeof(DstType); TBlob out_tcast(reinterpret_cast(temp_dptr), - TShape({oshape[N], oshape[H], oshape[W], oshape[C]}), + mxnet::TShape({oshape[N], oshape[H], oshape[W], oshape[C]}), dev_mask, DataType::kFlag, dev_id); temp_dptr += output_size * sizeof(int32_t); // input: [NHWC](batch, in_height, in_width, in_channels) @@ -165,7 +165,7 @@ class QuantizedCuDNNConvOp { Tensor out_tcast_tensor = out_tcast.FlatTo1D(s); Assign(out_tcast_tensor, kWriteTo, mshadow::expr::tcast(out_tensor)); // output: [NHWC](batch, out_height, out_width, out_channels) => [NCHW] - TransposeImpl(ctx.run_ctx, out_tcast, out, TShape({0, 3, 1, 2})); + TransposeImpl(ctx.run_ctx, out_tcast, out, mxnet::TShape({0, 3, 1, 2})); } else { LOG(FATAL) << "quantized_conv only supports NCHW for now"; } @@ -193,11 +193,11 @@ class QuantizedCuDNNConvOp { } } - void InitDescriptors(const std::vector& in_shape, - const std::vector& out_shape) { - const TShape& dshape = in_shape[0]; - const TShape& kshape = in_shape[1]; - const TShape& oshape = out_shape[0]; + void InitDescriptors(const mxnet::ShapeVector& in_shape, + const mxnet::ShapeVector& out_shape) { + const mxnet::TShape& dshape = in_shape[0]; + const mxnet::TShape& kshape = in_shape[1]; + const mxnet::TShape& oshape = out_shape[0]; CUDNN_CALL(cudnnSetConvolution2dDescriptor(conv_desc_, param_.pad[0], param_.pad[1], diff --git a/src/operator/quantization/quantized_flatten-inl.h b/src/operator/quantization/quantized_flatten-inl.h index b7209fd28f5a..99a262de19ca 100644 --- a/src/operator/quantization/quantized_flatten-inl.h +++ b/src/operator/quantization/quantized_flatten-inl.h @@ -80,12 +80,12 @@ void QuantizedFlattenCompute(const nnvm::NodeAttrs& attrs, } inline bool QuantizedFlattenShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 3U); CHECK_EQ(out_attrs->size(), 3U); - const TShape &dshape = (*in_attrs)[0]; + const mxnet::TShape &dshape = (*in_attrs)[0]; if (shape_is_none(dshape)) return false; uint32_t target_dim = 1; @@ -93,11 +93,11 @@ inline bool QuantizedFlattenShape(const nnvm::NodeAttrs& attrs, target_dim *= dshape[i]; } - SHAPE_ASSIGN_CHECK(*in_attrs, 1, TShape{1}); - SHAPE_ASSIGN_CHECK(*in_attrs, 2, TShape{1}); + SHAPE_ASSIGN_CHECK(*in_attrs, 1, mxnet::TShape{1}); + SHAPE_ASSIGN_CHECK(*in_attrs, 2, mxnet::TShape{1}); SHAPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::Shape2(dshape[0], target_dim)); - SHAPE_ASSIGN_CHECK(*out_attrs, 1, TShape{1}); - SHAPE_ASSIGN_CHECK(*out_attrs, 2, TShape{1}); + SHAPE_ASSIGN_CHECK(*out_attrs, 1, mxnet::TShape{1}); + SHAPE_ASSIGN_CHECK(*out_attrs, 2, mxnet::TShape{1}); return true; } diff --git a/src/operator/quantization/quantized_flatten.cc b/src/operator/quantization/quantized_flatten.cc index 3f426a59bdd2..f283d98cf10b 100644 --- a/src/operator/quantization/quantized_flatten.cc +++ b/src/operator/quantization/quantized_flatten.cc @@ -31,7 +31,7 @@ namespace op { NNVM_REGISTER_OP(_contrib_quantized_flatten) .set_num_inputs(3) .set_num_outputs(3) -.set_attr("FInferShape", QuantizedFlattenShape) +.set_attr("FInferShape", QuantizedFlattenShape) .set_attr("FInferType", QuantizedFlattenType) .set_attr("FCompute", QuantizedFlattenCompute) .set_attr("FListInputNames", diff --git a/src/operator/quantization/quantized_fully_connected.cc b/src/operator/quantization/quantized_fully_connected.cc index 64ce73ba1cf7..f51b6fdd1798 100644 --- a/src/operator/quantization/quantized_fully_connected.cc +++ b/src/operator/quantization/quantized_fully_connected.cc @@ -35,8 +35,8 @@ enum QuantizedfcOpResource {kTempSpace}; } bool QuantizedFullyConnectedShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { const FullyConnectedParam& param = nnvm::get(attrs.parsed); CHECK(param.flatten) << "QuantizedFullyConnectedOp only supports flatten=true for now"; using namespace mshadow; @@ -46,21 +46,21 @@ bool QuantizedFullyConnectedShape(const nnvm::NodeAttrs& attrs, CHECK(!shape_is_none(in_shape->at(0))) << "QuantizedFullyConnectedOp input data shape must be given"; - const TShape& dshape = in_shape->at(0); - TShape wshape = Shape2(param.num_hidden, dshape.ProdShape(1, dshape.ndim())); + const mxnet::TShape& dshape = in_shape->at(0); + mxnet::TShape wshape = Shape2(param.num_hidden, dshape.ProdShape(1, dshape.ndim())); SHAPE_ASSIGN_CHECK(*in_shape, 1, wshape); if (!param.no_bias) { - TShape bshape = Shape1(param.num_hidden); + mxnet::TShape bshape = Shape1(param.num_hidden); SHAPE_ASSIGN_CHECK(*in_shape, 2, bshape); } for (size_t i = num_inputs; i < 3 * num_inputs; ++i) { - SHAPE_ASSIGN_CHECK(*in_shape, i, TShape{1}); + SHAPE_ASSIGN_CHECK(*in_shape, i, mxnet::TShape{1}); } - SHAPE_ASSIGN_CHECK(*out_shape, 0, TShape({dshape[0], wshape[0]})); - SHAPE_ASSIGN_CHECK(*out_shape, 1, TShape({1})); - SHAPE_ASSIGN_CHECK(*out_shape, 2, TShape({1})); + SHAPE_ASSIGN_CHECK(*out_shape, 0, mxnet::TShape({dshape[0], wshape[0]})); + SHAPE_ASSIGN_CHECK(*out_shape, 1, mxnet::TShape({1})); + SHAPE_ASSIGN_CHECK(*out_shape, 2, mxnet::TShape({1})); return true; } @@ -153,9 +153,9 @@ void QuantizedFullyConnectedForward(const nnvm::NodeAttrs& attrs, const NDArray& data = in_data[0]; const NDArray& weight = in_data[1]; const NDArray& out = out_data[0]; - TShape dshape = data.shape(); - TShape wshape = weight.shape(); - TShape oshape = out.shape(); + mxnet::TShape dshape = data.shape(); + mxnet::TShape wshape = weight.shape(); + mxnet::TShape oshape = out.shape(); auto output_temp = out.data().dptr(); auto weight_temp = weight.data().dptr(); auto data_temp = data.data().dptr(); @@ -261,7 +261,7 @@ and max thresholds representing the threholds for quantizing the float32 output [](const NodeAttrs& attrs) { return std::vector{"output", "min_output", "max_output"}; }) -.set_attr("FInferShape", QuantizedFullyConnectedShape) +.set_attr("FInferShape", QuantizedFullyConnectedShape) .set_attr("FInferType", QuantizedFullyConnectedType) .set_attr("FInferStorageType", QuantizedFullyConnectedStorageType) .set_attr("FNeedRequantize", [](const NodeAttrs& attrs) { return true; }) diff --git a/src/operator/quantization/quantized_fully_connected.cu b/src/operator/quantization/quantized_fully_connected.cu index beecc7598642..e8580e2e2c9d 100644 --- a/src/operator/quantization/quantized_fully_connected.cu +++ b/src/operator/quantization/quantized_fully_connected.cu @@ -70,9 +70,9 @@ void QuantizedFullyConnectedForwardGPU(const nnvm::NodeAttrs& attrs, const TBlob& data = inputs[0]; const TBlob& weight = inputs[1]; const TBlob& out = outputs[0]; - TShape dshape = data.shape_; - TShape wshape = weight.shape_; - TShape oshape = out.shape_; + mxnet::TShape dshape = data.shape_; + mxnet::TShape wshape = weight.shape_; + mxnet::TShape oshape = out.shape_; // (m, n) * (k, n).T = (m, k) // A * B.T = C diff --git a/src/operator/quantization/quantized_pooling.cc b/src/operator/quantization/quantized_pooling.cc index b9daf2592b7d..cdc98eeac6f6 100644 --- a/src/operator/quantization/quantized_pooling.cc +++ b/src/operator/quantization/quantized_pooling.cc @@ -31,12 +31,12 @@ namespace mxnet { namespace op { bool QuantizedPoolingShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { const PoolingParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_shape->size(), 3U); if (shape_is_none(in_shape->at(0))) return false; - const TShape &dshape = (*in_shape)[0]; + const mxnet::TShape &dshape = (*in_shape)[0]; CHECK_EQ(dshape.ndim(), 4U) << "quantized_pooling: Input data should be 4D in " << "(batch, channel, y, x)"; @@ -45,7 +45,7 @@ bool QuantizedPoolingShape(const nnvm::NodeAttrs& attrs, << "QuantizedPoolingOp only supports NCHW layout for now, saw " << layout; // NCHW layout const int N = 0, H = 2, W = 3, C = 1; - TShape oshape(4); + mxnet::TShape oshape(4); CHECK_EQ(param.kernel.ndim(), 2) << "QuantizedPoolingOp only supports 2D pooling for now"; CHECK(param.kernel[0] <= dshape[H] + 2 * param.pad[0]) << "kernel size (" << param.kernel[0] @@ -81,13 +81,13 @@ bool QuantizedPoolingShape(const nnvm::NodeAttrs& attrs, } } - SHAPE_ASSIGN_CHECK(*in_shape, 1, TShape{1}); - SHAPE_ASSIGN_CHECK(*in_shape, 2, TShape{1}); + SHAPE_ASSIGN_CHECK(*in_shape, 1, mxnet::TShape{1}); + SHAPE_ASSIGN_CHECK(*in_shape, 2, mxnet::TShape{1}); out_shape->clear(); out_shape->push_back(oshape); - out_shape->push_back(TShape{1}); - out_shape->push_back(TShape{1}); + out_shape->push_back(mxnet::TShape{1}); + out_shape->push_back(mxnet::TShape{1}); return true; } @@ -154,7 +154,7 @@ the float32 data into int8. [](const NodeAttrs& attrs) { return std::vector{"output", "min_output", "max_output"}; }) -.set_attr("FInferShape", QuantizedPoolingShape) +.set_attr("FInferShape", QuantizedPoolingShape) .set_attr("FInferType", QuantizedPoolingType) .set_attr("FInferStorageType", QuantizedPoolingStorageType) .set_attr("FNeedRequantize", diff --git a/src/operator/quantization/quantized_pooling.cu b/src/operator/quantization/quantized_pooling.cu index 2bbac5fc1512..a8fba87090ab 100644 --- a/src/operator/quantization/quantized_pooling.cu +++ b/src/operator/quantization/quantized_pooling.cu @@ -39,7 +39,7 @@ class QuantizedCuDNNPoolingOp { CUDNN_CALL(cudnnCreateTensorDescriptor(&out_desc_)); } - void Init(const PoolingParam& param, const TShape& dshape, const TShape& oshape) { + void Init(const PoolingParam& param, const mxnet::TShape& dshape, const mxnet::TShape& oshape) { const int N = 0, H = 2, W = 3, C = 1; const cudnnDataType_t dtype = mshadow::DataType::kCudnnFlag; CHECK(param.kernel.ndim() == 2) << "Only support 2D pooling"; diff --git a/src/operator/quantization/requantize-inl.h b/src/operator/quantization/requantize-inl.h index 148453e63257..21d58d4607eb 100644 --- a/src/operator/quantization/requantize-inl.h +++ b/src/operator/quantization/requantize-inl.h @@ -107,11 +107,11 @@ void RequantizeForward(const nnvm::NodeAttrs& attrs, inputs[0].dptr(), inputs[1].dptr(), inputs[2].dptr(), MaxAbs(param.min_calib_range.value(), param.max_calib_range.value())); } else { // model is not calibrated - TShape src_shape, dst_shape; + mxnet::TShape src_shape, dst_shape; const size_t actual_float_size = sizeof(float); const size_t actual_quantized_size = sizeof(SrcDType); const size_t temp_reduce_size = ConfigReduce( - s, inputs[0].shape_, TShape({1}), &src_shape, &dst_shape); + s, inputs[0].shape_, mxnet::TShape({1}), &src_shape, &dst_shape); Tensor temp_space = ctx.requested[0].get_space_typed( Shape1(2*actual_float_size+2*actual_quantized_size+temp_reduce_size), s); diff --git a/src/operator/quantization/requantize.cc b/src/operator/quantization/requantize.cc index 68b1b65e4e7b..edfb58e5cbd5 100644 --- a/src/operator/quantization/requantize.cc +++ b/src/operator/quantization/requantize.cc @@ -61,7 +61,7 @@ inference accuracy. .set_attr_parser(ParamParser) .set_num_inputs(3) .set_num_outputs(3) -.set_attr("FInferShape", QuantizeShape) +.set_attr("FInferShape", QuantizeShape) .set_attr("FInferType", RequantizeType) .set_attr("FInferStorageType", RequantizeStorageType) #if MXNET_USE_MKLDNN == 1 diff --git a/src/operator/random/multisample_op.cc b/src/operator/random/multisample_op.cc index a88db09442e8..240126b17b79 100644 --- a/src/operator/random/multisample_op.cc +++ b/src/operator/random/multisample_op.cc @@ -44,7 +44,7 @@ DMLC_REGISTER_PARAMETER(MultiSampleParam); [](const NodeAttrs& attrs) { \ std::vector v = {input_name_1, input_name_2}; v.resize(num_inputs); return v; \ }) \ - .set_attr("FInferShape", MultiSampleOpShape) \ + .set_attr("FInferShape", MultiSampleOpShape) \ .set_attr("FInferType", MultiSampleOpType) \ .set_attr("FResourceRequest", [](const NodeAttrs& attrs) { \ return std::vector{ResourceRequest::kParallelRandom, \ diff --git a/src/operator/random/multisample_op.h b/src/operator/random/multisample_op.h index abd4a2c6c6d9..e9f266932e13 100644 --- a/src/operator/random/multisample_op.h +++ b/src/operator/random/multisample_op.h @@ -38,11 +38,11 @@ namespace mxnet { namespace op { struct MultiSampleParam : public dmlc::Parameter { - TShape shape; + mxnet::TShape shape; int dtype; DMLC_DECLARE_PARAMETER(MultiSampleParam) { DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("Shape to be sampled from each random distribution."); DMLC_DECLARE_FIELD(dtype) .add_enum("None", -1) @@ -56,8 +56,8 @@ struct MultiSampleParam : public dmlc::Parameter { }; inline bool MultiSampleOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_GT(in_attrs->size(), 0) << "sampling operator takes 1 or 2 arguments (" << in_attrs->size() << " given)"; CHECK_LT(in_attrs->size(), 3) @@ -65,17 +65,17 @@ inline bool MultiSampleOpShape(const nnvm::NodeAttrs& attrs, CHECK_EQ(out_attrs->size(), 1); // Get shape to be sampled for each parameter set. const MultiSampleParam& param = nnvm::get(attrs.parsed); - TShape sshape = param.shape; + mxnet::TShape sshape = param.shape; for (size_t i = 0; i < sshape.ndim(); ++i) { CHECK_GT(sshape[i], 0) << "shape parameter must be non-zero within each dimension"; } // Examine output shape whether it is already defined. - TShape tshape((*out_attrs)[0]); + mxnet::TShape tshape((*out_attrs)[0]); // The illegal case of tshape.ndim() <= sshape.ndim() will // automatically crash when we back-propagate from inputs to outputs. if (tshape.ndim() > sshape.ndim()) { // Promote down by removing last dimensions which represent the samples. - tshape = TShape(tshape.begin(), tshape.begin()+(tshape.ndim()-sshape.ndim())); + tshape = mxnet::TShape(tshape.begin(), tshape.begin()+(tshape.ndim()-sshape.ndim())); } // Shape assignemnt/checking for inputs. for (const auto& in_attr : *in_attrs) { @@ -88,7 +88,7 @@ inline bool MultiSampleOpShape(const nnvm::NodeAttrs& attrs, // Shape assignment/check for propagation from inputs to output. std::vector cshape(tshape.begin(), tshape.end()); cshape.insert(cshape.end(), sshape.begin(), sshape.end()); - TShape oshape(cshape.begin(), cshape.end()); + mxnet::TShape oshape(cshape.begin(), cshape.end()); SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape); } return true; diff --git a/src/operator/random/sample_multinomial_op.cc b/src/operator/random/sample_multinomial_op.cc index 1bacb023588f..7858b03ea87f 100644 --- a/src/operator/random/sample_multinomial_op.cc +++ b/src/operator/random/sample_multinomial_op.cc @@ -67,7 +67,7 @@ Examples:: return param.get_prob ? 2U : 1U; }) .set_attr_parser(ParamParser) -.set_attr("FInferShape", SampleMultinomialOpShape) +.set_attr("FInferShape", SampleMultinomialOpShape) .set_attr("FInferType", SampleMultinomialOpType) .set_attr("FResourceRequest", [](const nnvm::NodeAttrs& attrs) { diff --git a/src/operator/random/sample_multinomial_op.h b/src/operator/random/sample_multinomial_op.h index e0f0d685c8ce..e76cd646b850 100644 --- a/src/operator/random/sample_multinomial_op.h +++ b/src/operator/random/sample_multinomial_op.h @@ -36,12 +36,12 @@ namespace mxnet { namespace op { struct SampleMultinomialParam : public dmlc::Parameter { - TShape shape; + mxnet::TShape shape; bool get_prob; int dtype; DMLC_DECLARE_PARAMETER(SampleMultinomialParam) { DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("Shape to be sampled from each random distribution."); DMLC_DECLARE_FIELD(get_prob) .set_default(false) @@ -61,13 +61,13 @@ struct SampleMultinomialParam : public dmlc::Parameter { inline bool SampleMultinomialOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { const SampleMultinomialParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), param.get_prob ? 2U : 1U); - const TShape& ishape = (*in_attrs)[0]; + const mxnet::TShape& ishape = (*in_attrs)[0]; if (!ishape.ndim()) return false; MSHADOW_TYPE_SWITCH(param.dtype, DType, { @@ -80,13 +80,13 @@ inline bool SampleMultinomialOpShape(const nnvm::NodeAttrs& attrs, SHAPE_ASSIGN_CHECK(*out_attrs, 0, param.shape); if (param.get_prob) SHAPE_ASSIGN_CHECK(*out_attrs, 1, param.shape); } else { - SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape(1)); - if (param.get_prob) SHAPE_ASSIGN_CHECK(*out_attrs, 1, TShape(1)); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape(1)); + if (param.get_prob) SHAPE_ASSIGN_CHECK(*out_attrs, 1, mxnet::TShape(1)); } return true; } - TShape oshape(ishape.ndim() - 1 + param.shape.ndim()); + mxnet::TShape oshape(ishape.ndim() - 1 + param.shape.ndim()); for (size_t i = 0; i < ishape.ndim() - 1; ++i) { oshape[i] = ishape[i]; } diff --git a/src/operator/random/sample_op.cc b/src/operator/random/sample_op.cc index b065615e1fb1..56a162be5da4 100644 --- a/src/operator/random/sample_op.cc +++ b/src/operator/random/sample_op.cc @@ -51,7 +51,7 @@ DMLC_REGISTER_PARAMETER(SampleGenNegBinomialLikeParam); .set_num_inputs(0) \ .set_num_outputs(1) \ .set_attr_parser(ParamParser) \ - .set_attr("FInferShape", InitShape) \ + .set_attr("FInferShape", InitShape) \ .set_attr("FInferType", SampleOpType) \ .set_attr("FResourceRequest", SampleResource) \ .add_arguments(ParamType::__FIELDS__()) \ @@ -64,7 +64,7 @@ DMLC_REGISTER_PARAMETER(SampleGenNegBinomialLikeParam); .set_num_inputs(1) \ .set_num_outputs(1) \ .set_attr_parser(ParamParser) \ - .set_attr("FInferShape", ElemwiseShape<1, 1>) \ + .set_attr("FInferShape", ElemwiseShape<1, 1>) \ .set_attr("FInferType", ElemwiseType<1, 1>) \ .set_attr("FResourceRequest", SampleResource) \ .set_attr("FIgnoreInputs", \ diff --git a/src/operator/random/sample_op.h b/src/operator/random/sample_op.h index b12dfafbcfc8..b327ee266603 100644 --- a/src/operator/random/sample_op.h +++ b/src/operator/random/sample_op.h @@ -40,7 +40,7 @@ namespace op { struct SampleOpParam { - TShape shape; + mxnet::TShape shape; std::string ctx; int dtype; }; @@ -91,7 +91,7 @@ struct SampleUniformParam : public dmlc::Parameter, DMLC_DECLARE_FIELD(high).set_default(1.0f) .describe("Upper bound of the distribution."); DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("Shape of the output."); DMLC_DECLARE_FIELD(ctx) .set_default("") @@ -116,7 +116,7 @@ struct SampleNormalParam : public dmlc::Parameter, DMLC_DECLARE_FIELD(scale).set_default(1.0f) .describe("Standard deviation of the distribution."); DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("Shape of the output."); DMLC_DECLARE_FIELD(ctx) .set_default("") @@ -141,7 +141,7 @@ struct SampleGammaParam : public dmlc::Parameter, DMLC_DECLARE_FIELD(beta).set_default(1.0f) .describe("Beta parameter (scale) of the gamma distribution."); DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("Shape of the output."); DMLC_DECLARE_FIELD(ctx) .set_default("") @@ -164,7 +164,7 @@ struct SampleExponentialParam : public dmlc::Parameter, DMLC_DECLARE_FIELD(lam).set_default(1.0f) .describe("Lambda parameter (rate) of the exponential distribution."); DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("Shape of the output."); DMLC_DECLARE_FIELD(ctx) .set_default("") @@ -187,7 +187,7 @@ struct SamplePoissonParam : public dmlc::Parameter, DMLC_DECLARE_FIELD(lam).set_default(1.0f) .describe("Lambda parameter (rate) of the Poisson distribution."); DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("Shape of the output."); DMLC_DECLARE_FIELD(ctx) .set_default("") @@ -212,7 +212,7 @@ struct SampleNegBinomialParam : public dmlc::Parameter, DMLC_DECLARE_FIELD(p).set_default(1.0f) .describe("Failure probability in each experiment."); DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("Shape of the output."); DMLC_DECLARE_FIELD(ctx) .set_default("") @@ -237,7 +237,7 @@ struct SampleGenNegBinomialParam : public dmlc::Parameter, DMLC_DECLARE_FIELD(high) .describe("Upper bound of the distribution."); DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("Shape of the output."); DMLC_DECLARE_FIELD(ctx) .set_default("") diff --git a/src/operator/random/shuffle_op.cc b/src/operator/random/shuffle_op.cc index 83c9034e364e..1bd70b1f323a 100644 --- a/src/operator/random/shuffle_op.cc +++ b/src/operator/random/shuffle_op.cc @@ -91,7 +91,7 @@ void ShuffleForwardCPU(const nnvm::NodeAttrs& attrs, return; } CHECK_NE(req[0], kAddTo) << "Shuffle does not support AddTo"; - const TShape& input_shape = inputs[0].shape_; + const mxnet::TShape& input_shape = inputs[0].shape_; const index_t size = inputs[0].Size(); const index_t first_axis_len = input_shape[0]; Stream *s = ctx.get_stream(); @@ -125,7 +125,7 @@ but the order of the elements in each row does not change. )code") .set_num_inputs(1) .set_num_outputs(1) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FResourceRequest", [](const nnvm::NodeAttrs& attrs) { diff --git a/src/operator/random/shuffle_op.cu b/src/operator/random/shuffle_op.cu index 51588494a63c..91b378deace0 100644 --- a/src/operator/random/shuffle_op.cu +++ b/src/operator/random/shuffle_op.cu @@ -54,7 +54,7 @@ void ShuffleForwardGPU(const nnvm::NodeAttrs& attrs, return; } CHECK_NE(req[0], kAddTo) << "Shuffle does not support AddTo"; - const TShape& input_shape = inputs[0].shape_; + const mxnet::TShape& input_shape = inputs[0].shape_; const index_t size = inputs[0].Size(); const index_t first_axis_len = input_shape[0]; const index_t stride = size / first_axis_len; diff --git a/src/operator/random/unique_sample_op.cc b/src/operator/random/unique_sample_op.cc index 49366697ed6e..b6664240d802 100644 --- a/src/operator/random/unique_sample_op.cc +++ b/src/operator/random/unique_sample_op.cc @@ -64,7 +64,7 @@ Example:: trials[0] = 16435 )code" ADD_FILELINE) -.set_attr("FInferShape", SampleUniqueShape) +.set_attr("FInferShape", SampleUniqueShape) .set_attr("FInferType", SampleUniqueType) .set_attr("FCompute", SampleUniqueZifpian); diff --git a/src/operator/random/unique_sample_op.h b/src/operator/random/unique_sample_op.h index 2e93b501f1b4..87998c8f46b1 100644 --- a/src/operator/random/unique_sample_op.h +++ b/src/operator/random/unique_sample_op.h @@ -41,12 +41,12 @@ namespace op { struct SampleUniqueZifpianParam : public dmlc::Parameter { int range_max; - TShape shape; + mxnet::TShape shape; DMLC_DECLARE_PARAMETER(SampleUniqueZifpianParam) { DMLC_DECLARE_FIELD(range_max) .describe("The number of possible classes."); DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("2-D shape of the output, where shape[0] is the batch size, and shape[1] " "is the number of candidates to sample for each batch."); } @@ -54,8 +54,8 @@ struct SampleUniqueZifpianParam : public dmlc::Parameter inline bool SampleUniqueShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const ParamType& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 0U); CHECK_EQ(out_attrs->size(), 2U); diff --git a/src/operator/regression_output-inl.h b/src/operator/regression_output-inl.h index 59cbde3de202..8b63a8a2cff6 100644 --- a/src/operator/regression_output-inl.h +++ b/src/operator/regression_output-inl.h @@ -52,11 +52,11 @@ struct RegressionOutputParam : public dmlc::Parameter { }; inline bool RegressionOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { using namespace mshadow; CHECK_EQ(in_attrs->size(), 2U) << "Input:[data, label]"; - const TShape &dshape = in_attrs->at(0); + const mxnet::TShape &dshape = in_attrs->at(0); if (dshape.ndim() == 0) return false; auto &lshape = (*in_attrs)[1]; if (lshape.ndim() == 0) { @@ -219,7 +219,7 @@ inline void RegressionBackwardCSRImpl(mshadow::Stream *s, using namespace mshadow; using namespace mxnet_op; using namespace csr; - const TShape dshape = data.shape(); + const mxnet::TShape dshape = data.shape(); const nnvm::dim_t num_rows = dshape[0]; const nnvm::dim_t row_length = dshape[1]; CHECK_EQ(label.aux_type(kIndPtr), label.aux_type(kIdx)) diff --git a/src/operator/regression_output.cc b/src/operator/regression_output.cc index 5632baca0d4d..a337ec1ca1ad 100644 --- a/src/operator/regression_output.cc +++ b/src/operator/regression_output.cc @@ -35,7 +35,7 @@ [](const NodeAttrs& attrs) { \ return std::vector{"data", "label"}; \ }) \ - .set_attr("FInferShape", RegressionOpShape) \ + .set_attr("FInferShape", RegressionOpShape) \ .set_attr("FGradient", RegressionOpGrad{__bwdop$}) \ .set_attr("FInferType", ElemwiseType<2, 1>) \ .set_attr("FInplaceOption", \ diff --git a/src/operator/rnn-inl.h b/src/operator/rnn-inl.h index 545e31bd8ff8..71ad331786ae 100644 --- a/src/operator/rnn-inl.h +++ b/src/operator/rnn-inl.h @@ -666,16 +666,16 @@ class RNNProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; if (param_.mode == rnn_enum::kLstm) { CHECK_EQ(in_shape->size(), 4U) << "Input:[data, parameters, state, cell_state]"; } else { CHECK_EQ(in_shape->size(), 3U) << "Input:[data, parameters, state]"; } - const TShape &dshape = (*in_shape)[rnn_enum::kData]; + const mxnet::TShape &dshape = (*in_shape)[rnn_enum::kData]; if (dshape.ndim() == 0) return false; CHECK_EQ(dshape.ndim(), 3U) \ << "Input data should be rank-3 tensor of dim [sequence length, batch size, input size]"; @@ -705,7 +705,7 @@ class RNNProp : public OperatorProperty { out_shape->clear(); // output: [sequence len, batch, output size] - TShape oshape = dshape; + mxnet::TShape oshape = dshape; if (param_.projection_size.has_value()) { oshape[2] = numDirections * param_.projection_size.value(); } else { @@ -716,7 +716,7 @@ class RNNProp : public OperatorProperty { return true; } else { // outStateShape: [layer_num, batch, state size] - TShape outStateShape = dshape; + mxnet::TShape outStateShape = dshape; outStateShape[0] = total_layers; outStateShape[1] = batch_size; if (param_.projection_size.has_value()) { @@ -727,7 +727,7 @@ class RNNProp : public OperatorProperty { out_shape->push_back(outStateShape); // Deal with lstm cell state if (param_.mode == rnn_enum::kLstm) { - TShape cellStateShape = dshape; + mxnet::TShape cellStateShape = dshape; cellStateShape[0] = total_layers; cellStateShape[1] = batch_size; cellStateShape[2] = param_.state_size; @@ -796,12 +796,12 @@ class RNNProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -810,7 +810,7 @@ class RNNProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/rnn.cc b/src/operator/rnn.cc index 82b03c0fafcb..621b9eb110e7 100644 --- a/src/operator/rnn.cc +++ b/src/operator/rnn.cc @@ -37,7 +37,7 @@ Operator *CreateOp(RNNParam param, int dtype) { } Operator *RNNProp::CreateOperatorEx(Context ctx, - std::vector *in_shape, + mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]); } diff --git a/src/operator/roi_pooling-inl.h b/src/operator/roi_pooling-inl.h index 2f83a8ff3295..ce0efe9b07c9 100644 --- a/src/operator/roi_pooling-inl.h +++ b/src/operator/roi_pooling-inl.h @@ -48,7 +48,7 @@ enum ROIPoolingOpOutputs {kOut, kMaxIdx}; } // roipool struct ROIPoolingParam : public dmlc::Parameter { - TShape pooled_size; + mxnet::TShape pooled_size; float spatial_scale; DMLC_DECLARE_PARAMETER(ROIPoolingParam) { DMLC_DECLARE_FIELD(pooled_size) @@ -167,18 +167,18 @@ class ROIPoolingProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 2U) << "Input:[data, rois]"; // data: [batch_size, c, h, w] - TShape dshape = in_shape->at(roipool::kData); + mxnet::TShape dshape = in_shape->at(roipool::kData); CHECK_EQ(dshape.ndim(), 4U) << "data should be a 4D tensor"; // bbox: [num_rois, 5] - TShape bshape = in_shape->at(roipool::kBox); + mxnet::TShape bshape = in_shape->at(roipool::kBox); CHECK_EQ(bshape.ndim(), 2U) << "bbox should be a 2D tensor of shape [batch, 5]"; CHECK_EQ(bshape[1], 5U) << "bbox should be a 2D tensor of shape [batch, 5]"; @@ -229,7 +229,7 @@ class ROIPoolingProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/roi_pooling.cc b/src/operator/roi_pooling.cc index 7f15dcb406dc..8862d0db1401 100644 --- a/src/operator/roi_pooling.cc +++ b/src/operator/roi_pooling.cc @@ -241,7 +241,7 @@ Operator *CreateOp(ROIPoolingParam param, int dtype) { return op; } -Operator *ROIPoolingProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *ROIPoolingProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, in_type->at(0)); } diff --git a/src/operator/sequence_last-inl.h b/src/operator/sequence_last-inl.h index 61506c2af3de..b4db80bdd721 100644 --- a/src/operator/sequence_last-inl.h +++ b/src/operator/sequence_last-inl.h @@ -246,15 +246,15 @@ class SequenceLastProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), param_.use_sequence_length ? 2U : 1U) << "Input:[data, sequence_length]"; CHECK((param_.axis == 0) || (param_.axis == 1)) << "Current implementation expects axis to be 0 or 1."; - const TShape &dshape = (*in_shape)[seq_last::kData]; + const mxnet::TShape &dshape = (*in_shape)[seq_last::kData]; CHECK_GT(dshape.ndim(), 1U) << "The data array must be of rank 2 or greater."; // seq length vector is same as batch size @@ -263,11 +263,11 @@ class SequenceLastProp : public OperatorProperty { SHAPE_ASSIGN_CHECK(*in_shape, seq_last::kSequenceLength, Shape1(sbatch)); // calculate output size - TShape shape_o(dshape.ndim() - 1); + mxnet::TShape shape_o(dshape.ndim() - 1); shape_o[0] = sbatch; for (index_t i = 1; i < shape_o.ndim(); ++i) shape_o[i] = dshape[i + 1]; - const TShape &oshape = shape_o; + const mxnet::TShape &oshape = shape_o; out_shape->clear(); out_shape->push_back(oshape); return true; @@ -297,12 +297,12 @@ class SequenceLastProp : public OperatorProperty { std::string TypeString() const override { return "SequenceLast"; } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -320,7 +320,7 @@ class SequenceLastProp : public OperatorProperty { return NULL; } - Operator *CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator *CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/sequence_last.cc b/src/operator/sequence_last.cc index f2388a8efbf3..44869c518504 100644 --- a/src/operator/sequence_last.cc +++ b/src/operator/sequence_last.cc @@ -40,7 +40,7 @@ Operator *CreateOp(SequenceLastParam param, int dtype, int itype) { // DO_BIND_DISPATCH comes from operator_common.h Operator *SequenceLastProp::CreateOperatorEx(Context ctx, - std::vector *in_shape, + mxnet::ShapeVector *in_shape, std::vector *in_type) const { if (in_type->size() >= 2 && (*in_type)[1] != -1) { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0], (*in_type)[1]); diff --git a/src/operator/sequence_mask-inl.h b/src/operator/sequence_mask-inl.h index c2584abd4178..372cf57e03dc 100644 --- a/src/operator/sequence_mask-inl.h +++ b/src/operator/sequence_mask-inl.h @@ -239,13 +239,13 @@ class SequenceMaskProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), param_.use_sequence_length ? 2U : 1U) << "Input:[data, sequence_length]"; - const TShape &dshape = (*in_shape)[seq_mask::kData]; + const mxnet::TShape &dshape = (*in_shape)[seq_mask::kData]; CHECK_GT(dshape.ndim(), 1U) << "The data array must be of rank 2 or greater."; CHECK((param_.axis == 0) || (param_.axis == 1)) @@ -256,7 +256,7 @@ class SequenceMaskProp : public OperatorProperty { if (param_.use_sequence_length) SHAPE_ASSIGN_CHECK(*in_shape, seq_mask::kSequenceLength, Shape1(sbatch)); - const TShape &oshape = dshape; + const mxnet::TShape &oshape = dshape; out_shape->clear(); out_shape->push_back(oshape); return true; @@ -295,7 +295,7 @@ class SequenceMaskProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -317,7 +317,7 @@ class SequenceMaskProp : public OperatorProperty { return NULL; } - Operator *CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator *CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/sequence_mask.cc b/src/operator/sequence_mask.cc index 76e58386b8ad..c3bf12d3a862 100644 --- a/src/operator/sequence_mask.cc +++ b/src/operator/sequence_mask.cc @@ -40,7 +40,7 @@ Operator *CreateOp(SequenceMaskParam param, int dtype, int itype) { // DO_BIND_DISPATCH comes from operator_common.h Operator *SequenceMaskProp::CreateOperatorEx(Context ctx, - std::vector *in_shape, + mxnet::ShapeVector *in_shape, std::vector *in_type) const { if (in_type->size() >= 2 && (*in_type)[1] != -1) { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0], (*in_type)[1]); diff --git a/src/operator/sequence_reverse-inl.h b/src/operator/sequence_reverse-inl.h index eb9f71ccce9e..03210d325699 100644 --- a/src/operator/sequence_reverse-inl.h +++ b/src/operator/sequence_reverse-inl.h @@ -220,14 +220,14 @@ class SequenceReverseProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), param_.use_sequence_length ? 2U : 1U) << "Input:[data, sequence_length]"; CHECK_EQ(param_.axis, 0) << "Current implementation expects axis to be 0."; - const TShape &dshape = (*in_shape)[seq_reverse::kData]; + const mxnet::TShape &dshape = (*in_shape)[seq_reverse::kData]; CHECK_GT(dshape.ndim(), 1U) << "The data array must be of rank 2 or greater."; // seq length vector is same as batch size @@ -235,7 +235,7 @@ class SequenceReverseProp : public OperatorProperty { SHAPE_ASSIGN_CHECK(*in_shape, seq_reverse::kSequenceLength, Shape1(dshape[1])); - const TShape &oshape = dshape; + const mxnet::TShape &oshape = dshape; out_shape->clear(); out_shape->push_back(oshape); return true; @@ -275,7 +275,7 @@ class SequenceReverseProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -284,7 +284,7 @@ class SequenceReverseProp : public OperatorProperty { return NULL; } - Operator *CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator *CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/sequence_reverse.cc b/src/operator/sequence_reverse.cc index 9225b6b5dae2..0621d3470d80 100644 --- a/src/operator/sequence_reverse.cc +++ b/src/operator/sequence_reverse.cc @@ -40,7 +40,7 @@ Operator *CreateOp(SequenceReverseParam param, int dtype, int itype) { // DO_BIND_DISPATCH comes from operator_common.h Operator *SequenceReverseProp::CreateOperatorEx( - Context ctx, std::vector *in_shape, + Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { if (in_type->size() >= 2 && (*in_type)[1] != -1) { diff --git a/src/operator/slice_channel-inl.h b/src/operator/slice_channel-inl.h index 3b14a26ea649..6125782d525b 100644 --- a/src/operator/slice_channel-inl.h +++ b/src/operator/slice_channel-inl.h @@ -188,13 +188,13 @@ class SliceChannelProp : public OperatorProperty { return true; } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 1U); - TShape dshape = in_shape->at(slice_enum::kData); - TShape ishape = in_shape->at(slice_enum::kData); + mxnet::TShape dshape = in_shape->at(slice_enum::kData); + mxnet::TShape ishape = in_shape->at(slice_enum::kData); if (dshape.ndim() == 0) return false; if (param_.axis >= 0) { CHECK_LT(static_cast(param_.axis), dshape.ndim()); @@ -223,7 +223,7 @@ class SliceChannelProp : public OperatorProperty { for (int d = real_axis; d < static_cast(dshape.ndim()) - 1; ++d) { dshape[d] = dshape[d+1]; } - dshape = TShape(&dshape[0], &dshape[dshape.ndim()-1]); + dshape = mxnet::TShape(&dshape[0], &dshape[dshape.ndim()-1]); } CHECK_EQ(static_cast((*out_shape).size()), param_.num_outputs) << "Size of output shape mismatch!"; @@ -231,7 +231,7 @@ class SliceChannelProp : public OperatorProperty { SHAPE_ASSIGN_CHECK(*out_shape, i, dshape); // Perform incomplete shape inference. // We can back-calculate the inshape based on the out_shape. - TShape back_calculate_dshape = ishape; + mxnet::TShape back_calculate_dshape = ishape; if (param_.squeeze_axis && (dshape.ndim() == ishape.ndim() - 1)) { for (int d = 0; d < real_axis; ++d) { back_calculate_dshape[d] = (*out_shape)[i][d]; @@ -275,7 +275,7 @@ class SliceChannelProp : public OperatorProperty { return nullptr; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/slice_channel.cc b/src/operator/slice_channel.cc index 7c633bb8196f..b051b9b90309 100644 --- a/src/operator/slice_channel.cc +++ b/src/operator/slice_channel.cc @@ -38,7 +38,7 @@ Operator* CreateOp(SliceChannelParam param, int dtype) { } Operator* SliceChannelProp::CreateOperatorEx(Context ctx, - std::vector* in_shape, + mxnet::ShapeVector* in_shape, std::vector* in_type) const { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]); } diff --git a/src/operator/softmax_output-inl.h b/src/operator/softmax_output-inl.h index 5a01d3a73a95..c5ad90ab95bc 100644 --- a/src/operator/softmax_output-inl.h +++ b/src/operator/softmax_output-inl.h @@ -331,23 +331,23 @@ class SoftmaxOutputProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 2U) << "Input:[data, label]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; // label.shape == data.shape: use probability as label if (dshape != (*in_shape)[softmaxout_enum::kLabel]) { if (param_.multi_output) { - TShape lshape1 = Shape2(dshape[0], dshape.Size()/dshape[0]/dshape[1]); - TShape lshape2(dshape.ndim() - 1); + mxnet::TShape lshape1 = Shape2(dshape[0], dshape.Size()/dshape[0]/dshape[1]); + mxnet::TShape lshape2(dshape.ndim() - 1); lshape2[0] = dshape[0]; for (index_t i = 2; i < dshape.ndim(); ++i) lshape2[i-1] = dshape[i]; - TShape lshape3 = dshape; + mxnet::TShape lshape3 = dshape; lshape3[1] = 1; if (in_shape->at(softmaxout_enum::kLabel).ndim() == 0) { in_shape->at(softmaxout_enum::kLabel) = lshape1; @@ -361,7 +361,7 @@ class SoftmaxOutputProp : public OperatorProperty { throw InferShapeError(os.str(), softmaxout_enum::kLabel); } } else { - TShape label_shape(dshape.ndim() - 1); + mxnet::TShape label_shape(dshape.ndim() - 1); for (index_t i = 0; i + 1 < dshape.ndim(); ++i) label_shape[i] = dshape[i]; SHAPE_ASSIGN_CHECK(*in_shape, softmaxout_enum::kLabel, label_shape); @@ -427,7 +427,7 @@ class SoftmaxOutputProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -436,7 +436,7 @@ class SoftmaxOutputProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; protected: diff --git a/src/operator/softmax_output.cc b/src/operator/softmax_output.cc index 322ac0b93426..c34e9095f4c1 100644 --- a/src/operator/softmax_output.cc +++ b/src/operator/softmax_output.cc @@ -79,23 +79,23 @@ static bool SoftmaxOutputType(const nnvm::NodeAttrs& attrs, } static bool SoftmaxOutputShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { using namespace mshadow; const SoftmaxOutputParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_shape->size(), 2U) << "Input:[data, label]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; // label.shape == data.shape: use probability as label if (dshape != (*in_shape)[softmaxout_enum::kLabel]) { if (param.multi_output) { - TShape lshape1 = Shape2(dshape[0], dshape.Size()/dshape[0]/dshape[1]); - TShape lshape2(dshape.ndim() - 1); + mxnet::TShape lshape1 = Shape2(dshape[0], dshape.Size()/dshape[0]/dshape[1]); + mxnet::TShape lshape2(dshape.ndim() - 1); lshape2[0] = dshape[0]; for (index_t i = 2; i < dshape.ndim(); ++i) lshape2[i-1] = dshape[i]; - TShape lshape3 = dshape; + mxnet::TShape lshape3 = dshape; lshape3[1] = 1; if (in_shape->at(softmaxout_enum::kLabel).ndim() == 0) { in_shape->at(softmaxout_enum::kLabel) = lshape1; @@ -109,7 +109,7 @@ static bool SoftmaxOutputShape(const nnvm::NodeAttrs& attrs, throw InferShapeError(os.str(), softmaxout_enum::kLabel); } } else { - TShape label_shape(dshape.ndim() - 1); + mxnet::TShape label_shape(dshape.ndim() - 1); for (index_t i = 0; i + 1 < dshape.ndim(); ++i) label_shape[i] = dshape[i]; SHAPE_ASSIGN_CHECK(*in_shape, softmaxout_enum::kLabel, label_shape); @@ -242,7 +242,7 @@ NNVM_REGISTER_OP(SoftmaxOutput) .set_attr("FListOutputNames", [](const NodeAttrs& attrs) { return std::vector{"output"}; }) -.set_attr("FInferShape", SoftmaxOutputShape) +.set_attr("FInferShape", SoftmaxOutputShape) .set_attr("FInferType", SoftmaxOutputType) .set_attr("FCompute", SoftmaxOutputCompute) .set_attr("FGradient", SoftmaxOutputGrad{"_backward_SoftmaxOutput"}) diff --git a/src/operator/spatial_transformer-inl.h b/src/operator/spatial_transformer-inl.h index a7ecdaecb103..9e5dee842d0d 100644 --- a/src/operator/spatial_transformer-inl.h +++ b/src/operator/spatial_transformer-inl.h @@ -51,13 +51,13 @@ enum SpatialTransformerSamplerType {kBilinear}; } struct SpatialTransformerParam : public dmlc::Parameter { - TShape target_shape; + mxnet::TShape target_shape; int transform_type; int sampler_type; dmlc::optional cudnn_off; DMLC_DECLARE_PARAMETER(SpatialTransformerParam) { int shape[] = {0, 0}; - DMLC_DECLARE_FIELD(target_shape).set_default(TShape(shape, shape + 2)) + DMLC_DECLARE_FIELD(target_shape).set_default(mxnet::TShape(shape, shape + 2)) .describe("output shape(h, w) of spatial transformer: (y, x)"); DMLC_DECLARE_FIELD(transform_type).add_enum("affine", st::kAffine) .describe("transformation type"); @@ -181,15 +181,15 @@ class SpatialTransformerProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 2U) << "Input:[data, loc]"; CHECK_EQ(param_.transform_type, st::kAffine) << "only supports affine transform currently"; CHECK_EQ(param_.sampler_type, st::kBilinear) << "only supports bilinear sampling currently"; - const TShape &dshape = (*in_shape)[st::kData]; - const TShape &lshape = (*in_shape)[st::kLoc]; + const mxnet::TShape &dshape = (*in_shape)[st::kData]; + const mxnet::TShape &lshape = (*in_shape)[st::kLoc]; if (dshape.ndim() == 0) return false; CHECK_EQ(dshape.ndim(), 4U) \ << "input data should be 4D in batch-num_filter-y-x"; @@ -263,13 +263,13 @@ class SpatialTransformerProp : public OperatorProperty { } std::vector ForwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } #if CUDNN_MAJOR >= 5 std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } #endif @@ -279,7 +279,7 @@ class SpatialTransformerProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/spatial_transformer.cc b/src/operator/spatial_transformer.cc index 2dcb427ef036..6c413f884df9 100644 --- a/src/operator/spatial_transformer.cc +++ b/src/operator/spatial_transformer.cc @@ -160,7 +160,7 @@ Operator* CreateOp(SpatialTransformerParam param, int dtype) { return op; } -Operator *SpatialTransformerProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *SpatialTransformerProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]); } diff --git a/src/operator/subgraph/common.h b/src/operator/subgraph/common.h index 4e1cd66b8b68..814e83743514 100644 --- a/src/operator/subgraph/common.h +++ b/src/operator/subgraph/common.h @@ -50,8 +50,8 @@ inline std::vector DefaultSubgraphOpListOutputs(const nnvm::NodeAtt } inline bool DefaultSubgraphOpShapeHelper(const nnvm::Symbol& subgraph_sym, - std::vector *in_shapes, - std::vector *out_shapes) { + mxnet::ShapeVector *in_shapes, + mxnet::ShapeVector *out_shapes) { using namespace exec; nnvm::Graph g; g.outputs = subgraph_sym.outputs; @@ -60,7 +60,7 @@ inline bool DefaultSubgraphOpShapeHelper(const nnvm::Symbol& subgraph_sym, CHECK_EQ(idx_g.outputs().size(), out_shapes->size()); // Put the input and output shapes to the shape vector. - nnvm::ShapeVector shapes(idx_g.num_node_entries()); + mxnet::ShapeVector shapes(idx_g.num_node_entries()); const auto &input_nids = idx_g.input_nodes(); CHECK_EQ(input_nids.size(), in_shapes->size()); for (size_t i = 0; i < in_shapes->size(); i++) { @@ -78,7 +78,7 @@ inline bool DefaultSubgraphOpShapeHelper(const nnvm::Symbol& subgraph_sym, g = exec::InferShape(std::move(g)); // Copy the inferred shape back to the input shapes and the output shapes. - shapes = g.GetAttr("shape"); + shapes = g.GetAttr("shape"); // assign to in_shapes for (size_t i = 0; i < in_shapes->size(); ++i) { const auto eid = idx_g.entry_id(input_nids[i], 0); @@ -94,8 +94,8 @@ inline bool DefaultSubgraphOpShapeHelper(const nnvm::Symbol& subgraph_sym, } inline bool DefaultSubgraphOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_shapes, - std::vector *out_shapes) { + mxnet::ShapeVector *in_shapes, + mxnet::ShapeVector *out_shapes) { return DefaultSubgraphOpShapeHelper(*attrs.subgraphs[0], in_shapes, out_shapes); } diff --git a/src/operator/subgraph/mkldnn/mkldnn_conv.cc b/src/operator/subgraph/mkldnn/mkldnn_conv.cc index 499d7390eaad..e53ab2538a90 100644 --- a/src/operator/subgraph/mkldnn/mkldnn_conv.cc +++ b/src/operator/subgraph/mkldnn/mkldnn_conv.cc @@ -480,7 +480,7 @@ static std::vector SgMKLDNNConvListOutputNames( static OpStatePtr CreateSgMKLDNNConvState(const nnvm::NodeAttrs &attrs, Context ctx, - const std::vector &in_shapes, + const mxnet::ShapeVector &in_shapes, const std::vector &in_types) { return OpStatePtr::Create(attrs); } @@ -510,15 +510,15 @@ static void FilterMinMaxIndice(const MKLDNNConvParam &mkldnn_param, } static bool SgMKLDNNConvInferShape(const nnvm::NodeAttrs &attrs, - std::vector *in_shapes, - std::vector *out_shapes) { + mxnet::ShapeVector *in_shapes, + mxnet::ShapeVector *out_shapes) { auto const ¶m = nnvm::get(attrs.parsed); if (param.full_conv_param.mkldnn_param.quantized) { std::unordered_set minmax_indice; - std::vector base_in_shapes; - std::vector base_out_shapes; + mxnet::ShapeVector base_in_shapes; + mxnet::ShapeVector base_out_shapes; - FilterMinMaxIndice(param.full_conv_param.mkldnn_param, in_shapes, + FilterMinMaxIndice(param.full_conv_param.mkldnn_param, in_shapes, out_shapes, &base_in_shapes, &base_out_shapes, &minmax_indice); bool result = @@ -684,7 +684,7 @@ NNVM_REGISTER_OP(_sg_mkldnn_conv) .set_attr("FListInputNames", SgMKLDNNConvListInputNames) .set_attr("FListOutputNames", SgMKLDNNConvListOutputNames) .set_attr("FCreateOpState", CreateSgMKLDNNConvState) -.set_attr("FInferShape", SgMKLDNNConvInferShape) +.set_attr("FInferShape", SgMKLDNNConvInferShape) .set_attr("FInferType", SgMKLDNNConvInferType) .set_attr("FInferStorageType", SgMKLDNNConvOpStorageType) .set_attr("FStatefulComputeEx", SgMKLDNNConvOpForward) diff --git a/src/operator/subgraph_op_common.cc b/src/operator/subgraph_op_common.cc index 4b8f63abd4ce..8934438d428a 100644 --- a/src/operator/subgraph_op_common.cc +++ b/src/operator/subgraph_op_common.cc @@ -119,8 +119,8 @@ bool InferSubgraphStorage(const nnvm::Symbol &subgraph, } bool InferSubgraphShape(const nnvm::Symbol &subgraph, - std::vector *in_shape, - std::vector *out_shape) { + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape) { nnvm::Graph g; g.outputs = subgraph.outputs; const auto& idx = g.indexed_graph(); @@ -128,7 +128,7 @@ bool InferSubgraphShape(const nnvm::Symbol &subgraph, CHECK_EQ(idx.outputs().size(), out_shape->size()); // Put the input and output shapes to the shape vector. - nnvm::ShapeVector shapes(idx.num_node_entries()); + mxnet::ShapeVector shapes(idx.num_node_entries()); const auto &input_nids = idx.input_nodes(); CHECK_EQ(input_nids.size(), in_shape->size()); for (size_t i = 0; i < in_shape->size(); i++) { @@ -145,7 +145,7 @@ bool InferSubgraphShape(const nnvm::Symbol &subgraph, g.attrs["shape"] = std::make_shared(std::move(shapes)); g = exec::InferShape(std::move(g)); - const auto& shapes1 = g.GetAttr("shape"); + const auto& shapes1 = g.GetAttr("shape"); // Inferring the shape in the subgraph may infer the shape of the inputs. // We need to copy the inferred input shapes back. CHECK_EQ(input_nids.size(), in_shape->size()); @@ -177,7 +177,7 @@ bool as_bool_scalar(const NDArray &a) { return false; } -bool is_shape_udf(const TShape &x) { +bool is_shape_udf(const mxnet::TShape &x) { return x.ndim() == 0 || x.Size() == 0; } diff --git a/src/operator/subgraph_op_common.h b/src/operator/subgraph_op_common.h index c316fca91d95..91adf576dc07 100644 --- a/src/operator/subgraph_op_common.h +++ b/src/operator/subgraph_op_common.h @@ -44,8 +44,8 @@ bool InferSubgraphDataType(const nnvm::Symbol &subgraph, std::vector *in_ty * subgraph. */ bool InferSubgraphShape(const nnvm::Symbol &subgraph, - std::vector *in_shape, - std::vector *out_shape); + mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape); /* * Infer the storage types of inputs and outputs of an operator that contains a @@ -59,7 +59,7 @@ bool InferSubgraphStorage(const nnvm::Symbol &subgraph, bool as_bool_scalar(const NDArray &a); -bool is_shape_udf(const TShape &x); +bool is_shape_udf(const mxnet::TShape &x); bool is_stype_udf(const int &x); diff --git a/src/operator/svm_output-inl.h b/src/operator/svm_output-inl.h index 011b9ad10284..1609764f0ebe 100644 --- a/src/operator/svm_output-inl.h +++ b/src/operator/svm_output-inl.h @@ -99,7 +99,7 @@ class SVMOutputOp : public Operator { CHECK_GE(in_grad.size(), 1U); CHECK_GE(req.size(), 1U); Stream *s = ctx.get_stream(); - const TShape& label_shape = in_data[svm_enum::kLabel].shape_; + const mxnet::TShape& label_shape = in_data[svm_enum::kLabel].shape_; Tensor label = in_data[svm_enum::kLabel].get_with_shape( Shape1(label_shape.ProdShape(0, label_shape.ndim())), s); @@ -137,14 +137,14 @@ class SVMOutputProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { using namespace mshadow; CHECK_EQ(in_shape->size(), 2U) << "Input:[data, label]"; - const TShape &dshape = in_shape->at(0); + const mxnet::TShape &dshape = in_shape->at(0); if (dshape.ndim() == 0) return false; - TShape label_shape(dshape.ndim() - 1); + mxnet::TShape label_shape(dshape.ndim() - 1); for (index_t i = 0; i + 1 < dshape.ndim(); ++i) label_shape[i] = dshape[i]; SHAPE_ASSIGN_CHECK(*in_shape, svm_enum::kLabel, label_shape); @@ -203,7 +203,7 @@ class SVMOutputProp : public OperatorProperty { } std::vector BackwardResource( - const std::vector &in_shape) const override { + const mxnet::ShapeVector &in_shape) const override { return {ResourceRequest::kTempSpace}; } @@ -212,7 +212,7 @@ class SVMOutputProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; protected: diff --git a/src/operator/svm_output.cc b/src/operator/svm_output.cc index a291f7298706..a52aa4779176 100644 --- a/src/operator/svm_output.cc +++ b/src/operator/svm_output.cc @@ -79,7 +79,7 @@ Operator *CreateOp(SVMOutputParam param, int dtype) { } // DO_BIND_DISPATCH comes from operator_common.h -Operator *SVMOutputProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator *SVMOutputProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]); } diff --git a/src/operator/swapaxis-inl.h b/src/operator/swapaxis-inl.h index 7b0e2fa602d9..ce835084ab32 100644 --- a/src/operator/swapaxis-inl.h +++ b/src/operator/swapaxis-inl.h @@ -68,7 +68,7 @@ class SwapAxisOp : public Operator { } void Reshape2Five(mshadow::Shape<5> *inter_shape, - const TShape &shape, + const mxnet::TShape &shape, uint32_t dim1, uint32_t dim2) { using namespace mshadow; using namespace mshadow::expr; @@ -113,8 +113,8 @@ class SwapAxisOp : public Operator { TBlob data_out = out_data[swapaxisenum::kData]; OpReqType out_req = req[swapaxisenum::kData]; - TShape shape_in = data_in.shape_; - TShape shape_out = data_out.shape_; + mxnet::TShape shape_in = data_in.shape_; + mxnet::TShape shape_out = data_out.shape_; Shape<5> inter_shape; @@ -181,15 +181,15 @@ class SwapAxisProp : public OperatorProperty { return param_.__DICT__(); } - bool InferShape(std::vector *in_shape, - std::vector *out_shape, - std::vector *aux_shape) const override { + bool InferShape(mxnet::ShapeVector *in_shape, + mxnet::ShapeVector *out_shape, + mxnet::ShapeVector *aux_shape) const override { CHECK_EQ(in_shape->size(), 1U); - TShape &shape0 = (*in_shape)[swapaxisenum::kData]; + mxnet::TShape &shape0 = (*in_shape)[swapaxisenum::kData]; out_shape->clear(); out_shape->push_back(shape0); - TShape &shape1 = (*out_shape)[swapaxisenum::kOut]; + mxnet::TShape &shape1 = (*out_shape)[swapaxisenum::kOut]; std::swap(shape1[param_.dim1], shape1[param_.dim2]); @@ -229,7 +229,7 @@ class SwapAxisProp : public OperatorProperty { return NULL; } - Operator* CreateOperatorEx(Context ctx, std::vector *in_shape, + Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const override; private: diff --git a/src/operator/swapaxis.cc b/src/operator/swapaxis.cc index b78062fde8be..45bcca4db9ae 100644 --- a/src/operator/swapaxis.cc +++ b/src/operator/swapaxis.cc @@ -38,7 +38,7 @@ Operator* CreateOp(SwapAxisParam param, int dtype) { return op; } -Operator* SwapAxisProp::CreateOperatorEx(Context ctx, std::vector *in_shape, +Operator* SwapAxisProp::CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, std::vector *in_type) const { DO_BIND_DISPATCH(CreateOp, param_, in_type->at(0)); } diff --git a/src/operator/tensor/broadcast_reduce-inl.cuh b/src/operator/tensor/broadcast_reduce-inl.cuh index 33bf72798fd6..5d6c49ff8882 100644 --- a/src/operator/tensor/broadcast_reduce-inl.cuh +++ b/src/operator/tensor/broadcast_reduce-inl.cuh @@ -366,8 +366,8 @@ static inline uint64_t calc_num_load(const int X, const int Y, const int* stride } template -ReduceImplConfig ConfigureReduceImpl(const TShape& small, const TShape& big, const TShape* lhs, - const TShape* rhs) { +ReduceImplConfig ConfigureReduceImpl(const mxnet::TShape& small, const mxnet::TShape& big, const mxnet::TShape* lhs, + const mxnet::TShape* rhs) { ReduceImplConfig config; @@ -636,16 +636,16 @@ void Reduce(Stream *s, const TBlob& small, const OpReqType req, } template -size_t ReduceWorkspaceSize(Stream *s, const TShape& small, const OpReqType req, - const TShape& big) { +size_t ReduceWorkspaceSize(Stream *s, const mxnet::TShape& small, const OpReqType req, + const mxnet::TShape& big) { if (req == kNullOp) return 0; ReduceImplConfig config = ConfigureReduceImpl(small, big, NULL, NULL); return config.workspace_size; } template -size_t ReduceWorkspaceSize(Stream *s, const TShape& small, const OpReqType req, - const TShape& big, const TShape& lhs, const TShape& rhs) { +size_t ReduceWorkspaceSize(Stream *s, const mxnet::TShape& small, const OpReqType req, + const mxnet::TShape& big, const mxnet::TShape& lhs, const mxnet::TShape& rhs) { if (req == kNullOp) return 0; ReduceImplConfig config = ConfigureReduceImpl(small, big, &lhs, &rhs); return config.workspace_size; diff --git a/src/operator/tensor/broadcast_reduce-inl.h b/src/operator/tensor/broadcast_reduce-inl.h index 141d2fb83d0d..0f6913e6e9df 100644 --- a/src/operator/tensor/broadcast_reduce-inl.h +++ b/src/operator/tensor/broadcast_reduce-inl.h @@ -260,14 +260,15 @@ void ReduceWithExtraMem(Stream* s, const TBlob& small, const OpReqType req, } template -size_t ReduceWorkspaceSize(Stream *s, const TShape& small, const OpReqType req, - const TShape& big) { +size_t ReduceWorkspaceSize(Stream *s, const mxnet::TShape& small, const OpReqType req, + const mxnet::TShape& big) { return 0; } template -size_t ReduceWorkspaceSize(Stream *s, const TShape& small, const OpReqType req, - const TShape& big, const TShape& lhs, const TShape& rhs) { +size_t ReduceWorkspaceSize(Stream *s, const mxnet::TShape& small, const OpReqType req, + const mxnet::TShape& big, const mxnet::TShape& lhs, + const mxnet::TShape& rhs) { return 0; } diff --git a/src/operator/tensor/broadcast_reduce_op.h b/src/operator/tensor/broadcast_reduce_op.h index 6aeeadfe820d..b13906af6624 100644 --- a/src/operator/tensor/broadcast_reduce_op.h +++ b/src/operator/tensor/broadcast_reduce_op.h @@ -37,11 +37,11 @@ namespace mxnet { namespace op { struct ReduceAxesParam : public dmlc::Parameter { - dmlc::optional axis; + dmlc::optional axis; bool keepdims; bool exclude; DMLC_DECLARE_PARAMETER(ReduceAxesParam) { - DMLC_DECLARE_FIELD(axis).set_default(dmlc::optional()) + DMLC_DECLARE_FIELD(axis).set_default(dmlc::optional()) .describe(R"code(The axis or axes along which to perform the reduction. The default, `axis=()`, will compute over all elements into a @@ -66,12 +66,12 @@ struct ReduceAxesParam : public dmlc::Parameter { struct NormParam : public dmlc::Parameter { int ord; - dmlc::optional axis; + dmlc::optional axis; bool keepdims; DMLC_DECLARE_PARAMETER(NormParam) { DMLC_DECLARE_FIELD(ord).set_default(2) .describe("Order of the norm. Currently ord=1 and ord=2 is supported."); - DMLC_DECLARE_FIELD(axis).set_default(dmlc::optional()) + DMLC_DECLARE_FIELD(axis).set_default(dmlc::optional()) .describe(R"code(The axis or axes along which to perform the reduction. The default, `axis=()`, will compute over all elements into a scalar array with shape `(1,)`. @@ -126,20 +126,20 @@ struct PickParam : public dmlc::Parameter { }; struct BroadcastAxesParam : public dmlc::Parameter { - TShape axis; - TShape size; + mxnet::TShape axis; + mxnet::TShape size; DMLC_DECLARE_PARAMETER(BroadcastAxesParam) { - DMLC_DECLARE_FIELD(axis).set_default(TShape()) + DMLC_DECLARE_FIELD(axis).set_default(mxnet::TShape()) .describe("The axes to perform the broadcasting."); - DMLC_DECLARE_FIELD(size).set_default(TShape()) + DMLC_DECLARE_FIELD(size).set_default(mxnet::TShape()) .describe("Target sizes of the broadcasting axes."); } }; struct BroadcastToParam : public dmlc::Parameter { - TShape shape; + mxnet::TShape shape; DMLC_DECLARE_PARAMETER(BroadcastToParam) { - DMLC_DECLARE_FIELD(shape).set_default(TShape()) + DMLC_DECLARE_FIELD(shape).set_default(mxnet::TShape()) .describe("The shape of the desired array." " We can set the dim to zero if it's same as the original." " E.g `A = broadcast_to(B, shape=(10, 0, 0))` " @@ -148,12 +148,12 @@ struct BroadcastToParam : public dmlc::Parameter { }; struct BroadcastLikeParam : public dmlc::Parameter { - dmlc::optional lhs_axes; - dmlc::optional rhs_axes; + dmlc::optional lhs_axes; + dmlc::optional rhs_axes; DMLC_DECLARE_PARAMETER(BroadcastLikeParam) { - DMLC_DECLARE_FIELD(lhs_axes).set_default(dmlc::optional()) + DMLC_DECLARE_FIELD(lhs_axes).set_default(dmlc::optional()) .describe("Axes to perform broadcast on in the first input array"); - DMLC_DECLARE_FIELD(rhs_axes).set_default(dmlc::optional()) + DMLC_DECLARE_FIELD(rhs_axes).set_default(dmlc::optional()) .describe("Axes to copy from the second input array"); } }; @@ -164,7 +164,7 @@ inline int CheckAxis(int axis, int ndim) { return (axis + ndim)%ndim; } -inline TShape AxisShapeCompact(TShape shape, int *axis, bool allow_2d) { +inline mxnet::TShape AxisShapeCompact(mxnet::TShape shape, int *axis, bool allow_2d) { int ndim = static_cast(shape.ndim()); index_t leading = 1, trailing = 1, M = shape[*axis]; for (int i = 0; i < *axis; ++i) leading *= shape[i]; @@ -181,23 +181,24 @@ inline TShape AxisShapeCompact(TShape shape, int *axis, bool allow_2d) { return mshadow::Shape3(leading, M, trailing); } -inline TShape ReduceAxisShapeImpl(const TShape& ishape, const dmlc::optional& axis, - bool keepdims) { +inline mxnet::TShape ReduceAxisShapeImpl(const mxnet::TShape& ishape, + const dmlc::optional& axis, + bool keepdims) { if (!axis || ishape.ndim() == 1) { if (keepdims) { - return TShape(ishape.ndim()); + return mxnet::TShape(ishape.ndim()); } return mshadow::Shape1(1); } int new_axis = CheckAxis(axis.value(), ishape.ndim()); if (keepdims) { - TShape oshape = ishape; + mxnet::TShape oshape = ishape; oshape[new_axis] = 1; return oshape; } - TShape oshape(ishape.ndim() - 1); + mxnet::TShape oshape(ishape.ndim() - 1); for (int i = 0; i < new_axis; ++i) oshape[i] = ishape[i]; for (int i = new_axis+1; i < static_cast(ishape.ndim()); ++i) { oshape[i-1] = ishape[i]; @@ -206,11 +207,11 @@ inline TShape ReduceAxisShapeImpl(const TShape& ishape, const dmlc::optional *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); - TShape& ishape = (*in_attrs)[0]; + mxnet::TShape& ishape = (*in_attrs)[0]; if (ishape.ndim() == 0) return false; const ReduceAxisParam& param = nnvm::get(attrs.parsed); @@ -219,18 +220,19 @@ inline bool ReduceAxisShape(const nnvm::NodeAttrs& attrs, return true; } -inline TShape ReduceAxesShapeImpl(const TShape& ishape, const dmlc::optional& axis, - bool keepdims, bool exclude) { - // if axis doesn't have value, treat it same TShape(). +inline mxnet::TShape ReduceAxesShapeImpl(const mxnet::TShape& ishape, + const dmlc::optional& axis, + bool keepdims, bool exclude) { + // if axis doesn't have value, treat it same mxnet::TShape(). if (!axis.has_value() || axis.value().ndim() == 0) { if (keepdims) { - return TShape(ishape.ndim()); + return mxnet::TShape(ishape.ndim()); } else { - return TShape(1); + return mxnet::TShape(1); } } // axis has value - TShape axes(axis.value()); + mxnet::TShape axes(axis.value()); for (index_t i = 0; i < axes.ndim(); i++) { if (axes[i] < 0) { axes[i] += ishape.ndim(); @@ -250,13 +252,13 @@ inline TShape ReduceAxesShapeImpl(const TShape& ishape, const dmlc::optional(1, ishape.ndim() - axes.ndim())); + oshape = mxnet::TShape(std::max(1, ishape.ndim() - axes.ndim())); } if (keepdims && exclude) { @@ -288,8 +290,8 @@ inline TShape ReduceAxesShapeImpl(const TShape& ishape, const dmlc::optional *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); if ((*in_attrs)[0].ndim() == 0) return false; @@ -301,8 +303,8 @@ inline bool ReduceAxesShape(const nnvm::NodeAttrs& attrs, } inline bool NormShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); if ((*in_attrs)[0].ndim() == 0) return false; @@ -314,15 +316,15 @@ inline bool NormShape(const nnvm::NodeAttrs& attrs, } inline bool BroadcastAxesShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); if ((*in_attrs)[0].ndim() == 0) return false; const BroadcastAxesParam& param = nnvm::get(attrs.parsed); CHECK_EQ(param.axis.ndim() , param.size.ndim()); - TShape &ishape = (*in_attrs)[0]; - TShape oshape = ishape; + mxnet::TShape &ishape = (*in_attrs)[0]; + mxnet::TShape oshape = ishape; for (index_t i = 0; i < param.axis.ndim(); ++i) { CHECK_EQ(oshape[param.axis[i]], 1U) << "Broadcasting axis must have size 1"; oshape[param.axis[i]] = param.size[i]; @@ -332,16 +334,16 @@ inline bool BroadcastAxesShape(const nnvm::NodeAttrs& attrs, } inline bool BroadcastToShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); - TShape& ishape = (*in_attrs)[0]; + mxnet::TShape& ishape = (*in_attrs)[0]; if (ishape.ndim() == 0) return false; const BroadcastToParam& param = nnvm::get(attrs.parsed); CHECK_EQ(ishape.ndim(), param.shape.ndim()) << "Operand of shape " << ishape << " cannot be broadcasted to " << param.shape; - TShape oshape = param.shape; + mxnet::TShape oshape = param.shape; for (index_t i = 0; i < ishape.ndim(); ++i) { if (oshape[i] != 0) { CHECK(ishape[i] == oshape[i] || ishape[i] == 1) @@ -355,26 +357,26 @@ inline bool BroadcastToShape(const nnvm::NodeAttrs& attrs, } inline bool BroadcastLikeShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); - TShape& lhs_shape = (*in_attrs)[0]; - TShape& rhs_shape = (*in_attrs)[1]; + mxnet::TShape& lhs_shape = (*in_attrs)[0]; + mxnet::TShape& rhs_shape = (*in_attrs)[1]; if ((lhs_shape.ndim() == 0) || (lhs_shape.ndim() == 0)) { return false; } const BroadcastLikeParam& param = nnvm::get(attrs.parsed); - TShape oshape; + mxnet::TShape oshape; // lhs or rhs or both params were not specified if (!param.lhs_axes.has_value() || !param.rhs_axes.has_value()) { CHECK_EQ(lhs_shape.ndim(), rhs_shape.ndim()) << "Operand of shape " << lhs_shape << " cannot be broadcasted to " << rhs_shape; - oshape = TShape(rhs_shape); + oshape = mxnet::TShape(rhs_shape); for (index_t i = 0; i < lhs_shape.ndim(); ++i) { if (rhs_shape[i] != 0) { CHECK(lhs_shape[i] == rhs_shape[i] || lhs_shape[i] == 1) @@ -393,7 +395,7 @@ inline bool BroadcastLikeShape(const nnvm::NodeAttrs& attrs, CHECK(lhs_axes.ndim() > 0) << "Empty axes tuple is not allowed"; - oshape = TShape(lhs_shape); + oshape = mxnet::TShape(lhs_shape); for (index_t i = 0; i < lhs_axes.ndim(); ++i) { auto copyfrom = lhs_axes[i]; if (copyfrom < 0) { @@ -419,11 +421,11 @@ inline bool BroadcastLikeShape(const nnvm::NodeAttrs& attrs, return true; } -inline void BroadcastReduceShapeCompact(const TShape& big, const TShape& small, - TShape *new_big, TShape *new_small) { +inline void BroadcastReduceShapeCompact(const mxnet::TShape& big, const mxnet::TShape& small, + mxnet::TShape *new_big, mxnet::TShape *new_small) { index_t idim = std::max(big.ndim(), MXNET_SPECIAL_MAX_NDIM); - *new_big = TShape(idim); - *new_small = TShape(idim); + *new_big = mxnet::TShape(idim); + *new_small = mxnet::TShape(idim); index_t j = 0; if (small.Size() == 1) { (*new_big)[j++] = big.Size(); @@ -482,7 +484,7 @@ inline bool ReduceAxesOpForwardStorage(const nnvm::NodeAttrs& attrs, dispatched = storage_type_assign(&out_stype, kDefaultStorage, dispatch_mode, DispatchMode::kFCompute); } - TShape axis = param.axis.has_value() ? param.axis.value() : TShape(); + mxnet::TShape axis = param.axis.has_value() ? param.axis.value() : mxnet::TShape(); if (!dispatched && in_stype == kCSRStorage && axis.ndim() == 1 && (axis[0] == 0 || axis[0] == 1) && !param.keepdims && !param.exclude) { // If input is csr and axis is 0 or 1, and neither of keepdims or exclude @@ -512,7 +514,7 @@ void SearchAxisCompute(const nnvm::NodeAttrs& attrs, if (!param.axis) LOG(FATAL) << "Global reduction not supported yet"; int axis = CheckAxis(param.axis.value(), inputs[0].shape_.ndim()); - TShape shape = AxisShapeCompact(inputs[0].shape_, &axis, false); + mxnet::TShape shape = AxisShapeCompact(inputs[0].shape_, &axis, false); MSHADOW_REAL_TYPE_SWITCH(outputs[0].type_flag_, DType, { Tensor out = outputs[0].get_with_shape( Shape2(shape[0], shape[2]), s); @@ -529,11 +531,11 @@ void ReduceAxesComputeImpl(const OpContext& ctx, const std::vector& inputs, const std::vector& req, const std::vector& outputs, - const TShape& small) { + const mxnet::TShape& small) { using namespace mshadow; using namespace mshadow::expr; - TShape src_shape, dst_shape; + mxnet::TShape src_shape, dst_shape; BroadcastReduceShapeCompact(inputs[0].shape_, small, &src_shape, &dst_shape); Stream *s = ctx.get_stream(); MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { @@ -562,7 +564,7 @@ void ReduceAxesCompute(const nnvm::NodeAttrs& attrs, const std::vector& req, const std::vector& outputs) { const ReduceAxesParam& param = nnvm::get(attrs.parsed); - TShape small; + mxnet::TShape small; if (param.keepdims) { small = outputs[0].shape_; } else { @@ -686,7 +688,7 @@ struct ReduceCsrKernel { template void ReduceCsrImpl(mshadow::Stream* s, const OpContext& ctx, const NDArray& input, const OpReqType req, - NDArray* output, const TShape reduce_axis) { + NDArray* output, const mxnet::TShape reduce_axis) { if (req == kNullOp) return; int64_t out_data_size = 0; if (reduce_axis[0] == 0) { @@ -783,7 +785,7 @@ void ReduceCsr(const nnvm::NodeAttrs& attrs, mshadow::Stream* s, const OpCo const NDArray& input, const OpReqType req, NDArray* output) { const ReduceAxesParam& param = nnvm::get(attrs.parsed); CHECK(param.axis.has_value()); - const TShape axis = param.axis.value(); + const mxnet::TShape axis = param.axis.value(); CHECK_EQ(axis.ndim(), 1U) << "sum(csr)/mean(csr) only supports axis 0 or 1"; CHECK(axis[0] == 0 || axis[0] == 1) << "sum(csr)/mean(csr) only support axis 0 or 1"; @@ -813,14 +815,14 @@ void ReduceAxesOpForwardEx(const nnvm::NodeAttrs& attrs, const OpContext& ctx, template void ReduceAxesBackwardUseInOutImpl(const OpContext& ctx, - const TShape &small, + const mxnet::TShape &small, const std::vector& inputs, const std::vector& req, const std::vector& outputs) { using namespace mshadow; using namespace mshadow::expr; - TShape src_shape, dst_shape; + mxnet::TShape src_shape, dst_shape; BroadcastReduceShapeCompact(outputs[0].shape_, small, &src_shape, &dst_shape); Stream *s = ctx.get_stream(); MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { @@ -863,7 +865,7 @@ void ReduceAxesBackwardUseInOut(const nnvm::NodeAttrs& attrs, using namespace mshadow; using namespace mshadow::expr; const ReduceAxesParam& param = nnvm::get(attrs.parsed); - TShape small; + mxnet::TShape small; if (param.keepdims) { small = inputs[0].shape_; } else { @@ -878,10 +880,10 @@ inline void BroadcastComputeImpl(const nnvm::NodeAttrs& attrs, const std::vector& inputs, const std::vector& req, const std::vector& outputs, - const TShape& small) { + const mxnet::TShape& small) { using namespace mshadow; using namespace mshadow::expr; - TShape src_shape, dst_shape; + mxnet::TShape src_shape, dst_shape; BroadcastReduceShapeCompact(outputs[0].shape_, small, &dst_shape, &src_shape); Stream *s = ctx.get_stream(); MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { @@ -920,7 +922,7 @@ inline void ReduceAxesBackwardUseNone(const nnvm::NodeAttrs& attrs, using namespace mshadow; using namespace mshadow::expr; const ReduceAxesParam& param = nnvm::get(attrs.parsed); - TShape small; + mxnet::TShape small; if (param.keepdims) { small = inputs[0].shape_; } else { @@ -976,7 +978,7 @@ inline bool LpNormStorageType(const nnvm::NodeAttrs& attrs, DispatchMode::kFCompute); } if (param.ord == 2) { - const TShape axis = param.axis.has_value() ? param.axis.value() : TShape(); + const mxnet::TShape axis = param.axis.has_value() ? param.axis.value() : mxnet::TShape(); if (!dispatched && (in_stype == kRowSparseStorage || in_stype == kCSRStorage) && axis.ndim() == 0 && param.ord == 2) { // l2 norm: rsp/csr, axis = () -> dns @@ -1081,7 +1083,7 @@ void LpNormCompute(const nnvm::NodeAttrs& attrs, CHECK(param.ord == 1 || param.ord == 2) << "norm only supports ord=1 and ord=2"; if (req[0] == kNullOp) return; - TShape small; + mxnet::TShape small; if (param.keepdims) { small = outputs[0].shape_; } else { @@ -1107,14 +1109,14 @@ void LpNormGradCompute(const nnvm::NodeAttrs& attrs, if (req[0] == kNullOp) return; const NormParam& param = nnvm::get(attrs.parsed); - TShape small; + mxnet::TShape small; if (param.keepdims) { small = inputs[0].shape_; } else { small = ReduceAxesShapeImpl(outputs[0].shape_, param.axis, true, false); } if (param.ord == 1) { - TShape src_shape, dst_shape; + mxnet::TShape src_shape, dst_shape; BroadcastReduceShapeCompact(outputs[0].shape_, small, &src_shape, &dst_shape); Stream *s = ctx.get_stream(); MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { @@ -1213,16 +1215,16 @@ struct pick_grad { }; inline bool PickOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 2); CHECK_EQ(out_attrs->size(), 1); - const TShape& ishape = (*in_attrs)[0]; + const mxnet::TShape& ishape = (*in_attrs)[0]; if (ishape.ndim() == 0) return false; const PickParam& param = nnvm::get(attrs.parsed); if (!param.axis) LOG(FATAL) << "axis=None is not supported by pick yet. Must specify an axis."; - TShape oshape = ReduceAxisShapeImpl(ishape, param.axis, param.keepdims); + mxnet::TShape oshape = ReduceAxisShapeImpl(ishape, param.axis, param.keepdims); SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape); if (!(*in_attrs)[1].ndim()) return false; if ((*in_attrs)[1].ndim() == ishape.ndim()) { @@ -1258,7 +1260,7 @@ void PickOpForward(const nnvm::NodeAttrs& attrs, mshadow::Stream *s = ctx.get_stream(); const PickParam& param = nnvm::get(attrs.parsed); - const TShape& ishape = inputs[0].shape_; + const mxnet::TShape& ishape = inputs[0].shape_; index_t axis = CheckAxis(param.axis.value(), ishape.ndim()); int leading = 1, trailing = 1, M = ishape[axis]; for (index_t i = 0; i < axis; ++i) leading *= ishape[i]; @@ -1305,7 +1307,7 @@ void PickOpBackward(const nnvm::NodeAttrs& attrs, mshadow::Stream *s = ctx.get_stream(); const PickParam& param = nnvm::get(attrs.parsed); - const TShape& ishape = outputs[0].shape_; + const mxnet::TShape& ishape = outputs[0].shape_; const index_t axis = CheckAxis(param.axis.value(), ishape.ndim()); int leading = 1, trailing = 1, M = ishape[axis]; for (index_t i = 0; i < axis; ++i) leading *= ishape[i]; @@ -1346,7 +1348,7 @@ void PickOpBackward(const nnvm::NodeAttrs& attrs, .set_num_inputs(1) \ .set_num_outputs(1) \ .set_attr_parser(ParamParser) \ - .set_attr("FInferShape", ReduceAxisShape) \ + .set_attr("FInferShape", ReduceAxisShape) \ .set_attr("FInferType", ElemwiseType<1, 1>) \ .add_argument("data", "NDArray-or-Symbol", "The input") \ .add_arguments(ReduceAxisParam::__FIELDS__()) @@ -1356,7 +1358,7 @@ void PickOpBackward(const nnvm::NodeAttrs& attrs, .set_num_inputs(1) \ .set_num_outputs(1) \ .set_attr_parser(AxesParamParser) \ - .set_attr("FInferShape", ReduceAxesShape) \ + .set_attr("FInferShape", ReduceAxesShape) \ .set_attr("FInferType", ElemwiseType<1, 1>) \ .add_argument("data", "NDArray-or-Symbol", "The input") \ .add_arguments(ReduceAxesParam::__FIELDS__()) diff --git a/src/operator/tensor/broadcast_reduce_op_index.cc b/src/operator/tensor/broadcast_reduce_op_index.cc index c18a8bcf9126..ed9a90d04f30 100644 --- a/src/operator/tensor/broadcast_reduce_op_index.cc +++ b/src/operator/tensor/broadcast_reduce_op_index.cc @@ -103,7 +103,7 @@ Examples:: param.keepdims = false; attrs->parsed = param; }) -.set_attr("FInferShape", ReduceAxisShape) +.set_attr("FInferShape", ReduceAxisShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FCompute", SearchAxisCompute) .add_argument("data", "NDArray-or-Symbol", "The input array"); @@ -158,7 +158,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{"data", "index"}; }) -.set_attr("FInferShape", PickOpShape) +.set_attr("FInferShape", PickOpShape) .set_attr("FInferType", PickOpType) .set_attr("FCompute", PickOpForward) .set_attr("FGradient", diff --git a/src/operator/tensor/broadcast_reduce_op_value.cc b/src/operator/tensor/broadcast_reduce_op_value.cc index 1fdbb8920572..52fd61aa110e 100644 --- a/src/operator/tensor/broadcast_reduce_op_value.cc +++ b/src/operator/tensor/broadcast_reduce_op_value.cc @@ -59,7 +59,7 @@ void L2NormComputeEx(const nnvm::NodeAttrs& attrs, const NormParam& param = nnvm::get(attrs.parsed); mshadow::Stream* s = ctx.get_stream(); const NDArrayStorageType istype = inputs[0].storage_type(); - const TShape axis = param.axis.has_value() ? param.axis.value() : TShape(); + const mxnet::TShape axis = param.axis.has_value() ? param.axis.value() : mxnet::TShape(); if ((istype == kRowSparseStorage || istype == kCSRStorage) && axis.ndim() == 0 && param.ord == 2) { // l2 norm on the entire array @@ -238,7 +238,7 @@ Example:: )code" ADD_FILELINE) .set_attr_parser(ParamParser) .add_arguments(BroadcastAxesParam::__FIELDS__()) -.set_attr("FInferShape", BroadcastAxesShape) +.set_attr("FInferShape", BroadcastAxesShape) .set_attr("FCompute", BroadcastCompute); MXNET_OPERATOR_REGISTER_BROADCAST(broadcast_to) @@ -262,7 +262,7 @@ So with `shape=(2,0)`, we will obtain the same result as in the above example. )code" ADD_FILELINE) .set_attr_parser(ParamParser) .add_arguments(BroadcastToParam::__FIELDS__()) -.set_attr("FInferShape", BroadcastToShape) +.set_attr("FInferShape", BroadcastToShape) .set_attr("FCompute", BroadcastCompute); // backward op for broadcast. @@ -315,7 +315,7 @@ For example:: )code" ADD_FILELINE) .set_attr_parser(ParamParser) .add_arguments(BroadcastLikeParam::__FIELDS__()) -.set_attr("FInferShape", BroadcastLikeShape) +.set_attr("FInferShape", BroadcastLikeShape) .set_attr("FCompute", BroadcastCompute); NNVM_REGISTER_OP(norm) @@ -351,7 +351,7 @@ Examples:: .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", NormShape) +.set_attr("FInferShape", NormShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FInferStorageType", LpNormStorageType) .set_attr("FGradient", ReduceGrad{ "_backward_norm" }) diff --git a/src/operator/tensor/broadcast_reduce_op_value.cu b/src/operator/tensor/broadcast_reduce_op_value.cu index 881f52090a7a..2d91c5074496 100644 --- a/src/operator/tensor/broadcast_reduce_op_value.cu +++ b/src/operator/tensor/broadcast_reduce_op_value.cu @@ -39,7 +39,7 @@ void L2NormComputeEx(const nnvm::NodeAttrs& attrs, const NormParam& param = nnvm::get(attrs.parsed); mshadow::Stream* s = ctx.get_stream(); const NDArrayStorageType istype = inputs[0].storage_type(); - const TShape axis = param.axis.has_value() ? param.axis.value() : TShape(); + const mxnet::TShape axis = param.axis.has_value() ? param.axis.value() : mxnet::TShape(); if ((istype == kRowSparseStorage || istype == kCSRStorage) && axis.ndim() == 0 && param.ord == 2) { // l2 norm on the entire array diff --git a/src/operator/tensor/cast_storage-inl.cuh b/src/operator/tensor/cast_storage-inl.cuh index 39e522664f06..ee1531dbd94e 100644 --- a/src/operator/tensor/cast_storage-inl.cuh +++ b/src/operator/tensor/cast_storage-inl.cuh @@ -28,7 +28,6 @@ #include #include #include -#include #include "./util/tensor_util-inl.h" #include "../mxnet_op.h" #include "./util/tensor_util-inl.cuh" diff --git a/src/operator/tensor/cast_storage-inl.h b/src/operator/tensor/cast_storage-inl.h index cdb6246313b4..93606fcde86f 100644 --- a/src/operator/tensor/cast_storage-inl.h +++ b/src/operator/tensor/cast_storage-inl.h @@ -340,7 +340,7 @@ void CastStorageCsrCsrImpl(const OpContext& ctx, const NDArray& csr, FillZerosCsrImpl(s, *output); return; } - std::vector aux_shapes({csr.aux_shape(csr::kIndPtr), csr.aux_shape(csr::kIdx)}); + mxnet::ShapeVector aux_shapes({csr.aux_shape(csr::kIndPtr), csr.aux_shape(csr::kIdx)}); output->CheckAndAlloc(aux_shapes); const TBlob& val = output->data(); const TBlob& indptr = output->aux_data(csr::kIndPtr); diff --git a/src/operator/tensor/cast_storage.cc b/src/operator/tensor/cast_storage.cc index afea9b8a3ced..5d93979a5bb7 100644 --- a/src/operator/tensor/cast_storage.cc +++ b/src/operator/tensor/cast_storage.cc @@ -72,7 +72,7 @@ Example:: .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FInferStorageType", CastStorageInferStorageType) .set_attr("FResourceRequest", diff --git a/src/operator/tensor/control_flow_op.cc b/src/operator/tensor/control_flow_op.cc index 164fd6a66ac7..5a05253478c8 100644 --- a/src/operator/tensor/control_flow_op.cc +++ b/src/operator/tensor/control_flow_op.cc @@ -61,7 +61,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{"condition", "x", "y"}; }) -.set_attr("FInferShape", WhereOpShape) +.set_attr("FInferShape", WhereOpShape) .set_attr("FInferType", WhereOpType) .set_attr("FInferStorageType", WhereOpForwardStorageType) .set_attr("FCompute", WhereOpForward) diff --git a/src/operator/tensor/control_flow_op.h b/src/operator/tensor/control_flow_op.h index 9d0e8cf90817..96696b244bc3 100644 --- a/src/operator/tensor/control_flow_op.h +++ b/src/operator/tensor/control_flow_op.h @@ -170,13 +170,13 @@ struct where_batch_backward { }; inline bool WhereOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_EQ(in_attrs->size(), 3U) << "where operator takes 3 arguments (" << in_attrs->size() << " given)"; CHECK_EQ(out_attrs->size(), 1U); - TShape tshape((*in_attrs)[1]); + mxnet::TShape tshape((*in_attrs)[1]); if (!shape_assign(&tshape, (*in_attrs)[2])) return false; if (!shape_assign(&tshape, (*out_attrs)[0])) return false; SHAPE_ASSIGN_CHECK(*in_attrs, 1, tshape); diff --git a/src/operator/tensor/diag_op-inl.h b/src/operator/tensor/diag_op-inl.h index 23123cfab752..1e3c1c9701d4 100644 --- a/src/operator/tensor/diag_op-inl.h +++ b/src/operator/tensor/diag_op-inl.h @@ -61,11 +61,11 @@ struct DiagParam : public dmlc::Parameter { } }; -inline TShape DiagShapeImpl(const TShape& ishape, const int k, +inline mxnet::TShape DiagShapeImpl(const mxnet::TShape& ishape, const int k, const int32_t axis1, const int32_t axis2) { if (ishape.ndim() == 1) { auto s = ishape[0] + std::abs(k); - return TShape({s, s}); + return mxnet::TShape({s, s}); } int32_t x1 = CheckAxis(axis1, ishape.ndim()); @@ -92,7 +92,7 @@ inline TShape DiagShapeImpl(const TShape& ishape, const int k, } int32_t n_dim = static_cast(ishape.ndim()) - 1; - TShape oshape(n_dim); + mxnet::TShape oshape(n_dim); // remove axis1 and axis2 and append the new axis to the end uint32_t idx = 0; @@ -108,19 +108,19 @@ inline TShape DiagShapeImpl(const TShape& ishape, const int k, } inline bool DiagOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); - const TShape& ishape = (*in_attrs)[0]; + const mxnet::TShape& ishape = (*in_attrs)[0]; if (ishape.ndim() == 0) { return false; } const DiagParam& param = nnvm::get(attrs.parsed); - TShape oshape = DiagShapeImpl(ishape, + mxnet::TShape oshape = DiagShapeImpl(ishape, param.k, param.axis1, param.axis2); @@ -186,8 +186,8 @@ struct diag_gen { template void DiagOpProcess(const TBlob& in_data, const TBlob& out_data, - const TShape& ishape, - const TShape& oshape, + const mxnet::TShape& ishape, + const mxnet::TShape& oshape, index_t dsize, const DiagParam& param, mxnet_op::Stream *s, @@ -296,8 +296,8 @@ void DiagOpForward(const nnvm::NodeAttrs& attrs, Stream *s = ctx.get_stream(); const TBlob& in_data = inputs[0]; const TBlob& out_data = outputs[0]; - const TShape& ishape = inputs[0].shape_; - const TShape& oshape = outputs[0].shape_; + const mxnet::TShape& ishape = inputs[0].shape_; + const mxnet::TShape& oshape = outputs[0].shape_; const DiagParam& param = nnvm::get(attrs.parsed); DiagOpProcess(in_data, out_data, ishape, oshape, out_data.Size(), param, s, req); @@ -317,8 +317,8 @@ void DiagOpBackward(const nnvm::NodeAttrs& attrs, const TBlob& in_data = inputs[0]; const TBlob& out_data = outputs[0]; - const TShape& ishape = inputs[0].shape_; - const TShape& oshape = outputs[0].shape_; + const mxnet::TShape& ishape = inputs[0].shape_; + const mxnet::TShape& oshape = outputs[0].shape_; const DiagParam& param = nnvm::get(attrs.parsed); DiagOpProcess(in_data, out_data, oshape, ishape, in_data.Size(), param, s, req); diff --git a/src/operator/tensor/diag_op.cc b/src/operator/tensor/diag_op.cc index 9dcdb63d831a..4d14cbc29140 100644 --- a/src/operator/tensor/diag_op.cc +++ b/src/operator/tensor/diag_op.cc @@ -92,7 +92,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", DiagOpShape) +.set_attr("FInferShape", DiagOpShape) .set_attr("FInferType", DiagOpType) .set_attr("FCompute", DiagOpForward) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_diag"}) diff --git a/src/operator/tensor/dot-inl.h b/src/operator/tensor/dot-inl.h index 69f87ae42f97..163b4426cb2b 100644 --- a/src/operator/tensor/dot-inl.h +++ b/src/operator/tensor/dot-inl.h @@ -1200,33 +1200,37 @@ inline void DotDnsCsrDnsImpl(const OpContext& ctx, const cpu& cpu_dev, } inline bool DotShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const DotParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); - TShape& lshape = (*in_attrs)[0]; - TShape& rshape = (*in_attrs)[1]; + mxnet::TShape& lshape = (*in_attrs)[0]; + mxnet::TShape& rshape = (*in_attrs)[1]; if (lshape.ndim() == 1 && rshape.ndim() == 1) { CHECK(!param.transpose_a && !param.transpose_b) << "Cannot transpose vectors"; CHECK_EQ(lshape[0], rshape[0]) << "dot shape error: " << lshape << " X " << rshape; SHAPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::Shape1(1)); } else { bool Ta = param.transpose_a, Tb = param.transpose_b; - TShape L[2], R[2]; + mxnet::TShape L[2], R[2]; if (Ta) { L[0] = mshadow::Shape1(lshape[0]); - L[1] = lshape.ndim() > 1 ? TShape(&lshape[1], &lshape[lshape.ndim()]) : TShape(1); + L[1] = lshape.ndim() > 1 ? + mxnet::TShape(&lshape[1], &lshape[lshape.ndim()]) : mxnet::TShape(1); } else { - L[0] = lshape.ndim() > 1 ? TShape(&lshape[0], &lshape[lshape.ndim()-1]) : TShape(1); + L[0] = lshape.ndim() > 1 ? + mxnet::TShape(&lshape[0], &lshape[lshape.ndim()-1]) : mxnet::TShape(1); L[1] = mshadow::Shape1(lshape[lshape.ndim()-1]); } if (Tb) { - R[0] = rshape.ndim() > 1 ? TShape(&rshape[0], &rshape[rshape.ndim()-1]) : TShape(1); + R[0] = rshape.ndim() > 1 ? + mxnet::TShape(&rshape[0], &rshape[rshape.ndim()-1]) : mxnet::TShape(1); R[1] = mshadow::Shape1(rshape[rshape.ndim()-1]); } else { R[0] = mshadow::Shape1(rshape[0]); - R[1] = rshape.ndim() > 1 ? TShape(&rshape[1], &rshape[rshape.ndim()]) : TShape(1); + R[1] = rshape.ndim() > 1 ? + mxnet::TShape(&rshape[1], &rshape[rshape.ndim()]) : mxnet::TShape(1); } if (L[!Ta].Size() != 0 && R[Tb].Size() != 0) { @@ -1236,7 +1240,7 @@ inline bool DotShape(const nnvm::NodeAttrs& attrs, std::vector buf; if (lshape.ndim() > 1) buf.insert(buf.end(), &L[Ta][0], &L[Ta][L[Ta].ndim()]); if (rshape.ndim() > 1) buf.insert(buf.end(), &R[!Tb][0], &R[!Tb][R[!Tb].ndim()]); - TShape oshape(buf.begin(), buf.end()); + mxnet::TShape oshape(buf.begin(), buf.end()); SHAPE_ASSIGN_CHECK(*out_attrs, 0, oshape); } return true; @@ -1468,13 +1472,13 @@ void BatchDotBackward_(const nnvm::NodeAttrs& attrs, } inline bool BatchDotShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); const DotParam& param = nnvm::get(attrs.parsed); - TShape& lshape = (*in_attrs)[0]; - TShape& rshape = (*in_attrs)[1]; + mxnet::TShape& lshape = (*in_attrs)[0]; + mxnet::TShape& rshape = (*in_attrs)[1]; if (lshape.ndim() == 3 && rshape.ndim() == 3) { CHECK(lshape[0] == rshape[0]) << "batch_dot shape error(batch_size must be equal): " << lshape << " X " << rshape diff --git a/src/operator/tensor/dot.cc b/src/operator/tensor/dot.cc index d45551d383b8..7d7b6c06c846 100644 --- a/src/operator/tensor/dot.cc +++ b/src/operator/tensor/dot.cc @@ -82,7 +82,7 @@ above patterns, ``dot`` will fallback and generate output with default storage. [](const NodeAttrs& attrs) { return std::vector{"lhs", "rhs"}; }) -.set_attr("FInferShape", DotShape) +.set_attr("FInferShape", DotShape) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FInferStorageType", DotForwardInferStorageType) .set_attr("FResourceRequest", @@ -130,7 +130,7 @@ which is computed by:: [](const NodeAttrs& attrs) { return std::vector{"lhs", "rhs"}; }) -.set_attr("FInferShape", BatchDotShape) +.set_attr("FInferShape", BatchDotShape) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FResourceRequest", [](const NodeAttrs& attrs) { diff --git a/src/operator/tensor/elemwise_binary_broadcast_op-inl.cuh b/src/operator/tensor/elemwise_binary_broadcast_op-inl.cuh index d02004d75d35..8469f59e2e9c 100644 --- a/src/operator/tensor/elemwise_binary_broadcast_op-inl.cuh +++ b/src/operator/tensor/elemwise_binary_broadcast_op-inl.cuh @@ -40,7 +40,7 @@ BinaryBroadcastBackwardUseNone(const nnvm::NodeAttrs& attrs, const std::vector& req, const std::vector& outputs) { using namespace broadcast; - TShape new_lshape, new_rshape, new_oshape; + mxnet::TShape new_lshape, new_rshape, new_oshape; int ndim = BinaryBroadcastShapeCompact(outputs[0].shape_, outputs[1].shape_, inputs[0].shape_, &new_lshape, &new_rshape, &new_oshape); if (!ndim) { diff --git a/src/operator/tensor/elemwise_binary_broadcast_op.h b/src/operator/tensor/elemwise_binary_broadcast_op.h index 304422038b89..1d2b7c9c1163 100644 --- a/src/operator/tensor/elemwise_binary_broadcast_op.h +++ b/src/operator/tensor/elemwise_binary_broadcast_op.h @@ -40,12 +40,12 @@ namespace mxnet { namespace op { inline bool BinaryBroadcastShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); - TShape& lhs = (*in_attrs)[0]; - TShape& rhs = (*in_attrs)[1]; + mxnet::TShape& lhs = (*in_attrs)[0]; + mxnet::TShape& rhs = (*in_attrs)[1]; // avoid pre-mature shape inference. if (lhs.ndim() == 0 || rhs.ndim() == 0) return false; @@ -54,7 +54,7 @@ inline bool BinaryBroadcastShape(const nnvm::NodeAttrs& attrs, SHAPE_ASSIGN_CHECK(*out_attrs, 0, lhs); return true; } - TShape out(std::max(lhs.ndim(), rhs.ndim())); + mxnet::TShape out(std::max(lhs.ndim(), rhs.ndim())); index_t bl = out.ndim() - lhs.ndim(); index_t br = out.ndim() - rhs.ndim(); for (index_t i = 0; i < out.ndim(); ++i) { @@ -142,14 +142,14 @@ inline bool BinaryBroadcastAddStorageType(const nnvm::NodeAttrs& attrs, LOG(FATAL) << "NDim too large "; \ } -inline int BinaryBroadcastShapeCompact(const TShape& lshape, const TShape& rshape, - const TShape& oshape, TShape *new_lshape, - TShape *new_rshape, TShape *new_oshape) { +inline int BinaryBroadcastShapeCompact(const mxnet::TShape& lshape, const mxnet::TShape& rshape, + const mxnet::TShape& oshape, mxnet::TShape *new_lshape, + mxnet::TShape *new_rshape, mxnet::TShape *new_oshape) { if (lshape == rshape) return 0; index_t odim = std::max(oshape.ndim(), broadcast::MAX_DIM); - *new_lshape = TShape(odim); - *new_rshape = TShape(odim); - *new_oshape = TShape(odim); + *new_lshape = mxnet::TShape(odim); + *new_rshape = mxnet::TShape(odim); + *new_oshape = mxnet::TShape(odim); index_t bl = oshape.ndim() - lshape.ndim(); index_t br = oshape.ndim() - rshape.ndim(); index_t j = 0, lprod = 1, rprod = 1, oprod = 1; @@ -293,7 +293,7 @@ void BinaryBroadcastCompute(const nnvm::NodeAttrs& attrs, const std::vector& inputs, const std::vector& req, const std::vector& outputs) { - TShape new_lshape, new_rshape, new_oshape; + mxnet::TShape new_lshape, new_rshape, new_oshape; int ndim = BinaryBroadcastShapeCompact(inputs[0].shape_, inputs[1].shape_, outputs[0].shape_, &new_lshape, &new_rshape, &new_oshape); if (!ndim) { @@ -384,9 +384,9 @@ void BinaryBroadcastCsrDnsDnsImpl(const OpContext& ctx, const NDArray& dns, const OpReqType req, const NDArray& output, - const TShape& new_csrshape, - const TShape& new_dnsshape, - const TShape& new_oshape, + const mxnet::TShape& new_csrshape, + const mxnet::TShape& new_dnsshape, + const mxnet::TShape& new_oshape, const int ndim, const bool reverse) { using namespace mshadow; @@ -501,7 +501,7 @@ void BinaryBroadcastComputeDenseEx(const nnvm::NodeAttrs& attrs, bool reverse = (lhs_stype == kDefaultStorage); const NDArray& dns = (reverse) ? lhs : rhs; const NDArray& csr = (reverse) ? rhs : lhs; - TShape new_csrshape, new_dnsshape, new_oshape; + mxnet::TShape new_csrshape, new_dnsshape, new_oshape; int ndim = BinaryBroadcastShapeCompact(csr.shape(), dns.shape(), out.shape(), &new_csrshape, &new_dnsshape, &new_oshape); @@ -531,7 +531,7 @@ BinaryBroadcastBackwardUseNone(const nnvm::NodeAttrs& attrs, const std::vector& req, const std::vector& outputs) { using namespace broadcast; - TShape new_lshape, new_rshape, new_oshape; + mxnet::TShape new_lshape, new_rshape, new_oshape; int ndim = BinaryBroadcastShapeCompact(outputs[0].shape_, outputs[1].shape_, inputs[0].shape_, &new_lshape, &new_rshape, &new_oshape); if (!ndim) { @@ -568,9 +568,9 @@ inline void BinaryBroadcastBackwardUseInImpl(const OpContext& ctx, const std::vector& inputs, const std::vector& req, const std::vector& outputs, - const TShape& new_lshape, - const TShape& new_rshape, - const TShape& new_oshape) { + const mxnet::TShape& new_lshape, + const mxnet::TShape& new_rshape, + const mxnet::TShape& new_oshape) { using namespace mshadow; using namespace mshadow::expr; using namespace broadcast; @@ -599,7 +599,7 @@ void BinaryBroadcastBackwardUseIn(const nnvm::NodeAttrs& attrs, const std::vector& inputs, const std::vector& req, const std::vector& outputs) { - TShape new_lshape, new_rshape, new_oshape; + mxnet::TShape new_lshape, new_rshape, new_oshape; const bool need_bc = BinaryBroadcastShapeCompact(outputs[0].shape_, outputs[1].shape_, inputs[0].shape_, &new_lshape, &new_rshape, &new_oshape) != 0; @@ -623,7 +623,7 @@ void BinaryBroadcastBackwardUseIn(const nnvm::NodeAttrs& attrs, [](const NodeAttrs& attrs) { \ return std::vector{"lhs", "rhs"}; \ }) \ - .set_attr("FInferShape", BinaryBroadcastShape) \ + .set_attr("FInferShape", BinaryBroadcastShape) \ .set_attr("FInferType", ElemwiseType<2, 1>) \ .set_attr("FInplaceOption", \ [](const NodeAttrs& attrs){ \ diff --git a/src/operator/tensor/elemwise_binary_op-inl.h b/src/operator/tensor/elemwise_binary_op-inl.h index 42f907f71be4..f47c5d3cc8fa 100644 --- a/src/operator/tensor/elemwise_binary_op-inl.h +++ b/src/operator/tensor/elemwise_binary_op-inl.h @@ -240,7 +240,7 @@ void ElemwiseBinaryOp::RspRspOp(mshadow::Stream *s, CHECK_LE(iter_out, num_rows_r); } DCHECK_LE(iter_out, num_rows_l + num_rows_r); // Make sure that we didn't overrun - nnvm::TShape new_shape = output.aux_shape(rowsparse::kIdx); + mxnet::TShape new_shape = output.aux_shape(rowsparse::kIdx); CHECK_LE(iter_out, new_shape.Size()); if (!rhs_is_dense && !lhs_is_dense && !lhs_in_place && !rhs_in_place && !scatter) { // Reduce the first-dimension size by the number of common rows diff --git a/src/operator/tensor/elemwise_binary_op.h b/src/operator/tensor/elemwise_binary_op.h index 9b451fa69357..2fe3fd9919cf 100644 --- a/src/operator/tensor/elemwise_binary_op.h +++ b/src/operator/tensor/elemwise_binary_op.h @@ -726,7 +726,7 @@ class ElemwiseBinaryOp : public OpBase { [](const NodeAttrs& attrs) { \ return std::vector{"lhs", "rhs"}; \ }) \ - .set_attr("FInferShape", ElemwiseShape<2, 1>) \ + .set_attr("FInferShape", ElemwiseShape<2, 1>) \ .set_attr("FInferType", ElemwiseType<2, 1>) \ .set_attr("FInplaceOption", \ [](const NodeAttrs& attrs){ \ diff --git a/src/operator/tensor/elemwise_binary_scalar_op.h b/src/operator/tensor/elemwise_binary_scalar_op.h index 1a8adedbceed..c78841641214 100644 --- a/src/operator/tensor/elemwise_binary_scalar_op.h +++ b/src/operator/tensor/elemwise_binary_scalar_op.h @@ -324,7 +324,7 @@ class BinaryScalarOp : public UnaryOp { .set_attr_parser([](NodeAttrs* attrs) { \ attrs->parsed = std::stod(attrs->dict["scalar"]); \ }) \ - .set_attr("FInferShape", ElemwiseShape<1, 1>) \ + .set_attr("FInferShape", ElemwiseShape<1, 1>) \ .set_attr("FInferType", ElemwiseType<1, 1>) \ .set_attr("FInplaceOption", \ [](const NodeAttrs& attrs){ \ diff --git a/src/operator/tensor/elemwise_binary_scalar_op_basic.cc b/src/operator/tensor/elemwise_binary_scalar_op_basic.cc index 1eb3da65eef3..ae356deff0a1 100644 --- a/src/operator/tensor/elemwise_binary_scalar_op_basic.cc +++ b/src/operator/tensor/elemwise_binary_scalar_op_basic.cc @@ -33,7 +33,7 @@ .set_attr_parser([](NodeAttrs* attrs) { \ attrs->parsed = std::stod(attrs->dict["scalar"]); \ }) \ - .set_attr("FInferShape", ElemwiseShape<1, 1>) \ + .set_attr("FInferShape", ElemwiseShape<1, 1>) \ .set_attr("FInferType", ElemwiseType<1, 1>) \ .set_attr("FInferStorageType", \ BinaryScalarStorageTypeWithDenseResultStorageType) \ diff --git a/src/operator/tensor/elemwise_binary_scalar_op_extended.cc b/src/operator/tensor/elemwise_binary_scalar_op_extended.cc index dbe3c4f6219f..f027665a549b 100644 --- a/src/operator/tensor/elemwise_binary_scalar_op_extended.cc +++ b/src/operator/tensor/elemwise_binary_scalar_op_extended.cc @@ -111,7 +111,7 @@ Example:: attrs->parsed = 1.0; } }) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs){ diff --git a/src/operator/tensor/elemwise_sum.cc b/src/operator/tensor/elemwise_sum.cc index 85b58b6e0f3e..f1ec8b5ad387 100644 --- a/src/operator/tensor/elemwise_sum.cc +++ b/src/operator/tensor/elemwise_sum.cc @@ -60,11 +60,11 @@ std::vector ElementWiseSumGrad( } bool ElementWiseSumShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(out_attrs->size(), 1); - return ElemwiseAttr( - attrs, in_attrs, out_attrs, TShape()); + return ElemwiseAttr( + attrs, in_attrs, out_attrs, mxnet::TShape()); } bool ElementWiseSumType(const nnvm::NodeAttrs& attrs, @@ -182,7 +182,7 @@ The storage type of ``add_n`` output depends on storage types of inputs #if MXNET_USE_MKLDNN == 1 .set_attr("TIsMKLDNN", true) #endif -.set_attr("FInferShape", ElementWiseSumShape) +.set_attr("FInferShape", ElementWiseSumShape) .set_attr("FInferType", ElementWiseSumType) .set_attr("FInferStorageType", ElementWiseSumForwardInferStorageType) .set_attr("FGradient", ElementWiseSumGrad) diff --git a/src/operator/tensor/elemwise_unary_op.h b/src/operator/tensor/elemwise_unary_op.h index 8d5ad055b118..3085f6d2256a 100644 --- a/src/operator/tensor/elemwise_unary_op.h +++ b/src/operator/tensor/elemwise_unary_op.h @@ -73,7 +73,7 @@ class OpBase { const NDArray* clone_from = nullptr) { if (req != kNullOp) { if (clone_from) { - const TShape& ishape = clone_from->storage_shape(); + const mxnet::TShape& ishape = clone_from->storage_shape(); dest->CheckAndAllocData(ishape); CHECK_EQ(dest->storage_type(), clone_from->storage_type()); for (size_t i = 0, n = clone_from->aux_shapes().size(); i < n; ++i) { @@ -144,7 +144,7 @@ class OpBase { const TBlob& blob) { const size_t dim = blob.shape_.ndim(); if (dim) { - TShape shape({blob.shape_[0], 1}); + mxnet::TShape shape({blob.shape_[0], 1}); for (size_t i = 1; i < dim; ++i) { shape[1] *= blob.shape_[i]; } @@ -181,7 +181,7 @@ class UnaryOp : public OpBase { CHECK_EQ(outputs.size(), static_cast(n_out)) << " in operator " << attrs.name; static_assert(n_in > 0 && n_out > 0, "Invalid input and/or output count values"); - const TShape& isshape = inputs[0].storage_shape(); + const mxnet::TShape& isshape = inputs[0].storage_shape(); if (!shape_is_none(isshape)) { NDArray *output = nullptr; for (size_t i = 0, n = inputs.size(); i < n; ++i) { @@ -192,7 +192,7 @@ class UnaryOp : public OpBase { CHECK_EQ(output->shape(), inputs[i].shape()); CHECK_EQ(output->storage_type(), input.storage_type()); CHECK_EQ(output->aux_shapes().size(), input.aux_shapes().size()); - std::vector aux_shapes; + mxnet::ShapeVector aux_shapes; const size_t aux_shape_count = input.aux_shapes().size(); aux_shapes.reserve(aux_shape_count); for (size_t j = 0; j < aux_shape_count; ++j) { @@ -554,7 +554,7 @@ struct ReshapeLikeParam : public dmlc::Parameter { NNVM_REGISTER_OP(__name$) \ .set_num_inputs(1) \ .set_num_outputs(1) \ - .set_attr("FInferShape", ElemwiseShape<1, 1>) \ + .set_attr("FInferShape", ElemwiseShape<1, 1>) \ .set_attr("FInferType", ElemwiseType<1, 1>) \ .set_attr("FInplaceOption", \ [](const NodeAttrs& attrs){ \ diff --git a/src/operator/tensor/elemwise_unary_op_basic.cc b/src/operator/tensor/elemwise_unary_op_basic.cc index d0079b545dd8..4aaf4dfd33c4 100644 --- a/src/operator/tensor/elemwise_unary_op_basic.cc +++ b/src/operator/tensor/elemwise_unary_op_basic.cc @@ -349,7 +349,7 @@ NNVM_REGISTER_OP(_identity_with_attr_like_rhs) [](const NodeAttrs& attrs) { return std::vector(1, 1); }) .set_attr("FCompute", UnaryOp::IdentityCompute) .set_attr("FComputeEx", UnaryOp::IdentityComputeFirstItemEx) -.set_attr("FInferShape", ElemwiseShape<2, 1>) +.set_attr("FInferShape", ElemwiseShape<2, 1>) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FInferStorageType", IdentityAttrLikeRhsStorageType) .set_attr( @@ -392,8 +392,8 @@ void ReshapeLikeRangeCanonicalize(int ndims, const char *side, CHECK(*cbegin >= 0) << "Invalid begin for " << side << "_begin=" << begin; } -void GetReshapeLikeParams(const ReshapeLikeParam ¶m, const TShape &lshape, - const TShape &rshape, int *lhs_begin, int *lhs_end, +void GetReshapeLikeParams(const ReshapeLikeParam ¶m, const mxnet::TShape &lshape, + const mxnet::TShape &rshape, int *lhs_begin, int *lhs_end, int *rhs_begin, int *rhs_end) { // LHS params ReshapeLikeRangeCanonicalize(lshape.ndim(), "lhs", param.lhs_begin, @@ -404,18 +404,18 @@ void GetReshapeLikeParams(const ReshapeLikeParam ¶m, const TShape &lshape, } bool ReshapeLikeShapeCompute(const nnvm::NodeAttrs &attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const ReshapeLikeParam ¶m = nnvm::get(attrs.parsed); - const TShape &lshape = (*in_attrs)[0]; - const TShape &rshape = (*in_attrs)[1]; + const mxnet::TShape &lshape = (*in_attrs)[0]; + const mxnet::TShape &rshape = (*in_attrs)[1]; int lhs_begin, lhs_end, rhs_begin, rhs_end; GetReshapeLikeParams(param, lshape, rshape, &lhs_begin, &lhs_end, &rhs_begin, &rhs_end); int lhsrank = static_cast(lshape.ndim()); int orank = lhsrank + (rhs_end - rhs_begin) - (lhs_end - lhs_begin); - TShape oshape(orank); + mxnet::TShape oshape(orank); for (int i = 0; i < lhs_begin; ++i) oshape[i] = lshape[i]; @@ -480,7 +480,7 @@ Negative indices are supported, and `None` can be used for either `lhs_end` or ` .set_attr("FIgnoreInputs", [](const NodeAttrs& attrs) { return std::vector(1, 1); }) .set_attr("FCompute", UnaryOp::IdentityCompute) -.set_attr("FInferShape", ReshapeLikeShapeCompute) +.set_attr("FInferShape", ReshapeLikeShapeCompute) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr( "FGradient", [](const nnvm::NodePtr& n, @@ -522,13 +522,13 @@ Example:: .set_num_outputs(1) .set_attr("FCompute", ShapeComputeCPU) .set_attr("FGradient", MakeZeroGradNodes) -.set_attr("FInferShape", +.set_attr("FInferShape", [](const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); - TShape target_shape(1); + mxnet::TShape target_shape(1); target_shape[0] = in_attrs->at(0).ndim(); SHAPE_ASSIGN_CHECK(*out_attrs, 0, target_shape); return !shape_is_none(out_attrs->at(0)); @@ -574,10 +574,10 @@ Example:: .set_num_outputs(1) .set_attr("FCompute", SizeComputeCPU) .set_attr("FGradient", MakeZeroGradNodes) -.set_attr("FInferShape", +.set_attr("FInferShape", [](const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); SHAPE_ASSIGN_CHECK(*out_attrs, 0, 1U); @@ -609,7 +609,7 @@ Example:: )code" ADD_FILELINE) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInferType", CastType) .set_attr("FInplaceOption", [](const NodeAttrs& attrs){ diff --git a/src/operator/tensor/histogram-inl.h b/src/operator/tensor/histogram-inl.h index 40acb55d1d41..51d0bdb6c2b6 100644 --- a/src/operator/tensor/histogram-inl.h +++ b/src/operator/tensor/histogram-inl.h @@ -73,8 +73,8 @@ struct FillBinBoundsKernel { }; inline bool HistogramOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { HistogramParam param = nnvm::get(attrs.parsed); const bool has_cnt = param.bin_cnt.has_value(); const bool has_range = param.range.has_value(); @@ -87,17 +87,17 @@ inline bool HistogramOpShape(const nnvm::NodeAttrs& attrs, // if cnt is specified, the output histogram has shape (cnt,) // while output bins has shape (cnt+1,) const int bin_cnt = param.bin_cnt.value(); - SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape({bin_cnt})); - SHAPE_ASSIGN_CHECK(*out_attrs, 1, TShape({bin_cnt + 1})); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape({bin_cnt})); + SHAPE_ASSIGN_CHECK(*out_attrs, 1, mxnet::TShape({bin_cnt + 1})); } else { // if cnt is not specified, the output histogram has shape (bins.Size() - 1) // while output bins has same shape as input bins - TShape oshape = (*in_attrs)[1]; + mxnet::TShape oshape = (*in_attrs)[1]; CHECK_EQ(oshape.ndim(), 1U) << "bins argument should be an 1D vector"; CHECK_GE(oshape.Size(), 2U) << "number of bounds should be >= 2"; - SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape({(oshape[0] - 1)})); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape({(oshape[0] - 1)})); SHAPE_ASSIGN_CHECK(*out_attrs, 1, in_attrs->at(1)); } diff --git a/src/operator/tensor/histogram.cc b/src/operator/tensor/histogram.cc index 3c4eaa158829..754475bff9ad 100644 --- a/src/operator/tensor/histogram.cc +++ b/src/operator/tensor/histogram.cc @@ -151,7 +151,7 @@ Example:: [](const NodeAttrs& attrs) { return std::vector{ResourceRequest::kTempSpace}; }) -.set_attr("FInferShape", HistogramOpShape) +.set_attr("FInferShape", HistogramOpShape) .set_attr("FInferType", HistogramOpType) .set_attr("FCompute", HistogramOpForward) .add_argument("data", "NDArray-or-Symbol", "Input ndarray") diff --git a/src/operator/tensor/indexing_op.cc b/src/operator/tensor/indexing_op.cc index 564171d2c3fd..a0254ead4572 100644 --- a/src/operator/tensor/indexing_op.cc +++ b/src/operator/tensor/indexing_op.cc @@ -78,8 +78,8 @@ void EmbeddingOpForwardDnsImpl(mshadow::Stream* s, const OpReqType req, const TBlob& output) { using namespace mxnet_op; - const TShape& ishape = data.shape_; - const TShape& oshape = output.shape_; + const mxnet::TShape& ishape = data.shape_; + const mxnet::TShape& oshape = output.shape_; MSHADOW_TYPE_SWITCH(output.type_flag_, DType, { MSHADOW_TYPE_SWITCH(data.type_flag_, IType, { @@ -284,9 +284,9 @@ void TakeOpForward(const nnvm::NodeAttrs& attrs, CHECK_EQ(inputs.size(), 2U); CHECK_EQ(outputs.size(), 1U); - const TShape& idxshape = inputs[take_::kIdx].shape_; - const TShape& arrshape = inputs[take_::kArr].shape_; - const TShape& oshape = outputs[take_::kOut].shape_; + const mxnet::TShape& idxshape = inputs[take_::kIdx].shape_; + const mxnet::TShape& arrshape = inputs[take_::kArr].shape_; + const mxnet::TShape& oshape = outputs[take_::kOut].shape_; Stream *s = ctx.get_stream(); const int actual_axis = param.axis + ((param.axis < 0) ? arrshape.ndim() : 0); @@ -524,7 +524,7 @@ The storage type of weight can be either row_sparse or default. [](const NodeAttrs& attrs) { return std::vector{"data", "weight"}; }) -.set_attr("FInferShape", EmbeddingOpShape) +.set_attr("FInferShape", EmbeddingOpShape) .set_attr("FInferType", EmbeddingOpType) .set_attr("FInferStorageType", EmbeddingOpForwardStorageType) .set_attr("FResourceRequest", @@ -604,7 +604,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{ResourceRequest::kTempSpace}; }) -.set_attr("FInferShape", EmbeddingOpShape) +.set_attr("FInferShape", EmbeddingOpShape) .set_attr("FInferType", EmbeddingOpType) .set_attr("FInferStorageType", SparseEmbeddingOpForwardStorageType) .set_attr("FComputeEx", SparseEmbeddingOpForwardEx) @@ -700,7 +700,7 @@ The storage type of ``take`` output depends upon the input storage type: [](const NodeAttrs& attrs) { return std::vector{"a", "indices"}; }) -.set_attr("FInferShape", TakeOpShape) +.set_attr("FInferShape", TakeOpShape) .set_attr("FInferType", TakeOpType) .set_attr("FInferStorageType", TakeOpForwardStorageType) .set_attr("FResourceRequest", @@ -757,7 +757,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{"a", "indices"}; }) -.set_attr("FInferShape", BatchTakeOpShape) +.set_attr("FInferShape", BatchTakeOpShape) .set_attr("FInferType", BatchTakeOpType) .set_attr("FCompute", BatchTakeOpForward) .add_argument("a", "NDArray-or-Symbol", "The input array") @@ -804,7 +804,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{"indices"}; }) -.set_attr("FInferShape", OneHotOpShape) +.set_attr("FInferShape", OneHotOpShape) .set_attr("FInferType", OneHotOpType) .set_attr("FCompute", OneHotOpForward) .set_attr("FGradient", MakeZeroGradNodes) @@ -844,7 +844,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{"data", "indices"}; }) -.set_attr("FInferShape", GatherNDShape) +.set_attr("FInferShape", GatherNDShape) .set_attr("FInferType", GatherNDType) .set_attr("FCompute", GatherNDForward) .set_attr("FGradient", @@ -919,7 +919,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{"data", "indices"}; }) -.set_attr("FInferShape", ScatterNDShape) +.set_attr("FInferShape", ScatterNDShape) .set_attr("FInferType", ScatterNDType) .set_attr("FCompute", ScatterNDForward) .set_attr("FGradient", @@ -982,7 +982,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{"data", "indices"}; }) -.set_attr("FInferShape", ScatterNDShape) +.set_attr("FInferShape", ScatterNDShape) .set_attr("FInferType", ScatterNDType) .set_attr("FCompute", GatherNDBackward) .set_attr("FGradient", @@ -1029,15 +1029,15 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{"lhs", "rhs", "indices"}; }) -.set_attr("FInferShape", +.set_attr("FInferShape", [](const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 3U); CHECK_EQ(out_attrs->size(), 1U); SHAPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0)); SHAPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); - std::vector tmp_in_attrs = {in_attrs->at(1), in_attrs->at(2)}; + mxnet::ShapeVector tmp_in_attrs = {in_attrs->at(1), in_attrs->at(2)}; if (!ScatterNDShape(attrs, &tmp_in_attrs, out_attrs)) { return false; } diff --git a/src/operator/tensor/indexing_op.cu b/src/operator/tensor/indexing_op.cu index bad3e5a1a6c5..94fe377ebbc7 100644 --- a/src/operator/tensor/indexing_op.cu +++ b/src/operator/tensor/indexing_op.cu @@ -170,8 +170,8 @@ void EmbeddingOpForwardDnsImpl(mshadow::Stream* s, const OpReqType req, const TBlob& output) { using namespace mxnet_op; - const TShape& ishape = data.shape_; - const TShape& oshape = output.shape_; + const mxnet::TShape& ishape = data.shape_; + const mxnet::TShape& oshape = output.shape_; MSHADOW_TYPE_SWITCH(output.type_flag_, DType, { MSHADOW_TYPE_SWITCH(data.type_flag_, IType, { @@ -475,9 +475,9 @@ void TakeOpForward(const nnvm::NodeAttrs& attrs, CHECK_EQ(inputs.size(), 2U); CHECK_EQ(outputs.size(), 1U); - const TShape& idxshape = inputs[take_::kIdx].shape_; - const TShape& arrshape = inputs[take_::kArr].shape_; - const TShape& oshape = outputs[take_::kOut].shape_; + const mxnet::TShape& idxshape = inputs[take_::kIdx].shape_; + const mxnet::TShape& arrshape = inputs[take_::kArr].shape_; + const mxnet::TShape& oshape = outputs[take_::kOut].shape_; Stream *s = ctx.get_stream(); const int actual_axis = param.axis + ((param.axis < 0) ? arrshape.ndim() : 0); diff --git a/src/operator/tensor/indexing_op.h b/src/operator/tensor/indexing_op.h index fba331e25705..8979531fef4e 100644 --- a/src/operator/tensor/indexing_op.h +++ b/src/operator/tensor/indexing_op.h @@ -141,17 +141,17 @@ inline void AddTakeGradLargeBatch(mshadow::Tensor dst, } template inline bool EmbeddingOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { using namespace mshadow; - const TShape &dshape = (*in_attrs)[embedding::kData]; + const mxnet::TShape &dshape = (*in_attrs)[embedding::kData]; if (dshape.ndim() == 0) return false; const ParamType& param = nnvm::get(attrs.parsed); SHAPE_ASSIGN_CHECK(*in_attrs, embedding::kWeight, Shape2(param.input_dim, param.output_dim)); out_attrs->clear(); - TShape oshape(dshape.ndim()+1); + mxnet::TShape oshape(dshape.ndim()+1); for (size_t i = 0; i < dshape.ndim(); ++i) { oshape[i] = dshape[i]; } @@ -521,8 +521,8 @@ void EmbeddingOpBackward(const nnvm::NodeAttrs& attrs, << "Embedding layer doesn't support calculate data gradient"; CHECK_EQ(outputs[1].type_flag_, inputs[0].type_flag_); - const TShape& ishape = inputs[1].shape_; - const TShape& oshape = inputs[0].shape_; + const mxnet::TShape& ishape = inputs[1].shape_; + const mxnet::TShape& oshape = inputs[0].shape_; Stream *s = ctx.get_stream(); MSHADOW_TYPE_SWITCH(outputs[1].type_flag_, DType, { @@ -677,11 +677,11 @@ struct TakeParam: public dmlc::Parameter { }; inline bool TakeOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { using namespace mshadow; - const TShape &arrshape = (*in_attrs)[take_::kArr]; - const TShape &idxshape = (*in_attrs)[take_::kIdx]; + const mxnet::TShape &arrshape = (*in_attrs)[take_::kArr]; + const mxnet::TShape &idxshape = (*in_attrs)[take_::kIdx]; if (idxshape.ndim() == 0U || idxshape.Size() == 0U) return false; const TakeParam& param = nnvm::get(attrs.parsed); if (param.mode == take_::kRaise) { @@ -693,7 +693,7 @@ inline bool TakeOpShape(const nnvm::NodeAttrs& attrs, out_attrs->clear(); const index_t actual_axis = param.axis + ((param.axis < 0) ? arrshape.ndim() : 0); - TShape oshape(idxshape.ndim() + arrshape.ndim() - 1); + mxnet::TShape oshape(idxshape.ndim() + arrshape.ndim() - 1); for (index_t i = 0; i < idxshape.ndim(); ++i) { oshape[i + actual_axis] = idxshape[i]; } @@ -838,9 +838,9 @@ void TakeOpBackwardImpl(mshadow::Stream* s, using namespace mxnet_op; using namespace mshadow; CHECK(axis != 0) << "axis == 0 case should be dispatched to the legacy implementation"; - const TShape& arrshape = arr.shape_; - const TShape& idxshape = idx.shape_; - const TShape& oshape = ograd.shape_; + const mxnet::TShape& arrshape = arr.shape_; + const mxnet::TShape& idxshape = idx.shape_; + const mxnet::TShape& oshape = ograd.shape_; MSHADOW_TYPE_SWITCH(idx.type_flag_, IType, { // get size of temporary storage for sort int* src_indptr_ptr = nullptr; @@ -910,9 +910,9 @@ void TakeOpBackwardImpl(mshadow::Stream* s, using namespace mxnet_op; using namespace mshadow; CHECK(axis != 0) << "axis == 0 case should be dispatched to the legacy implementation"; - const TShape& arrshape = arr.shape_; - const TShape& idxshape = idx.shape_; - const TShape& oshape = ograd.shape_; + const mxnet::TShape& arrshape = arr.shape_; + const mxnet::TShape& idxshape = idx.shape_; + const mxnet::TShape& oshape = ograd.shape_; MSHADOW_TYPE_SWITCH(idx.type_flag_, IType, { // get size of temporary storage for sort char* temp_storage_ptr = nullptr; @@ -1019,9 +1019,9 @@ void TakeOpBackward(const nnvm::NodeAttrs& attrs, // inputs are specified in the .cc file, which are the gradients from // the upper layer and the input index // outputs are the gradients of inputs in the feed-forward pass - const TShape& idxshape = inputs[1].shape_; - const TShape& arrshape = outputs[0].shape_; - const TShape& oshape = inputs[0].shape_; + const mxnet::TShape& idxshape = inputs[1].shape_; + const mxnet::TShape& arrshape = outputs[0].shape_; + const mxnet::TShape& oshape = inputs[0].shape_; if (req[take_::kIdx] != kNullOp) { mxnet_op::Kernel::Launch( @@ -1065,8 +1065,8 @@ void TakeOpBackward(const nnvm::NodeAttrs& attrs, } inline bool BatchTakeOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { LOG(INFO) << "batch_take is deprecated. Please use pick instead."; CHECK_EQ(in_attrs->size(), 2U) << "BatchTake op requires two inputs"; if ((*in_attrs)[1].ndim() != 0) { @@ -1163,13 +1163,13 @@ inline void GetOneHotParams(const OneHotParam& param, int* depth, double* on_val } inline bool OneHotOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const OneHotParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); // The shape of indices - const TShape& ishape = (*in_attrs)[0]; + const mxnet::TShape& ishape = (*in_attrs)[0]; int depth = 0; double on_value = 1.0; @@ -1177,7 +1177,7 @@ inline bool OneHotOpShape(const nnvm::NodeAttrs& attrs, int dtype = mshadow::kFloat32; GetOneHotParams(param, &depth, &on_value, &off_value, &dtype); - TShape oshape(ishape.ndim() + 1); + mxnet::TShape oshape(ishape.ndim() + 1); for (index_t i = 0; i < ishape.ndim(); ++i) { oshape[i] = ishape[i]; } @@ -1251,13 +1251,13 @@ void OneHotOpForward(const nnvm::NodeAttrs& attrs, } inline bool GatherNDShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); // The shape of indices - const TShape& dshape = (*in_attrs)[0]; - const TShape& ishape = (*in_attrs)[1]; + const mxnet::TShape& dshape = (*in_attrs)[0]; + const mxnet::TShape& ishape = (*in_attrs)[1]; if (shape_is_none(dshape) || shape_is_none(ishape)) return false; @@ -1270,7 +1270,7 @@ inline bool GatherNDShape(const nnvm::NodeAttrs& attrs, CHECK_LE(ishape[0], 10) << "gather_nd supports indexing along at most 10 dimensions."; - TShape oshape(ishape.ndim() - 1 + dshape.ndim() - ishape[0]); + mxnet::TShape oshape(ishape.ndim() - 1 + dshape.ndim() - ishape[0]); for (size_t i = 0; i < ishape.ndim() - 1; ++i) oshape[i] = ishape[i+1]; for (int i = 0; i < dshape.ndim() - ishape[0]; ++i) { @@ -1319,8 +1319,8 @@ void GatherNDForward(const nnvm::NodeAttrs& attrs, CHECK_EQ(outputs.size(), 1U); if (req[0] == kNullOp) return; mshadow::Stream *s = ctx.get_stream(); - const TShape& dshape = inputs[0].shape_; - const TShape& ishape = inputs[1].shape_; + const mxnet::TShape& dshape = inputs[0].shape_; + const mxnet::TShape& ishape = inputs[1].shape_; int M = ishape[0]; int N = ishape.Size() / M; int K = dshape.ProdShape(M, dshape.ndim()); @@ -1337,7 +1337,7 @@ void GatherNDForward(const nnvm::NodeAttrs& attrs, struct ScatterNDParam : public dmlc::Parameter { - TShape shape; + mxnet::TShape shape; DMLC_DECLARE_PARAMETER(ScatterNDParam) { DMLC_DECLARE_FIELD(shape) .describe("Shape of output."); @@ -1345,17 +1345,17 @@ struct ScatterNDParam : public dmlc::Parameter { }; inline bool ScatterNDShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); const auto& params = dmlc::get(attrs.parsed); SHAPE_ASSIGN_CHECK(*out_attrs, 0, params.shape); - const TShape& dshape = (*in_attrs)[0]; - const TShape& ishape = (*in_attrs)[1]; - const TShape& oshape = (*out_attrs)[0]; + const mxnet::TShape& dshape = (*in_attrs)[0]; + const mxnet::TShape& ishape = (*in_attrs)[1]; + const mxnet::TShape& oshape = (*out_attrs)[0]; if (shape_is_none(dshape) || shape_is_none(ishape) || shape_is_none(oshape)) return false; @@ -1422,8 +1422,8 @@ void ScatterNDForward(const nnvm::NodeAttrs& attrs, CHECK_EQ(outputs.size(), 1U); if (req[0] == kNullOp) return; mshadow::Stream *s = ctx.get_stream(); - const TShape& oshape = outputs[0].shape_; - const TShape& ishape = inputs[1].shape_; + const mxnet::TShape& oshape = outputs[0].shape_; + const mxnet::TShape& ishape = inputs[1].shape_; dim_t M = ishape[0]; dim_t N = ishape.Size() / M; dim_t K = oshape.ProdShape(M, oshape.ndim()); @@ -1479,8 +1479,8 @@ void GatherNDBackward(const nnvm::NodeAttrs& attrs, CHECK_EQ(outputs.size(), 1U); if (req[0] == kNullOp) return; mshadow::Stream *s = ctx.get_stream(); - const TShape& oshape = outputs[0].shape_; - const TShape& ishape = inputs[1].shape_; + const mxnet::TShape& oshape = outputs[0].shape_; + const mxnet::TShape& ishape = inputs[1].shape_; dim_t M = ishape[0]; dim_t N = ishape.Size() / M; dim_t K = oshape.ProdShape(M, oshape.ndim()); diff --git a/src/operator/tensor/init_op.cc b/src/operator/tensor/init_op.cc index 8554ba854178..341748b50abe 100644 --- a/src/operator/tensor/init_op.cc +++ b/src/operator/tensor/init_op.cc @@ -39,7 +39,7 @@ NNVM_REGISTER_OP(_zeros_without_dtype) .set_num_inputs(0) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", InitShape) +.set_attr("FInferShape", InitShape) .set_attr("FInferType", InitType) .set_attr("FInferStorageType", InitStorageType) @@ -52,7 +52,7 @@ NNVM_REGISTER_OP(_zeros) .set_num_inputs(0) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", InitShape) +.set_attr("FInferShape", InitShape) .set_attr("FInferType", InitType) .set_attr("FInferStorageType", InitStorageType) .set_attr("FCompute", FillCompute) @@ -64,7 +64,7 @@ NNVM_REGISTER_OP(_eye) .set_num_inputs(0) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", InitEyeShape) +.set_attr("FInferShape", InitEyeShape) .set_attr("FInferType", InitType) .set_attr("FCompute", EyeFill) .add_arguments(EyeParam::__FIELDS__()); @@ -74,7 +74,7 @@ NNVM_REGISTER_OP(_ones) .set_num_inputs(0) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", InitShape) +.set_attr("FInferShape", InitShape) .set_attr("FInferType", InitType) .set_attr("FCompute", FillCompute) .add_arguments(InitOpParam::__FIELDS__()); @@ -84,7 +84,7 @@ NNVM_REGISTER_OP(_full) .set_num_inputs(0) .set_num_outputs(1) .set_attr_parser(ParamParser) - .set_attr("FInferShape", InitShape) + .set_attr("FInferShape", InitShape) .set_attr("FInferType", InitType) .set_attr("FCompute", InitFillWithScalarCompute) .add_arguments(InitOpWithScalarParam::__FIELDS__()); @@ -94,7 +94,7 @@ NNVM_REGISTER_OP(_arange) .set_num_inputs(0) .set_num_outputs(1) .set_attr_parser(RangeParamParser) -.set_attr("FInferShape", RangeShape) +.set_attr("FInferShape", RangeShape) .set_attr("FInferType", InitType) .set_attr("FCompute", RangeCompute) .add_arguments(RangeParam::__FIELDS__()); @@ -121,7 +121,7 @@ Examples:: )code") .set_num_inputs(1) .set_num_outputs(1) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FInferStorageType", ElemwiseStorageType<1, 1, false, true, true>) .set_attr("FIgnoreInputs", @@ -146,7 +146,7 @@ Examples:: )code") .set_num_inputs(1) .set_num_outputs(1) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FIgnoreInputs", [](const NodeAttrs& attrs) { return std::vector(1, 0); }) diff --git a/src/operator/tensor/init_op.h b/src/operator/tensor/init_op.h index e9e67cb1a4c5..680431dfecd1 100644 --- a/src/operator/tensor/init_op.h +++ b/src/operator/tensor/init_op.h @@ -44,12 +44,12 @@ namespace mxnet { namespace op { struct InitOpParam : public dmlc::Parameter { - TShape shape; + mxnet::TShape shape; std::string ctx; int dtype; DMLC_DECLARE_PARAMETER(InitOpParam) { DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("The shape of the output"); DMLC_DECLARE_FIELD(ctx) .set_default("") @@ -62,12 +62,12 @@ struct InitOpParam : public dmlc::Parameter { }; struct InitOpWithoutDTypeParam : public dmlc::Parameter { - TShape shape; + mxnet::TShape shape; std::string ctx; int dtype; DMLC_DECLARE_PARAMETER(InitOpWithoutDTypeParam) { DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("The shape of the output"); DMLC_DECLARE_FIELD(ctx) .set_default("") @@ -115,8 +115,8 @@ struct EyeParam : public dmlc::Parameter { template inline bool InitEyeShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const ParamType& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 0U); CHECK_EQ(out_attrs->size(), 1U); @@ -175,13 +175,13 @@ struct RangeParam : public dmlc::Parameter { /*! \brief Initialize and fill output with an arbitrary value */ struct InitOpWithScalarParam : dmlc::Parameter { - TShape shape; + mxnet::TShape shape; std::string ctx; int dtype; double value; DMLC_DECLARE_PARAMETER(InitOpWithScalarParam) { DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("The shape of the output"); DMLC_DECLARE_FIELD(ctx) .set_default("") @@ -208,8 +208,8 @@ inline void RangeParamParser(nnvm::NodeAttrs* attrs) { template inline bool InitShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const ParamType& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 0U); CHECK_EQ(out_attrs->size(), 1U); @@ -370,7 +370,7 @@ void FillZerosRspImpl(mshadow::Stream *, const NDArray& dst) { CHECK_EQ(dst.storage_type(), kRowSparseStorage) << "dst should be an RSP NDArray"; if (dst.storage_initialized()) { // reset the shapes if it's not zeros (set_aux_shape() will set storage_shape to zero as well) - dst.set_aux_shape(rowsparse::kIdx, TShape(mshadow::Shape1(0))); + dst.set_aux_shape(rowsparse::kIdx, mxnet::TShape(mshadow::Shape1(0))); } } @@ -485,8 +485,8 @@ void RangeCompute(const nnvm::NodeAttrs& attrs, inline bool RangeShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const RangeParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 0U); CHECK_EQ(out_attrs->size(), 1U); @@ -508,7 +508,7 @@ inline bool RangeShape(const nnvm::NodeAttrs& attrs, } const double out_size = std::ceil((param.stop.value() - param.start) / param.step) * param.repeat; - SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape({static_cast(out_size)})); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape({static_cast(out_size)})); return true; } diff --git a/src/operator/tensor/la_op.cc b/src/operator/tensor/la_op.cc index 0f3c2954a0f6..252bdf8d9460 100644 --- a/src/operator/tensor/la_op.cc +++ b/src/operator/tensor/la_op.cc @@ -90,7 +90,7 @@ Examples:: .set_attr_parser(ParamParser) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"A", "B", "C"}; } ) -.set_attr("FInferShape", LaMatrixMultMacOpShape) +.set_attr("FInferShape", LaMatrixMultMacOpShape) .set_attr("FInferType", ElemwiseType<3, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs) { return std::vector>{{2, 0}}; }) @@ -165,7 +165,7 @@ Examples:: .set_attr_parser(ParamParser) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"A", "B"}; } ) -.set_attr("FInferShape", LaMatrixMultMacOpShape) +.set_attr("FInferShape", LaMatrixMultMacOpShape) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FCompute", LaOpGemmForward) .set_attr("FGradient", ElemwiseGradUseIn{"_backward_linalg_gemm2"}) @@ -216,7 +216,7 @@ Examples:: .set_attr_parser(ParamParser) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"A"}; } ) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs) { return std::vector>{{0, 0}}; }) @@ -277,7 +277,7 @@ Examples:: .set_attr_parser(ParamParser) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"A"}; } ) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs) { return std::vector>{{0, 0}}; }) @@ -336,7 +336,7 @@ Examples:: .set_attr_parser(ParamParser) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"A", "B"}; } ) -.set_attr("FInferShape", LaTriangMatrixMultOpShape) +.set_attr("FInferShape", LaTriangMatrixMultOpShape) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs) { return std::vector>{{1, 0}}; }) @@ -399,7 +399,7 @@ Examples:: .set_attr_parser(ParamParser) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"A", "B"}; } ) -.set_attr("FInferShape", LaTriangMatrixMultOpShape) +.set_attr("FInferShape", LaTriangMatrixMultOpShape) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs) { return std::vector>{{1, 0}}; }) @@ -447,7 +447,7 @@ Examples:: .set_num_outputs(1) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"A"}; } ) -.set_attr("FInferShape", LaReduceShape<2>) +.set_attr("FInferShape", LaReduceShape<2>) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FCompute", LaOpForward) .set_attr("FGradient", ElemwiseGradUseIn{"_backward_linalg_sumlogdiag"}) @@ -504,7 +504,7 @@ Examples:: .set_attr_parser(ParamParser) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"A"}; } ) -.set_attr("FInferShape", LaSyrkShape) +.set_attr("FInferShape", LaSyrkShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FCompute", LaOpForward) .set_attr("FGradient", ElemwiseGradUseIn{"_backward_linalg_syrk"}) @@ -571,7 +571,7 @@ Examples:: .set_num_outputs(2) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"A"}; } ) -.set_attr("FInferShape", LaLQFactShape) +.set_attr("FInferShape", LaLQFactShape) .set_attr("FInferType", ElemwiseType<1, 2>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs) { return std::vector>{{0, 0}}; }) @@ -640,7 +640,7 @@ Examples:: .set_num_outputs(2) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"A"}; } ) -.set_attr("FInferShape", LaEigFactShape) +.set_attr("FInferShape", LaEigFactShape) .set_attr("FInferType", ElemwiseType<1, 2>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs) { return std::vector>{{0, 0}}; }) diff --git a/src/operator/tensor/la_op.h b/src/operator/tensor/la_op.h index 0327dd19b72c..5e18e0ef5a25 100644 --- a/src/operator/tensor/la_op.h +++ b/src/operator/tensor/la_op.h @@ -131,8 +131,8 @@ struct LaSyrkParam : public dmlc::Parameter { // Common function for shape inference for matrix mult and matrix mac. inline bool LaMatrixMultMacOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_GE(in_attrs->size(), 2); CHECK_EQ(out_attrs->size(), 1); bool transpose_a(false), transpose_b(false); @@ -167,7 +167,7 @@ inline bool LaMatrixMultMacOpShape(const nnvm::NodeAttrs& attrs, << "Incompatible matrix dimensions for multiplication"; oshape[axis] = (transpose_a ? (*in_attrs)[0][ndim-1] : (*in_attrs)[0][axis]); oshape[ndim-1] = (transpose_b ? (*in_attrs)[1][axis] : (*in_attrs)[1][ndim-1]); - TShape tshape(oshape.begin(), oshape.end()); + mxnet::TShape tshape(oshape.begin(), oshape.end()); SHAPE_ASSIGN_CHECK(*out_attrs, 0, tshape); if ( in_attrs->size() > 2 ) { // Infer/check shape of third operand of a mac. @@ -180,8 +180,8 @@ inline bool LaMatrixMultMacOpShape(const nnvm::NodeAttrs& attrs, } inline bool LaTriangMatrixMultOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { const LaTriangMatrixMultParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 2); CHECK_EQ(out_attrs->size(), 1); @@ -210,7 +210,7 @@ inline bool LaTriangMatrixMultOpShape(const nnvm::NodeAttrs& attrs, oshape[ndim-2] = (param.transpose ? (*in_attrs)[0][ndim-1] : (*in_attrs)[0][ndim-2]); oshape[ndim-1] = (*in_attrs)[1][ndim-1]; } - TShape tshape(oshape.begin(), oshape.end()); + mxnet::TShape tshape(oshape.begin(), oshape.end()); SHAPE_ASSIGN_CHECK(*out_attrs, 0, tshape); return true; } @@ -230,9 +230,9 @@ inline bool LaTriangMatrixMultOpShape(const nnvm::NodeAttrs& attrs, ishape2[odim-1] = (*out_attrs)[0][odim-1]; ishape1[odim-2] = ishape1[odim-1] = ishape2[odim-2] = (*out_attrs)[0][odim-2]; } - TShape tshape1(ishape1.begin(), ishape1.end()); + mxnet::TShape tshape1(ishape1.begin(), ishape1.end()); SHAPE_ASSIGN_CHECK(*in_attrs, 0, tshape1); - TShape tshape2(ishape2.begin(), ishape2.end()); + mxnet::TShape tshape2(ishape2.begin(), ishape2.end()); SHAPE_ASSIGN_CHECK(*in_attrs, 1, tshape2); return true; } @@ -241,8 +241,8 @@ inline bool LaTriangMatrixMultOpShape(const nnvm::NodeAttrs& attrs, template inline bool LaReduceShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { // Shape for reduction of the dim lowest dimensions to a scalar. // Can only deduct in forward direction. CHECK_EQ(in_attrs->size(), 1); @@ -257,18 +257,18 @@ inline bool LaReduceShape(const nnvm::NodeAttrs& attrs, oshape[i] = (*in_attrs)[0][i]; } // Will reduce all matrices/vectors to a scalar. - TShape tshape(oshape.begin(), oshape.end()); + mxnet::TShape tshape(oshape.begin(), oshape.end()); SHAPE_ASSIGN_CHECK(*out_attrs, 0, tshape); return true; } // Shape inference function for linalg_syrk inline bool LaSyrkShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_EQ(in_attrs->size(), 1); CHECK_EQ(out_attrs->size(), 1); - const TShape& in_attr = (*in_attrs)[0]; + const mxnet::TShape& in_attr = (*in_attrs)[0]; bool transpose = nnvm::get(attrs.parsed).transpose; const int ndim = in_attr.ndim(); if ( ndim >= 2 ) { @@ -279,7 +279,7 @@ inline bool LaSyrkShape(const nnvm::NodeAttrs& attrs, } oshape[ndim-2] = (transpose ? in_attr[ndim-1] : in_attr[ndim-2]); oshape[ndim-1] = oshape[ndim-2]; - TShape tshape(oshape.begin(), oshape.end()); + mxnet::TShape tshape(oshape.begin(), oshape.end()); SHAPE_ASSIGN_CHECK(*out_attrs, 0, tshape); return true; } @@ -290,13 +290,13 @@ inline bool LaSyrkShape(const nnvm::NodeAttrs& attrs, // Shape inference function for linalg_gelqf // Inputs: A. Outputs: Q, L inline bool LaLQFactShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_EQ(in_attrs->size(), 1); CHECK_EQ(out_attrs->size(), 2); - const TShape& in_a = (*in_attrs)[0]; - const TShape& out_q = (*out_attrs)[0]; - const TShape& out_l = (*out_attrs)[1]; + const mxnet::TShape& in_a = (*in_attrs)[0]; + const mxnet::TShape& out_q = (*out_attrs)[0]; + const mxnet::TShape& out_l = (*out_attrs)[1]; if ( in_a.ndim() >= 2 ) { // Forward shape inference. const int ndim(in_a.ndim()); @@ -309,7 +309,7 @@ inline bool LaLQFactShape(const nnvm::NodeAttrs& attrs, oshape_l[i] = in_a[i]; } oshape_l[ndim-1] = in_a[ndim-2]; - TShape tshape_l(oshape_l.begin(), oshape_l.end()); + mxnet::TShape tshape_l(oshape_l.begin(), oshape_l.end()); SHAPE_ASSIGN_CHECK(*out_attrs, 1, tshape_l); return true; } @@ -333,13 +333,13 @@ inline bool LaLQFactShape(const nnvm::NodeAttrs& attrs, // Shape inference function for linalg_syevd // Inputs: A. Outputs: U, L inline bool LaEigFactShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_EQ(in_attrs->size(), 1); CHECK_EQ(out_attrs->size(), 2); - const TShape& in_a = (*in_attrs)[0]; - const TShape& out_u = (*out_attrs)[0]; - const TShape& out_l = (*out_attrs)[1]; + const mxnet::TShape& in_a = (*in_attrs)[0]; + const mxnet::TShape& out_u = (*out_attrs)[0]; + const mxnet::TShape& out_l = (*out_attrs)[1]; if ( in_a.ndim() >= 2 ) { // Forward shape inference. const int ndim(in_a.ndim()); @@ -351,7 +351,7 @@ inline bool LaEigFactShape(const nnvm::NodeAttrs& attrs, for ( int i = 0; i < ndim-1; ++i ) { oshape_l[i] = in_a[i]; } - TShape tshape_l(oshape_l.begin(), oshape_l.end()); + mxnet::TShape tshape_l(oshape_l.begin(), oshape_l.end()); SHAPE_ASSIGN_CHECK(*out_attrs, 1, tshape_l); return true; } @@ -384,7 +384,7 @@ mshadow::Tensor LaOpFlatten(const TBlob& blob, } // Collapse ranges [0,axis-1] and [axis+1,ndim-2]. CHECK_EQ(dim, 4); - TShape shape(dim); + mxnet::TShape shape(dim); shape[0] = 1; for (int i = 0; i < axis; ++i) { shape[0] *= blob.shape_[i]; diff --git a/src/operator/tensor/matrix_op-inl.h b/src/operator/tensor/matrix_op-inl.h index 28ed4215e0a7..3a58c1200ae0 100644 --- a/src/operator/tensor/matrix_op-inl.h +++ b/src/operator/tensor/matrix_op-inl.h @@ -47,7 +47,7 @@ namespace mxnet { namespace op { struct ReshapeParam : public dmlc::Parameter { - TShape target_shape; + mxnet::TShape target_shape; bool keep_highest; nnvm::Tuple shape; bool reverse; @@ -59,7 +59,7 @@ struct ReshapeParam : public dmlc::Parameter { .set_default(false) .describe("If true then the special values are inferred from right to left"); DMLC_DECLARE_FIELD(target_shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("(Deprecated! Use ``shape`` instead.) " "Target new shape. One and only one dim can be 0, " "in which case it will be inferred from the rest of dims"); @@ -71,8 +71,8 @@ struct ReshapeParam : public dmlc::Parameter { }; template -inline TShape InferReshapeShape(const nnvm::Tuple& shape, - const TShape& dshape, bool reverse) { +inline mxnet::TShape InferReshapeShape(const nnvm::Tuple& shape, + const mxnet::TShape& dshape, bool reverse) { std::vector dshape_vec; std::vector param_shape_vec(shape.begin(), shape.end()); for (index_t i = 0; i < dshape.ndim(); ++i) { @@ -148,11 +148,11 @@ inline TShape InferReshapeShape(const nnvm::Tuple& shape, std::reverse(dshape_vec.begin(), dshape_vec.end()); std::reverse(tmp.begin(), tmp.end()); } - TShape oshape(tmp.begin(), tmp.end()); + mxnet::TShape oshape(tmp.begin(), tmp.end()); return oshape; } -inline bool ReverseReshapeInferShape(TShape *in, const TShape& out) { +inline bool ReverseReshapeInferShape(mxnet::TShape *in, const mxnet::TShape& out) { if (in->Size() && out.Size()) { return true; } else if (!out.Size()) { @@ -176,14 +176,14 @@ inline bool ReverseReshapeInferShape(TShape *in, const TShape& out) { } inline bool ReshapeShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const ReshapeParam& param_ = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U) << "Input: [data]"; CHECK_EQ(out_attrs->size(), 1U); - TShape &dshape = (*in_attrs)[0]; + mxnet::TShape &dshape = (*in_attrs)[0]; if (dshape.ndim() == 0) return false; - TShape oshape; + mxnet::TShape oshape; if (param_.shape.ndim() != 0) { oshape = InferReshapeShape(param_.shape, dshape, param_.reverse); } else if (param_.target_shape.ndim()) { @@ -218,11 +218,11 @@ inline bool ReshapeShape(const nnvm::NodeAttrs& attrs, } inline bool FlattenShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U) << "Input: [data]"; CHECK_EQ(out_attrs->size(), 1U); - const TShape &dshape = (*in_attrs)[0]; + const mxnet::TShape &dshape = (*in_attrs)[0]; if (dshape.ndim() == 0) return false; uint32_t target_dim = 1; for (uint32_t i = 1; i < dshape.ndim(); ++i) { @@ -233,9 +233,9 @@ inline bool FlattenShape(const nnvm::NodeAttrs& attrs, } struct TransposeParam : public dmlc::Parameter { - TShape axes; + mxnet::TShape axes; DMLC_DECLARE_PARAMETER(TransposeParam) { - DMLC_DECLARE_FIELD(axes).set_default(TShape()) + DMLC_DECLARE_FIELD(axes).set_default(mxnet::TShape()) .describe("Target axis order. By default the axes will be inverted."); } }; @@ -244,7 +244,7 @@ template void TransposeImpl(RunContext ctx, const TBlob& src, const TBlob& ret, - const TShape& axes) { + const mxnet::TShape& axes) { using namespace mshadow; using namespace mshadow::expr; CHECK_EQ(src.type_flag_, ret.type_flag_); @@ -310,7 +310,7 @@ void Transpose(const nnvm::NodeAttrs& attrs, const TransposeParam& param = nnvm::get(attrs.parsed); CHECK_EQ(req[0], kWriteTo) << "Transpose does not support inplace"; if (param.axes.ndim() == 0) { - TShape axes = TShape(inputs[0].ndim()); + mxnet::TShape axes = mxnet::TShape(inputs[0].ndim()); for (index_t i = 0; i < axes.ndim(); ++i) { axes[i] = axes.ndim() - 1 - i; } @@ -321,14 +321,14 @@ void Transpose(const nnvm::NodeAttrs& attrs, } inline bool TransposeShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const TransposeParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); - TShape& shp = (*in_attrs)[0]; + mxnet::TShape& shp = (*in_attrs)[0]; CHECK_LE(shp.ndim(), 6U) << "Transpose support at most 6 dimensions"; - TShape ret(shp.ndim()); + mxnet::TShape ret(shp.ndim()); if (param.axes.ndim() == 0) { for (index_t i = 0; i < shp.ndim(); ++i) { ret[i] = shp[shp.ndim()-1-i]; @@ -357,8 +357,8 @@ struct ExpandDimParam : public dmlc::Parameter { inline bool ExpandDimShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const ExpandDimParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); @@ -366,8 +366,8 @@ inline bool ExpandDimShape(const nnvm::NodeAttrs& attrs, return false; } - TShape& ishape = (*in_attrs)[0]; - TShape& oshape = (*out_attrs)[0]; + mxnet::TShape& ishape = (*in_attrs)[0]; + mxnet::TShape& oshape = (*out_attrs)[0]; int indim = ishape.ndim(); bool unknown_ishape = false; if (0 == indim) { @@ -382,7 +382,7 @@ inline bool ExpandDimShape(const nnvm::NodeAttrs& attrs, CHECK(axis >= 0 && axis <= indim) << "axis must be in the range [" << -indim << ", " << indim << "] (" << param.axis << " provided)"; - TShape ret(indim + 1); + mxnet::TShape ret(indim + 1); for (int i = 0; i < axis; ++i) { ret[i] = (unknown_ishape? 0 : ishape[i]); } @@ -392,7 +392,7 @@ inline bool ExpandDimShape(const nnvm::NodeAttrs& attrs, } SHAPE_ASSIGN_CHECK(*out_attrs, 0, ret); - ret = TShape(indim); + ret = mxnet::TShape(indim); for (int i = 0; i < axis; ++i) ret[i] = oshape[i]; for (int i = axis+1; i < indim+1; ++i) ret[i-1] = oshape[i]; SHAPE_ASSIGN_CHECK(*in_attrs, 0, ret); @@ -482,7 +482,7 @@ void SliceCsrIndPtrImpl(const int begin, const int end, RunContext ctx, * Slice a CSR NDArray for first dimension */ template -void SliceDimOneCsrImpl(const TShape &begin, const TShape &end, const OpContext& ctx, +void SliceDimOneCsrImpl(const mxnet::TShape &begin, const mxnet::TShape &end, const OpContext& ctx, const NDArray &in, const NDArray &out) { using namespace mshadow; using namespace mxnet_op; @@ -571,7 +571,7 @@ struct SliceDimTwoCsrAssign { * Slice a CSR NDArray for two dimensions */ template -void SliceDimTwoCsrImpl(const TShape &begin, const TShape &end, const OpContext& ctx, +void SliceDimTwoCsrImpl(const mxnet::TShape &begin, const mxnet::TShape &end, const OpContext& ctx, const NDArray &in, const NDArray &out); @@ -582,11 +582,11 @@ void SliceCsrImpl(const SliceParam ¶m, const OpContext& ctx, CHECK_NE(req, kAddTo) << "kAddTo for Slice on CSR input is not supported"; CHECK_NE(req, kWriteInplace) << "kWriteInplace for Slice on CSR input is not supported"; - const TShape ishape = in.shape(); - const TShape oshape = out.shape(); + const mxnet::TShape ishape = in.shape(); + const mxnet::TShape oshape = out.shape(); uint32_t N = ishape.ndim(); - TShape begin(N), end(N); + mxnet::TShape begin(N), end(N); for (uint32_t i = 0; i < N; ++i) { int s = 0; if (param.begin[i]) { @@ -629,7 +629,7 @@ void SliceEx(const nnvm::NodeAttrs& attrs, } template -inline void GetIndexRange(const TShape& dshape, +inline void GetIndexRange(const mxnet::TShape& dshape, const nnvm::Tuple>& param_begin, const nnvm::Tuple>& param_end, const nnvm::Tuple>& param_step, @@ -706,7 +706,7 @@ inline void GetIndexRange(const TShape& dshape, inline void SetSliceOpOutputDimSize(const index_t i, const int b, const int e, const int s, - TShape* oshape) { + mxnet::TShape* oshape) { if (e != b) { if (s > 0) { CHECK_LT(b, e) << "slicing with begin=[" << i << "]=" << b << ", end[" << i << "]=" @@ -721,14 +721,14 @@ inline void SetSliceOpOutputDimSize(const index_t i, const int b, } inline bool SliceOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); - const TShape& dshape = (*in_attrs)[0]; + const mxnet::TShape& dshape = (*in_attrs)[0]; if (dshape.ndim() == 0) return false; const SliceParam& param = nnvm::get(attrs.parsed); - TShape oshape = dshape; + mxnet::TShape oshape = dshape; MXNET_NDIM_SWITCH(dshape.ndim(), ndim, { common::StaticArray begin, end, step; @@ -935,13 +935,13 @@ void SliceOpBackward(const nnvm::NodeAttrs& attrs, } inline bool SliceAssignOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); - const TShape& dshape = (*in_attrs)[0]; + const mxnet::TShape& dshape = (*in_attrs)[0]; if (dshape.ndim() == 0U || dshape.Size() == 0U) return false; - TShape vshape = dshape; // vshape is the value shape on the right hand side + mxnet::TShape vshape = dshape; // vshape is the value shape on the right hand side const SliceParam& param = nnvm::get(attrs.parsed); MXNET_NDIM_SWITCH(dshape.ndim(), ndim, { common::StaticArray begin, end, step; @@ -1017,11 +1017,11 @@ struct SliceAssignScalarParam : public dmlc::Parameter { }; inline bool SliceAssignScalarOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); - const TShape& dshape = (*in_attrs)[0]; + const mxnet::TShape& dshape = (*in_attrs)[0]; if (dshape.ndim() == 0U || dshape.Size() == 0U) return false; SHAPE_ASSIGN_CHECK(*out_attrs, 0, dshape); return true; @@ -1080,7 +1080,7 @@ void SliceAssignScalarOpForward(const nnvm::NodeAttrs& attrs, LOG(FATAL) << "_crop_assign_scalar only supports kWriteTo and kWriteInplace"; } - TShape vshape = data.shape_; + mxnet::TShape vshape = data.shape_; const SliceAssignScalarParam& param = nnvm::get(attrs.parsed); MXNET_NDIM_SWITCH(data.ndim(), ndim, { common::StaticArray begin, end, step; @@ -1113,7 +1113,7 @@ struct SliceAxisParam : public dmlc::Parameter { } }; -inline void GetSliceAxisParams(const SliceAxisParam& param, const TShape& ishape, +inline void GetSliceAxisParams(const SliceAxisParam& param, const mxnet::TShape& ishape, int* axis, index_t* begin, index_t* end) { *axis = param.axis; if (*axis < 0) { @@ -1150,16 +1150,16 @@ inline void GetSliceAxisParams(const SliceAxisParam& param, const TShape& ishape } inline bool SliceAxisShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const SliceAxisParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); - TShape& ishape = (*in_attrs)[0]; + mxnet::TShape& ishape = (*in_attrs)[0]; int axis; index_t begin, end; GetSliceAxisParams(param, ishape, &axis, &begin, &end); - TShape shape(ishape.ndim()); + mxnet::TShape shape(ishape.ndim()); for (index_t i = 0; i < ishape.ndim(); ++i) { if (static_cast(i) == axis) { shape[i] = static_cast(end - begin); @@ -1255,9 +1255,9 @@ void SliceAxisGrad_(const nnvm::NodeAttrs& attrs, } struct SliceLikeParam : public dmlc::Parameter { - TShape axes; + mxnet::TShape axes; DMLC_DECLARE_PARAMETER(SliceLikeParam) { - DMLC_DECLARE_FIELD(axes).set_default(TShape()) + DMLC_DECLARE_FIELD(axes).set_default(mxnet::TShape()) .describe("List of axes on which input data will be sliced according to the " "corresponding size of the second input. By default will slice on " "all axes. Negative axes are supported."); @@ -1265,13 +1265,13 @@ struct SliceLikeParam : public dmlc::Parameter { }; inline bool SliceLikeShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const SliceLikeParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 2U); CHECK_EQ(out_attrs->size(), 1U); - TShape& ishape = (*in_attrs)[0]; - TShape& from_shape = (*in_attrs)[1]; + mxnet::TShape& ishape = (*in_attrs)[0]; + mxnet::TShape& from_shape = (*in_attrs)[1]; if (param.axes.ndim() == 0) { CHECK_EQ(ishape.ndim(), from_shape.ndim()) << "By default slice_axis performs slice on all axes, but ndim mismatch " @@ -1283,7 +1283,7 @@ inline bool SliceLikeShape(const nnvm::NodeAttrs& attrs, } SHAPE_ASSIGN_CHECK(*out_attrs, 0, from_shape); } else { - TShape shape(ishape); + mxnet::TShape shape(ishape); for (index_t i = 0; i < param.axes.ndim(); ++i) { int axis = static_cast(param.axes[i]); if (axis < 0) { @@ -1305,9 +1305,9 @@ inline bool SliceLikeShape(const nnvm::NodeAttrs& attrs, return true; } -inline void SliceLikeInferRanges(const TShape& dshape, - const TShape& fshape, - const TShape& axes, +inline void SliceLikeInferRanges(const mxnet::TShape& dshape, + const mxnet::TShape& fshape, + const mxnet::TShape& axes, nnvm::Tuple>* param_begin, nnvm::Tuple>* param_end, nnvm::Tuple>* param_step) { @@ -1356,8 +1356,8 @@ void SliceLikeForward(const nnvm::NodeAttrs& attrs, mshadow::Stream *s = ctx.get_stream(); const TBlob& data = inputs[0]; const TBlob& out = outputs[0]; - const TShape& ishape = data.shape_; - const TShape& from_shape = inputs[1].shape_; + const mxnet::TShape& ishape = data.shape_; + const mxnet::TShape& from_shape = inputs[1].shape_; nnvm::Tuple> param_begin; nnvm::Tuple> param_end; nnvm::Tuple> param_step; @@ -1404,8 +1404,8 @@ void SliceLikeBackward(const nnvm::NodeAttrs& attrs, LOG(FATAL) << "_slice_like_backward does not support kWriteInplace"; } - const TShape& ishape = ograd.shape_; - const TShape& from_shape = outputs[1].shape_; + const mxnet::TShape& ishape = ograd.shape_; + const mxnet::TShape& from_shape = outputs[1].shape_; nnvm::Tuple> param_begin; nnvm::Tuple> param_end; nnvm::Tuple> param_step; @@ -1543,7 +1543,7 @@ struct RepeatParam : public dmlc::Parameter { * \brief Helper function for getting user input params for the operator repeat. * Sanity check the user input values. */ -inline void GetRepeatParams(const RepeatParam& param, const TShape& ishape, +inline void GetRepeatParams(const RepeatParam& param, const mxnet::TShape& ishape, int* repeats, dmlc::optional* axisOpt) { *repeats = param.repeats; CHECK_GE(*repeats, 0) << "repeats cannot be a negative number"; @@ -1559,18 +1559,18 @@ inline void GetRepeatParams(const RepeatParam& param, const TShape& ishape, } inline bool RepeatOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const RepeatParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); - const TShape& ishape = (*in_attrs)[0]; + const mxnet::TShape& ishape = (*in_attrs)[0]; int repeats = 0; dmlc::optional axisOpt; GetRepeatParams(param, ishape, &repeats, &axisOpt); // If 0 repeats, return an empty 0 dim array if (0 == repeats) { - SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape()); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape()); return true; } @@ -1581,7 +1581,7 @@ inline bool RepeatOpShape(const nnvm::NodeAttrs& attrs, if (axis < 0) { axis += ndims; } - TShape shape(ishape.ndim()); + mxnet::TShape shape(ishape.ndim()); for (index_t i = 0; i < ishape.ndim(); ++i) { if (static_cast(i) == axis) { shape[i] = static_cast(repeats) * ishape[i]; @@ -1591,7 +1591,7 @@ inline bool RepeatOpShape(const nnvm::NodeAttrs& attrs, } SHAPE_ASSIGN_CHECK(*out_attrs, 0, shape); } else { // If axis is not input by user, return a flat 1D array of size = in.size*repeats - TShape shape(1); + mxnet::TShape shape(1); shape[0] = ishape.Size() * static_cast(repeats); SHAPE_ASSIGN_CHECK(*out_attrs, 0, shape); } @@ -1614,12 +1614,13 @@ inline bool RepeatOpType(const nnvm::NodeAttrs& attrs, * \brief Reshape the input and output tensors for * using broadcast_to to achieve the funcitonality * of operator repeat. - * \return a pair of TShape's, first is the reshaped + * \return a pair of mxnet::TShape's, first is the reshaped * input shape, second is the reshaped output shape. */ -inline std::pair ReshapeInputOutputForRepeatOp(const TShape& ishape, - const dmlc::optional& axisOpt, - const int repeats) { +inline std::pair ReshapeInputOutputForRepeatOp( + const mxnet::TShape& ishape, + const dmlc::optional& axisOpt, + const int repeats) { if (static_cast(axisOpt)) { int axis = axisOpt.value(); int ndim = static_cast(ishape.ndim()); @@ -1629,9 +1630,9 @@ inline std::pair ReshapeInputOutputForRepeatOp(const TShape& ish CHECK(axis >= 0 && axis < static_cast(ishape.ndim())) << "Invalid input of axis"; // reshape the input tensor by adding a dim at the (axis+1)-th dim - TShape rshape(ishape.ndim()+1); + mxnet::TShape rshape(ishape.ndim()+1); // the shape we want to broadcast to - TShape bshape(rshape.ndim()); + mxnet::TShape bshape(rshape.ndim()); int i = 0; while (i <= axis) { rshape[i] = bshape[i] = ishape[i]; @@ -1650,11 +1651,11 @@ inline std::pair ReshapeInputOutputForRepeatOp(const TShape& ish // reshape the tensor into shape (ishape.Size(), 1) // then add one dim at axis = 1 and broadcast to // shape (ishape.Size(), repeats) - TShape rshape(2); + mxnet::TShape rshape(2); rshape[0] = ishape.Size(); rshape[1] = 1; - TShape bshape(2); + mxnet::TShape bshape(2); bshape[0] = rshape[0]; bshape[1] = repeats; return std::make_pair(rshape, bshape); @@ -1668,7 +1669,7 @@ void RepeatOpForward(const nnvm::NodeAttrs& attrs, const std::vector& req, const std::vector& outputs) { const TBlob& iTBlob = inputs[0]; - const TShape& ishape = iTBlob.shape_; + const mxnet::TShape& ishape = iTBlob.shape_; if (ishape.ndim() == 0) return; int repeats = 0; @@ -1677,7 +1678,8 @@ void RepeatOpForward(const nnvm::NodeAttrs& attrs, GetRepeatParams(param, ishape, &repeats, &axisOpt); if (0 == repeats) return; - std::pair rshapes = ReshapeInputOutputForRepeatOp(ishape, axisOpt, repeats); + std::pair rshapes = \ + ReshapeInputOutputForRepeatOp(ishape, axisOpt, repeats); // reshaped input tblob TBlob iblob(inputs[0].dptr_, rshapes.first, inputs[0].dev_mask(), @@ -1711,7 +1713,7 @@ void RepeatOpBackward(const nnvm::NodeAttrs& attrs, CHECK_EQ(inputs.size(), 1U); CHECK_EQ(outputs.size(), 1U); - const TShape& oshape = outputs[0].shape_; + const mxnet::TShape& oshape = outputs[0].shape_; if (oshape.ndim() == 0) return; int repeats = 0; @@ -1720,7 +1722,7 @@ void RepeatOpBackward(const nnvm::NodeAttrs& attrs, GetRepeatParams(param, oshape, &repeats, &axisOpt); if (0 == repeats) return; - std::pair rshapes = + std::pair rshapes = ReshapeInputOutputForRepeatOp(oshape, axisOpt, repeats); // reshaped output grad tblob @@ -1738,7 +1740,7 @@ void RepeatOpBackward(const nnvm::NodeAttrs& attrs, } struct TileParam : public dmlc::Parameter { - TShape reps; + mxnet::TShape reps; DMLC_DECLARE_PARAMETER(TileParam) { DMLC_DECLARE_FIELD(reps) .describe("The number of times for repeating the tensor a. Each dim size of reps" @@ -1750,13 +1752,13 @@ struct TileParam : public dmlc::Parameter { }; inline bool TileOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); const TileParam& param = nnvm::get(attrs.parsed); - const TShape& ishape = (*in_attrs)[0]; - const TShape& reps = param.reps; + const mxnet::TShape& ishape = (*in_attrs)[0]; + const mxnet::TShape& reps = param.reps; // If reps is empty, return a identical input array if (reps.ndim() == 0 || ishape.ndim() == 0) { SHAPE_ASSIGN_CHECK(*out_attrs, 0, ishape); @@ -1765,7 +1767,7 @@ inline bool TileOpShape(const nnvm::NodeAttrs& attrs, for (size_t i = 0; i < reps.ndim(); ++i) { CHECK_GT(reps[i], 0) << "invalid reps=" << i << ", dim size must be greater than zero"; } - TShape oshape(std::max(ishape.ndim(), reps.ndim())); + mxnet::TShape oshape(std::max(ishape.ndim(), reps.ndim())); int i1 = static_cast(ishape.ndim()) - 1; int i2 = static_cast(reps.ndim()) - 1; for (int i = static_cast(oshape.ndim()) - 1; i >= 0; --i) { @@ -1797,20 +1799,21 @@ inline bool TileOpType(const nnvm::NodeAttrs& attrs, * \brief Reshape the input and output tensors for * using broadcast_to to achieve the funcitonality * of operator tile. - * \return a pair of TShape's, first is the reshaped + * \return a pair of mxnet::TShape's, first is the reshaped * input shape, second is the reshaped output shape. */ -inline std::pair ReshapeInputOutputForTileOp(const TShape& ishape, - const TShape& reps) { +inline std::pair ReshapeInputOutputForTileOp( + const mxnet::TShape& ishape, + const mxnet::TShape& reps) { if (ishape.ndim() == 0 || reps.ndim() == 0) { return std::make_pair(ishape, ishape); } // The shape we want to broadcast to - TShape bshape(std::max(ishape.ndim(), reps.ndim()) * 2); + mxnet::TShape bshape(std::max(ishape.ndim(), reps.ndim()) * 2); // The shape of the input tensor after adding new axes before each dim - TShape rshape(bshape.ndim()); + mxnet::TShape rshape(bshape.ndim()); int i1 = static_cast(ishape.ndim()) - 1; int i2 = static_cast(reps.ndim()) - 1; @@ -1853,15 +1856,15 @@ void TileOpForward(const nnvm::NodeAttrs& attrs, CHECK_EQ(outputs.size(), 1U); if (inputs[0].Size() == 0) return; - const TShape& ishape = inputs[0].shape_; - const TShape& reps = nnvm::get(attrs.parsed).reps; + const mxnet::TShape& ishape = inputs[0].shape_; + const mxnet::TShape& reps = nnvm::get(attrs.parsed).reps; // If any one of the number in reps is zero, return immediately for (index_t i = 0; i < reps.ndim(); ++i) { if (0 == reps[i]) return; } - std::pair rshapes = ReshapeInputOutputForTileOp(ishape, reps); + std::pair rshapes = ReshapeInputOutputForTileOp(ishape, reps); // reshaped input tblob TBlob iblob(inputs[0].dptr_, rshapes.first, inputs[0].dev_mask(), @@ -1895,15 +1898,15 @@ void TileOpBackward(const nnvm::NodeAttrs& attrs, CHECK_EQ(outputs.size(), 1U); if (inputs[0].Size() == 0) return; - const TShape& oshape = outputs[0].shape_; - const TShape& reps = nnvm::get(attrs.parsed).reps; + const mxnet::TShape& oshape = outputs[0].shape_; + const mxnet::TShape& reps = nnvm::get(attrs.parsed).reps; // If any one of the number in reps is zero, return immediately for (index_t i = 0; i < reps.ndim(); ++i) { if (0 == reps[i]) return; } - std::pair rshapes = ReshapeInputOutputForTileOp(oshape, reps); + std::pair rshapes = ReshapeInputOutputForTileOp(oshape, reps); // reshaped output grad tblob TBlob oblob(outputs[0].dptr_, rshapes.first, outputs[0].dev_mask(), @@ -1984,7 +1987,7 @@ void ReverseOpForward(const nnvm::NodeAttrs& attrs, CHECK_LT(param.axis.ndim(), REVERSE_MAX_DIM); Stream *s = ctx.get_stream(); - const TShape& ishape = inputs[0].shape_; + const mxnet::TShape& ishape = inputs[0].shape_; std::vector stride_(param.axis.ndim()); std::vector trailing_(param.axis.ndim()); @@ -2046,17 +2049,17 @@ struct StackParam : public dmlc::Parameter { inline bool StackOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const StackParam& param = dmlc::get(attrs.parsed); - TShape dshape; - for (const TShape& i : (*in_attrs)) { + mxnet::TShape dshape; + for (const mxnet::TShape& i : (*in_attrs)) { shape_assign(&dshape, i); } if (dshape.ndim() == 0) return false; - TShape oshape(dshape.ndim() + 1); + mxnet::TShape oshape(dshape.ndim() + 1); int axis = CheckAxis(param.axis, oshape.ndim()); for (int i = 0; i < axis; ++i) { oshape[i] = dshape[i]; @@ -2140,10 +2143,10 @@ void StackOpBackward(const nnvm::NodeAttrs& attrs, } struct SqueezeParam : public dmlc::Parameter { - dmlc::optional axis; + dmlc::optional axis; DMLC_DECLARE_PARAMETER(SqueezeParam) { DMLC_DECLARE_FIELD(axis) - .set_default(dmlc::optional()) + .set_default(dmlc::optional()) .describe("Selects a subset of the single-dimensional entries in the shape." " If an axis is selected with shape entry greater than one, an error is raised."); } @@ -2153,7 +2156,7 @@ struct SqueezeParam : public dmlc::Parameter { // move all the zeros to the last of the shape array // and keep the relative order of the non-zero values. // Returns the new shape size after moving all zeros to the end. -inline size_t SqueezeShapeHelper(TShape* shape) { +inline size_t SqueezeShapeHelper(mxnet::TShape* shape) { CHECK(shape != nullptr); size_t count = 0; for (size_t i = 0; i < shape->ndim(); ++i) { @@ -2167,18 +2170,18 @@ inline size_t SqueezeShapeHelper(TShape* shape) { } inline bool SqueezeShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const SqueezeParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U) << "Input: [data]"; CHECK_EQ(out_attrs->size(), 1U); - const TShape& dshape = in_attrs->at(0); + const mxnet::TShape& dshape = in_attrs->at(0); const int dndim = dshape.ndim(); if (shape_is_none(dshape)) return false; - TShape oshape = dshape; + mxnet::TShape oshape = dshape; if (param.axis.has_value()) { // preprocess axis - TShape axes = param.axis.value(); + mxnet::TShape axes = param.axis.value(); for (size_t i = 0; i < axes.ndim(); ++i) { if (axes[i] < 0) { axes[i] += dndim; @@ -2203,7 +2206,7 @@ inline bool SqueezeShape(const nnvm::NodeAttrs& attrs, oshape[0] = 1; oshape_size = 1; } - SHAPE_ASSIGN_CHECK(*out_attrs, 0, TShape(oshape.data(), oshape.data()+oshape_size)); + SHAPE_ASSIGN_CHECK(*out_attrs, 0, mxnet::TShape(oshape.data(), oshape.data()+oshape_size)); return true; } @@ -2216,16 +2219,16 @@ struct DepthToSpaceParam : public dmlc::Parameter { }; inline bool DepthToSpaceOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { const DepthToSpaceParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); CHECK_EQ(in_attrs->at(0).ndim(), 4) << "Operation Depth To Space requires exactly 4D tensor"; - TShape expected_out(4); + mxnet::TShape expected_out(4); - TShape& in_shape = in_attrs->at(0); + mxnet::TShape& in_shape = in_attrs->at(0); int block = param.block_size; CHECK_NE(block, 0) << "block_size must be a positive integer value"; CHECK_NE(in_shape[1], 0) << "Depth dimension:1 cannot be 0"; @@ -2380,16 +2383,16 @@ void DepthToSpaceOpForward(const nnvm::NodeAttrs& attrs, } inline bool SpaceToDepthOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { const DepthToSpaceParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); CHECK_EQ(out_attrs->size(), 1U); CHECK_EQ(in_attrs->at(0).ndim(), 4) << "Operation Space To Depth requires exactly 4D tensor"; - TShape expected_out(in_attrs->at(0).ndim()); + mxnet::TShape expected_out(in_attrs->at(0).ndim()); - TShape& in_shape = in_attrs->at(0); + mxnet::TShape& in_shape = in_attrs->at(0); int block = param.block_size; CHECK_NE(block, 0) << "block_size must be a positive integer value"; CHECK_NE(in_shape[0], 0) @@ -2534,7 +2537,7 @@ enum SplitOpInputs {kData}; } // namespace split_enum struct SplitParam : public dmlc::Parameter { - TShape indices; + mxnet::TShape indices; int axis; bool squeeze_axis; int sections; @@ -2555,8 +2558,8 @@ struct SplitParam : public dmlc::Parameter { } }; // struct SplitParam -inline TShape GetSplitIndices(const TShape& ishape, int axis, int sections) { - TShape indices(sections+1); +inline mxnet::TShape GetSplitIndices(const mxnet::TShape& ishape, int axis, int sections) { + mxnet::TShape indices(sections+1); indices[0] = 0; int64_t section_size = ishape[axis] / sections; for (int i = 0; i < sections; ++i) { @@ -2581,13 +2584,13 @@ inline bool SplitOpType(const nnvm::NodeAttrs& attrs, } inline bool SplitOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { using namespace mshadow; const SplitParam& param = nnvm::get(attrs.parsed); CHECK_EQ(in_attrs->size(), 1U); - TShape dshape = in_attrs->at(split_enum::kData); - TShape ishape = in_attrs->at(split_enum::kData); + mxnet::TShape dshape = in_attrs->at(split_enum::kData); + mxnet::TShape ishape = in_attrs->at(split_enum::kData); if (dshape.ndim() == 0) return false; if (param.axis >= 0) { CHECK_LT(static_cast(param.axis), dshape.ndim()); @@ -2598,15 +2601,15 @@ inline bool SplitOpShape(const nnvm::NodeAttrs& attrs, if (real_axis < 0) { real_axis += dshape.ndim(); } - const TShape indices = + const mxnet::TShape indices = (param.sections > 0) ? GetSplitIndices(ishape, real_axis, param.sections) : param.indices; int num_outputs = (param.sections > 0) ? indices.ndim() - 1 : indices.ndim(); // Pre-compute squeezed output shape for future usage - TShape squeezed_dshape = dshape; + mxnet::TShape squeezed_dshape = dshape; for (int d = real_axis; d < static_cast(squeezed_dshape.ndim()) - 1; ++d) { squeezed_dshape[d] = squeezed_dshape[d+1]; } - squeezed_dshape = TShape(&squeezed_dshape[0], &squeezed_dshape[squeezed_dshape.ndim()-1]); + squeezed_dshape = mxnet::TShape(&squeezed_dshape[0], &squeezed_dshape[squeezed_dshape.ndim()-1]); // Assign shape to every output for (int i = 0; i < num_outputs; ++i) { int start = indices[i]; @@ -2623,7 +2626,7 @@ inline bool SplitOpShape(const nnvm::NodeAttrs& attrs, SHAPE_ASSIGN_CHECK(*out_attrs, i, dshape); } } - TShape back_calculate_dshape = ishape; + mxnet::TShape back_calculate_dshape = ishape; back_calculate_dshape[real_axis] = 0; for (int d = 0; d < real_axis; ++d) { back_calculate_dshape[d] = (*out_attrs)[0][d]; @@ -2739,8 +2742,8 @@ inline void SplitOpForward(const nnvm::NodeAttrs& attrs, } size_t workspace_size = 0; - const TShape& ishape = input_data.shape_; - const TShape split_pts = + const mxnet::TShape& ishape = input_data.shape_; + const mxnet::TShape split_pts = (param.sections > 0) ? GetSplitIndices(ishape, real_axis, param.sections) : param.indices; std::vector indices; for (const auto& section : split_pts) { @@ -2803,8 +2806,8 @@ inline void SplitOpBackward(const nnvm::NodeAttrs& attrs, } size_t workspace_size = 0; - const TShape& ishape = input_grad.shape_; - const TShape split_pts = + const mxnet::TShape& ishape = input_grad.shape_; + const mxnet::TShape split_pts = (param.sections > 0) ? GetSplitIndices(ishape, real_axis, param.sections) : param.indices; std::vector indices; for (const auto& section : split_pts) { diff --git a/src/operator/tensor/matrix_op.cc b/src/operator/tensor/matrix_op.cc index 3a244ac89790..3bca330f98b0 100644 --- a/src/operator/tensor/matrix_op.cc +++ b/src/operator/tensor/matrix_op.cc @@ -34,8 +34,8 @@ namespace op { template<> -void SliceDimTwoCsrImpl(const TShape &begin, const TShape &end, const OpContext& ctx, - const NDArray &in, const NDArray &out) { +void SliceDimTwoCsrImpl(const mxnet::TShape &begin, const mxnet::TShape &end, + const OpContext& ctx, const NDArray &in, const NDArray &out) { using namespace mshadow; using namespace mxnet_op; using namespace csr; @@ -223,7 +223,7 @@ If the argument `reverse` is set to 1, then the special values are inferred from .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ReshapeShape) +.set_attr("FInferShape", ReshapeShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_reshape"}) .set_attr("FCompute", UnaryOp::IdentityCompute) @@ -315,7 +315,7 @@ Example:: )code" ADD_FILELINE) .set_num_inputs(1) .set_num_outputs(1) -.set_attr("FInferShape", FlattenShape) +.set_attr("FInferShape", FlattenShape) .set_attr("FInferType", ElemwiseType<1, 1>) #if MXNET_USE_MKLDNN == 1 .set_attr("FInferStorageType", FlattenStorageType) @@ -371,7 +371,7 @@ Examples:: .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", TransposeShape) +.set_attr("FInferShape", TransposeShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FGradient", [](const nnvm::NodePtr& n, const std::vector& ograds) { @@ -381,7 +381,7 @@ Examples:: "transpose", n, ograds, {}, std::unordered_map()); } else { - TShape axes = TShape(param.axes.ndim()); + mxnet::TShape axes = mxnet::TShape(param.axes.ndim()); for (index_t i = 0; i < axes.ndim(); ++i) { axes[param.axes[i]] = i; } @@ -407,7 +407,7 @@ will return a new array with shape ``(2,1,3,4)``. .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ExpandDimShape) +.set_attr("FInferShape", ExpandDimShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs){ @@ -495,7 +495,7 @@ Example:: [1., 3.]] )code" ADD_FILELINE) .set_attr_parser(ParamParser) -.set_attr("FInferShape", SliceOpShape) +.set_attr("FInferShape", SliceOpShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FResourceRequest", [](const NodeAttrs& attrs) { @@ -530,7 +530,7 @@ NNVM_REGISTER_OP(_slice_assign) return std::vector{"lhs", "rhs"}; }) .set_attr_parser(ParamParser) -.set_attr("FInferShape", SliceAssignOpShape) +.set_attr("FInferShape", SliceAssignOpShape) .set_attr("FInferType", ElemwiseType<2, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs){ @@ -551,7 +551,7 @@ NNVM_REGISTER_OP(_slice_assign_scalar) .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", SliceAssignScalarOpShape) +.set_attr("FInferShape", SliceAssignScalarOpShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FInplaceOption", [](const NodeAttrs& attrs){ @@ -587,7 +587,7 @@ Examples:: .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", SliceAxisShape) +.set_attr("FInferShape", SliceAxisShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FCompute", SliceAxis) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_slice_axis"}) @@ -660,7 +660,7 @@ Example:: [](const NodeAttrs& attrs) { return std::vector{"data", "shape_like"}; }) -.set_attr("FInferShape", SliceLikeShape) +.set_attr("FInferShape", SliceLikeShape) .set_attr("FInferType", [](const nnvm::NodeAttrs& attrs, std::vector *in_attrs, std::vector *out_attrs) { @@ -714,7 +714,7 @@ parameter values: .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FCompute", Clip) .set_attr("FComputeEx", ClipEx) @@ -791,7 +791,7 @@ The parameter ``axis`` specifies the axis along which to perform repeat:: [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", RepeatOpShape) +.set_attr("FInferShape", RepeatOpShape) .set_attr("FInferType", RepeatOpType) .set_attr("FCompute", RepeatOpForward) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_repeat"}) @@ -852,7 +852,7 @@ three cases: [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", TileOpShape) +.set_attr("FInferShape", TileOpShape) .set_attr("FInferType", TileOpType) .set_attr("FCompute", TileOpForward) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_tile"}) @@ -898,7 +898,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector {ResourceRequest::kTempSpace}; }) -.set_attr("FInferShape", ElemwiseShape<1, 1>) +.set_attr("FInferShape", ElemwiseShape<1, 1>) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FCompute", ReverseOpForward) .set_attr("FGradient", ElemwiseGradUseNone{ "_backward_reverse" }) @@ -949,7 +949,7 @@ Examples:: return ret; }) .set_attr("key_var_num_args", "num_args") -.set_attr("FInferShape", StackOpShape) +.set_attr("FInferShape", StackOpShape) .set_attr("FInferType", ElemwiseType<-1, 1>) .set_attr("FCompute", StackOpForward) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_stack"}) @@ -990,7 +990,7 @@ Examples:: [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", SqueezeShape) +.set_attr("FInferShape", SqueezeShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FCompute", UnaryOp::IdentityCompute) .set_attr("FGradient", ElemwiseGradUseNone{"_backward_squeeze"}) @@ -1045,7 +1045,7 @@ Example:: [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", DepthToSpaceOpShape) +.set_attr("FInferShape", DepthToSpaceOpShape) .set_attr("FInferType", DepthToSpaceOpType) .set_attr("FCompute", DepthToSpaceOpForward) .set_attr("FResourceRequest", @@ -1099,7 +1099,7 @@ Example:: [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", SpaceToDepthOpShape) +.set_attr("FInferShape", SpaceToDepthOpShape) .set_attr("FInferType", SpaceToDepthOpType) .set_attr("FCompute", SpaceToDepthOpForward) .set_attr("FResourceRequest", @@ -1185,7 +1185,7 @@ Example:: [](const NodeAttrs& attrs) { return std::vector{"data"}; }) -.set_attr("FInferShape", SplitOpShape) +.set_attr("FInferShape", SplitOpShape) .set_attr("FInferType", SplitOpType) .set_attr("FCompute", SplitOpForward) .set_attr("FResourceRequest", diff --git a/src/operator/tensor/matrix_op.cu b/src/operator/tensor/matrix_op.cu index 87311276da26..b382c55ce74a 100644 --- a/src/operator/tensor/matrix_op.cu +++ b/src/operator/tensor/matrix_op.cu @@ -67,8 +67,8 @@ struct SliceMarkCsrIndPtr { template<> -void SliceDimTwoCsrImpl(const TShape &begin, const TShape &end, const OpContext& ctx, - const NDArray &in, const NDArray &out) { +void SliceDimTwoCsrImpl(const mxnet::TShape &begin, const mxnet::TShape &end, + const OpContext& ctx, const NDArray &in, const NDArray &out) { using namespace mshadow; using namespace mxnet_op; using namespace csr; diff --git a/src/operator/tensor/ordering_op-inl.h b/src/operator/tensor/ordering_op-inl.h index 1847a533d6ea..5a95e05ffb65 100644 --- a/src/operator/tensor/ordering_op-inl.h +++ b/src/operator/tensor/ordering_op-inl.h @@ -128,9 +128,9 @@ struct ArgSortParam : public dmlc::Parameter { } }; -inline void ParseTopKParam(const TShape& src_shape, const TopKParam& param, TShape *target_shape, - int *batch_size, int *element_num, int *axis, int *k, - bool *do_transpose, bool *is_ascend) { +inline void ParseTopKParam(const mxnet::TShape& src_shape, const TopKParam& param, + mxnet::TShape *target_shape, int *batch_size, int *element_num, + int *axis, int *k, bool *do_transpose, bool *is_ascend) { *do_transpose = false; *k = param.k; *is_ascend = param.is_ascend; @@ -387,7 +387,7 @@ void TopKImpl(const RunContext &ctx, bool is_ascend = false; int k = 0; size_t alignment = std::max(sizeof(DType), sizeof(int)); - TShape target_shape; + mxnet::TShape target_shape; ParseTopKParam(src.shape_, param, &target_shape, &batch_size, &element_num, &axis, &k, &do_transpose, &is_ascend); CHECK_LE(element_num, mxnet::common::MaxIntegerValue()) @@ -479,7 +479,7 @@ void TopKImpl(const RunContext &ctx, element_num)), 0, k), Shape1(batch_size * k)); if (do_transpose) { - TShape src_shape = src.shape_.FlatTo3D(axis); + mxnet::TShape src_shape = src.shape_.FlatTo3D(axis); CHECK_EQ(sel_indices.CheckContiguous(), true); sel_indices = transpose_indices(sel_indices, Shape3(src_shape[0], src_shape[2], src_shape[1]), Shape3(0, 2, 1)); @@ -610,7 +610,7 @@ void TopKBackwardImpl(const OpContext &ctx, bool do_transpose = false; bool is_ascend = false; int k = 0; - TShape target_shape; + mxnet::TShape target_shape; ParseTopKParam(outputs[0].shape_, param, &target_shape, &batch_size, &element_num, &axis, &k, &do_transpose, &is_ascend); CHECK_LE(element_num, mxnet::common::MaxIntegerValue()) @@ -632,11 +632,11 @@ void TopKBackwardImpl(const OpContext &ctx, batch_shift.dptr_); if (do_transpose) { Tensor indices = inputs[2].FlatTo1D(s); - TShape src_shape = outputs[0].shape_.FlatTo3D(axis); + mxnet::TShape src_shape = outputs[0].shape_.FlatTo3D(axis); sel_indices = reshape(transpose( broadcast_to(inplace_reshape(batch_shift, Shape3(src_shape[0], src_shape[2], 1)), - TShape(Shape3(src_shape[0], src_shape[2], k))), + mxnet::TShape(Shape3(src_shape[0], src_shape[2], k))), Shape3(0, 2, 1)), Shape1(batch_size * k)); sel_indices += tcast(indices); @@ -647,7 +647,7 @@ void TopKBackwardImpl(const OpContext &ctx, inputs[2].get_with_shape(Shape2(batch_size, k), s); sel_indices = reshape(tcast(indices) + broadcast_to(inplace_reshape(batch_shift, Shape2(batch_size, 1)), - TShape(Shape2(batch_size, k))), + mxnet::TShape(Shape2(batch_size, k))), Shape1(batch_size * k)); } CHECK_EQ(sel_indices.CheckContiguous(), true); @@ -742,8 +742,8 @@ inline bool TopKType(const nnvm::NodeAttrs& attrs, } inline bool TopKShapeImpl(const TopKParam& param, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 1U); if (param.ret_typ == topk_enum::kReturnIndices || param.ret_typ == topk_enum::kReturnMask) { @@ -751,13 +751,13 @@ inline bool TopKShapeImpl(const TopKParam& param, } else { CHECK_EQ(out_attrs->size(), 2U); } - TShape& in_shape = (*in_attrs)[0]; + mxnet::TShape& in_shape = (*in_attrs)[0]; int batch_size, element_num; // number of batches + the size of each batch int axis = 0; bool do_transpose = false; bool is_ascend = false; int k = 0; - TShape target_shape; + mxnet::TShape target_shape; ParseTopKParam(in_shape, param, &target_shape, &batch_size, &element_num, &axis, &k, &do_transpose, &is_ascend); if (param.ret_typ == topk_enum::kReturnIndices || @@ -771,8 +771,8 @@ inline bool TopKShapeImpl(const TopKParam& param, } inline bool TopKShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const TopKParam& param = nnvm::get(attrs.parsed); return TopKShapeImpl(param, in_attrs, out_attrs); } @@ -800,8 +800,8 @@ inline bool SortType(const nnvm::NodeAttrs& attrs, } inline bool SortShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const SortParam& param = nnvm::get(attrs.parsed); TopKParam topk_param; topk_param.axis = param.axis; @@ -821,8 +821,8 @@ inline bool ArgSortType(const nnvm::NodeAttrs& attrs, } inline bool ArgSortShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { const ArgSortParam& param = nnvm::get(attrs.parsed); TopKParam topk_param; topk_param.axis = param.axis; diff --git a/src/operator/tensor/ordering_op.cc b/src/operator/tensor/ordering_op.cc index fb0029959718..4adfac29fec1 100644 --- a/src/operator/tensor/ordering_op.cc +++ b/src/operator/tensor/ordering_op.cc @@ -65,7 +65,7 @@ Examples:: .set_num_inputs(1) .set_num_outputs(TopKNumOutputs) .set_attr_parser(ParamParser) -.set_attr("FInferShape", TopKShape) +.set_attr("FInferShape", TopKShape) .set_attr("FInferType", TopKType) .set_attr("FNumVisibleOutputs", TopKNumVisibleOutputs) .set_attr("FCompute", TopK) @@ -128,7 +128,7 @@ Examples:: .set_num_inputs(1) .set_num_outputs(2) .set_attr_parser(ParamParser) -.set_attr("FInferShape", SortShape) +.set_attr("FInferShape", SortShape) .set_attr("FInferType", SortType) .set_attr("FNumVisibleOutputs", [](const NodeAttrs& attrs) { return 1; }) .set_attr("FCompute", Sort) @@ -178,7 +178,7 @@ Examples:: .set_num_inputs(1) .set_num_outputs(1) .set_attr_parser(ParamParser) -.set_attr("FInferShape", ArgSortShape) +.set_attr("FInferShape", ArgSortShape) .set_attr("FInferType", ArgSortType) .set_attr("FCompute", ArgSort) .set_attr("FGradient", MakeZeroGradNodes) diff --git a/src/operator/tensor/ravel.cc b/src/operator/tensor/ravel.cc index 7bbfac5d58c0..0a66ea80fca9 100644 --- a/src/operator/tensor/ravel.cc +++ b/src/operator/tensor/ravel.cc @@ -46,7 +46,7 @@ Examples:: { return std::vector{ResourceRequest::kTempSpace}; }) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"data"}; } ) -.set_attr("FInferShape", RavelOpShape) +.set_attr("FInferShape", RavelOpShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FCompute", RavelForward) .set_attr("FGradient", MakeZeroGradNodes) @@ -70,7 +70,7 @@ Examples:: { return std::vector{ResourceRequest::kTempSpace}; }) .set_attr("FListInputNames", [](const NodeAttrs& attrs) { return std::vector{"data"}; } ) -.set_attr("FInferShape", UnravelOpShape) +.set_attr("FInferShape", UnravelOpShape) .set_attr("FInferType", ElemwiseType<1, 1>) .set_attr("FCompute", UnravelForward) .set_attr("FGradient", MakeZeroGradNodes) diff --git a/src/operator/tensor/ravel.h b/src/operator/tensor/ravel.h index 1eb61e1b6819..6d337dcef701 100644 --- a/src/operator/tensor/ravel.h +++ b/src/operator/tensor/ravel.h @@ -37,19 +37,19 @@ namespace mxnet { namespace op { struct RavelParam : public dmlc::Parameter { - TShape shape; + mxnet::TShape shape; DMLC_DECLARE_PARAMETER(RavelParam) { DMLC_DECLARE_FIELD(shape) - .set_default(TShape()) + .set_default(mxnet::TShape()) .describe("Shape of the array into which the multi-indices apply."); } }; inline bool RavelOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { using namespace mshadow; - const TShape& shape = nnvm::get(attrs.parsed).shape; + const mxnet::TShape& shape = nnvm::get(attrs.parsed).shape; CHECK_EQ(in_attrs->size(), 1); CHECK_EQ(out_attrs->size(), 1); CHECK_GT(shape.ndim(), 0) << "Empty shape parameter for ravel operator."; @@ -69,10 +69,10 @@ inline bool RavelOpShape(const nnvm::NodeAttrs& attrs, } inline bool UnravelOpShape(const nnvm::NodeAttrs& attrs, - std::vector* in_attrs, - std::vector* out_attrs) { + mxnet::ShapeVector* in_attrs, + mxnet::ShapeVector* out_attrs) { using namespace mshadow; - const TShape& shape = nnvm::get(attrs.parsed).shape; + const mxnet::TShape& shape = nnvm::get(attrs.parsed).shape; CHECK_EQ(in_attrs->size(), 1); CHECK_EQ(out_attrs->size(), 1); CHECK_GT(shape.ndim(), 0) << "Empty shape parameter for unravel operator."; @@ -126,7 +126,7 @@ void RavelForward(const nnvm::NodeAttrs& attrs, const std::vector& outputs) { using namespace mshadow; Stream *s = ctx.get_stream(); - const TShape& shape = nnvm::get(attrs.parsed).shape; + const mxnet::TShape& shape = nnvm::get(attrs.parsed).shape; std::vector buffer(shape.data(), shape.data()+shape.ndim()); Tensor work = ctx.requested[0].get_space_typed(Shape1(shape.ndim()), s); @@ -147,7 +147,7 @@ void UnravelForward(const nnvm::NodeAttrs& attrs, const std::vector& outputs) { using namespace mshadow; Stream *s = ctx.get_stream(); - const TShape& shape = nnvm::get(attrs.parsed).shape; + const mxnet::TShape& shape = nnvm::get(attrs.parsed).shape; std::vector buffer(shape.data(), shape.data()+shape.ndim()); Tensor work = ctx.requested[0].get_space_typed(Shape1(shape.ndim()), s); diff --git a/src/operator/tensor/sparse_retain-inl.h b/src/operator/tensor/sparse_retain-inl.h index 52401beba316..951bf80b81b8 100644 --- a/src/operator/tensor/sparse_retain-inl.h +++ b/src/operator/tensor/sparse_retain-inl.h @@ -44,13 +44,13 @@ enum SparseRetainOpOutputs {kOut}; } // namespace sr inline bool SparseRetainOpShape(const nnvm::NodeAttrs& attrs, - std::vector *in_attrs, - std::vector *out_attrs) { + mxnet::ShapeVector *in_attrs, + mxnet::ShapeVector *out_attrs) { CHECK_EQ(in_attrs->size(), 2U) << "sparse_retain operator takes 2 arguments (" << in_attrs->size() << " given)"; CHECK_EQ(out_attrs->size(), 1U); - TShape tshape((*in_attrs)[sr::kArr]); + mxnet::TShape tshape((*in_attrs)[sr::kArr]); shape_assign(&tshape, (*out_attrs)[sr::kOut]); SHAPE_ASSIGN_CHECK(*in_attrs, sr::kArr, tshape); SHAPE_ASSIGN_CHECK(*out_attrs, sr::kOut, tshape); diff --git a/src/operator/tensor/sparse_retain.cc b/src/operator/tensor/sparse_retain.cc index 8630457e6a5e..007541b00b37 100644 --- a/src/operator/tensor/sparse_retain.cc +++ b/src/operator/tensor/sparse_retain.cc @@ -57,7 +57,7 @@ The storage type of ``retain`` output depends on storage types of inputs [](const NodeAttrs& attrs) { return std::vector{"data", "indices"}; }) -.set_attr("FInferShape", SparseRetainOpShape) +.set_attr("FInferShape", SparseRetainOpShape) .set_attr("FInferType", SparseRetainOpType) .set_attr("FInferStorageType", SparseRetainForwardInferStorageType) .set_attr("FComputeEx", SparseRetainOpForwardEx) diff --git a/src/operator/tensor/square_sum-inl.h b/src/operator/tensor/square_sum-inl.h index 162b3c8ad12b..016b383117bc 100644 --- a/src/operator/tensor/square_sum-inl.h +++ b/src/operator/tensor/square_sum-inl.h @@ -53,7 +53,7 @@ inline bool SquareSumForwardInferStorageType(const nnvm::NodeAttrs& attrs, const auto& in_stype = in_attrs->at(0); auto& out_stype = out_attrs->at(0); bool dispatched = false; - const TShape axis = param.axis.has_value() ? param.axis.value() : TShape(); + const mxnet::TShape axis = param.axis.has_value() ? param.axis.value() : mxnet::TShape(); if (!dispatched && in_stype == kRowSparseStorage && axis.ndim() > 0 && axis[0] == 1 && param.keepdims) { // sum per row and keep dims @@ -267,7 +267,7 @@ void SquareSumRspImpl(const nnvm::NodeAttrs& attrs, if (req == kNullOp) return; const ReduceAxesParam& param = nnvm::get(attrs.parsed); CHECK(param.axis.has_value()); - const TShape axis = param.axis.value(); + const mxnet::TShape axis = param.axis.value(); CHECK_EQ(axis.ndim(), 1U) << "_square_sum(row_sparse_matrix) only supports axis=0 or 1"; CHECK(axis[0] == 0 || axis[0] == 1) << "_square_sum(row_sparse_matrix) only supports axis=0 or 1"; @@ -382,7 +382,7 @@ void SquareSumRspGradImpl(const nnvm::NodeAttrs& attrs, if (req == kNullOp) return; const ReduceAxesParam& param = nnvm::get(attrs.parsed); CHECK(param.axis.has_value()); - const TShape axis = param.axis.value(); + const mxnet::TShape axis = param.axis.value(); CHECK_EQ(axis.ndim(), 1U) << "_square_sum(row_sparse_matrix) only supports axis=0/1"; CHECK(axis[0] == 0 || axis[0] == 1) << "_square_sum(row_sparse_matrix) only supports axis=0 or 1"; diff --git a/src/profiler/profiler.h b/src/profiler/profiler.h index ba99c811ac98..adea941bda13 100644 --- a/src/profiler/profiler.h +++ b/src/profiler/profiler.h @@ -1081,8 +1081,8 @@ struct ProfileOperator : public ProfileEvent { * \brief Operator attributes */ struct Attributes { - std::vector inputs_; - std::vector outputs_; + std::vector inputs_; + std::vector outputs_; std::unordered_map attr_; std::string to_string() const { std::stringstream ss; diff --git a/tests/cpp/include/test_core_op.h b/tests/cpp/include/test_core_op.h index f59a9e8d74dc..bf35834c5d5f 100644 --- a/tests/cpp/include/test_core_op.h +++ b/tests/cpp/include/test_core_op.h @@ -104,7 +104,7 @@ class CoreOpExecutor : public test::op::OperatorDataInitializer * \param ctx Context to use when creating the array/tensor * \return The created NDArray */ - NDArray CreateRandArray(const TShape& shape, const RunContext& run_ctx, int dtype) const { + NDArray CreateRandArray(const mxnet::TShape& shape, const RunContext& run_ctx, int dtype) const { CHECK_GT(shape.Size(), 0); // Check it's a valid shape NDArray array(shape, run_ctx.ctx, true, dtype); array.CheckAndAlloc(); @@ -118,7 +118,7 @@ class CoreOpExecutor : public test::op::OperatorDataInitializer * \param ctx Context to use when creating the array/tensor * \return The created NDArray */ - NDArray CreateZeroArray(const TShape& shape, const RunContext& run_ctx, int dtype) const { + NDArray CreateZeroArray(const mxnet::TShape& shape, const RunContext& run_ctx, int dtype) const { CHECK_GT(shape.Size(), 0); // Check it's a valid shape NDArray array(shape, run_ctx.ctx, true, dtype); array.CheckAndAlloc(); @@ -266,7 +266,7 @@ class CoreOpExecutor : public test::op::OperatorDataInitializer * \param isGPU Is this going to be on the GPU? * \param shapes Array of input shapes */ - CoreOpExecutor(const bool isGPU, const std::vector& shapes) + CoreOpExecutor(const bool isGPU, const mxnet::ShapeVector& shapes) : input_shapes_(shapes) , op_(nullptr) { ctx_.is_train = true; @@ -397,7 +397,7 @@ class CoreOpExecutor : public test::op::OperatorDataInitializer // Generic, all shapes the same. Probably this will need to be adjusted for more complex // operators such as dot - std::vector input_shapes; + std::vector input_shapes; if (!input_shapes_.empty()) { for (size_t i = 0, n = num_inputs; i < n; ++i) { input_shapes.emplace_back(i < input_shapes_.size() ? input_shapes_[i] @@ -466,10 +466,10 @@ class CoreOpExecutor : public test::op::OperatorDataInitializer // Output arrays if (outputs_.empty()) { - std::vector output_shapes; - static auto& finfer_shape = Op::GetAttr("FInferShape"); + std::vector output_shapes; + static auto& finfer_shape = Op::GetAttr("FInferShape"); if (finfer_shape.count(op_)) { - nnvm::FInferShape call_infer_shapes = finfer_shape[op_]; + mxnet::FInferShape call_infer_shapes = finfer_shape[op_]; output_shapes.resize(inferred_num_outputs); call_infer_shapes(attrs_, &input_shapes, &output_shapes); input_shapes_ = input_shapes; @@ -482,9 +482,9 @@ class CoreOpExecutor : public test::op::OperatorDataInitializer for (int i = 0; i < num_inputs; ++i) { const int map_key = bwd_node_ptr->inputs[i].index; CHECK(index2array.find(map_key) != index2array.end()); - const nnvm::TShape &shp = index2array[map_key]->shape(); + const mxnet::TShape &shp = index2array[map_key]->shape(); input_shapes.push_back(shp); - const nnvm::TShape ss = input_shapes[i]; + const mxnet::TShape ss = input_shapes[i]; } } else { // TODO(cjolivier) @@ -788,7 +788,7 @@ class CoreOpExecutor : public test::op::OperatorDataInitializer /*! * \brief Input data shape */ - std::vector input_shapes_; + mxnet::ShapeVector input_shapes_; /* * \brief Pointer to the operator object */ @@ -863,7 +863,7 @@ template inline void BasicRunCoreOpBidirectional(const bool isGPU, bool verbose, const kwargs_t& op_kwargs, - const std::vector& shapes, + const mxnet::ShapeVector& shapes, const char *op_name, const char *backward_op_name = "") { test::op::CoreOpExecutor op(isGPU, shapes); diff --git a/tests/cpp/include/test_legacy_op.h b/tests/cpp/include/test_legacy_op.h index 7fd407e39807..fdb52cf6e4e0 100644 --- a/tests/cpp/include/test_legacy_op.h +++ b/tests/cpp/include/test_legacy_op.h @@ -67,7 +67,7 @@ class LegacyOperatorExecutor : public OperatorDataInitializer typedef AccReal AccRealType; /*! \brief Manage test blobs and context */ - LegacyOperatorExecutor(const bool isGPU, const std::vector& topShapes) + LegacyOperatorExecutor(const bool isGPU, const mxnet::ShapeVector& topShapes) #if !MXNET_USE_CUDA : isGPU_(false) #else @@ -102,7 +102,7 @@ class LegacyOperatorExecutor : public OperatorDataInitializer const size_t output_count = opProp.ListOutputs().size(); const size_t aux_count = opProp.ListAuxiliaryStates().size(); // Figure out what sort of blobs we need to allocate - std::vector out_shape, aux_shape; + mxnet::ShapeVector out_shape, aux_shape; out_shape.resize(output_count); aux_shape.resize(aux_count); opProp.InferShape(&shape_input_vec_, &out_shape, &aux_shape); @@ -134,7 +134,7 @@ class LegacyOperatorExecutor : public OperatorDataInitializer } // Get the resource of temporal space - std::vector inputShapes; + mxnet::ShapeVector inputShapes; for (size_t x = 0, n = shape_input_vec_.size(); x < n; ++x) { inputShapes.emplace_back(shape_input_vec_[x]); } @@ -166,7 +166,7 @@ class LegacyOperatorExecutor : public OperatorDataInitializer } // Get the resource of temporal space - std::vector ishapes; + mxnet::ShapeVector ishapes; allocateResources(opProp.BackwardResource(ishapes)); resetBackward(); @@ -303,7 +303,7 @@ class LegacyOperatorExecutor : public OperatorDataInitializer Stream& os = *_os; os << "static const std::vector< std::vector< std::vector > > ___" << label << "_data_shape_"; - const TShape& shape = shape_input_vec_[0]; + const mxnet::TShape& shape = shape_input_vec_[0]; for (size_t i = 0, n = shape.ndim(); i < n; ++i) { os << shape[i] << "_"; } @@ -398,7 +398,7 @@ class LegacyOperatorExecutor : public OperatorDataInitializer /*! \brief Input and output blobs */ OpContext opContext_; - std::vector shape_input_vec_; + mxnet::ShapeVector shape_input_vec_; struct OpData { std::vector blob_input_vec_; @@ -533,7 +533,7 @@ class LegacyOperatorExecutor : public OperatorDataInitializer /*! \brief Locally allocate a managed TBlob and insert into the supplied vector */ static TBlob *allocateBlob(std::list> *standalone_blobs, std::vector *dest, - const TShape& shape, + const mxnet::TShape& shape, const bool isGPU, const int dtype) { test::StandaloneBlob *blob = new test::StandaloneBlob(shape, isGPU, dtype); @@ -544,7 +544,7 @@ class LegacyOperatorExecutor : public OperatorDataInitializer } /*! \brief Locally allocate a managed TBlob and insert into the supplied vector */ - inline TBlob *allocateBlob(std::vector *dest, const TShape& shape, + inline TBlob *allocateBlob(std::vector *dest, const mxnet::TShape& shape, const bool isGPU, const int dtype) { return allocateBlob(&standalone_blobs_, dest, shape, isGPU, dtype); } diff --git a/tests/cpp/include/test_mkldnn.h b/tests/cpp/include/test_mkldnn.h index c705a6004aa9..a379dab7bf90 100644 --- a/tests/cpp/include/test_mkldnn.h +++ b/tests/cpp/include/test_mkldnn.h @@ -37,7 +37,7 @@ using namespace mxnet; -inline static mkldnn::memory::primitive_desc GetMemPD(const TShape s, int dtype, +inline static mkldnn::memory::primitive_desc GetMemPD(const mxnet::TShape s, int dtype, mkldnn::memory::format format) { mkldnn::memory::dims dims(s.ndim()); for (size_t i = 0; i < dims.size(); i++) @@ -49,7 +49,7 @@ inline static mkldnn::memory::primitive_desc GetMemPD(const TShape s, int dtype, inline static mkldnn::memory::primitive_desc GetExpandedMemPD( mkldnn::memory::primitive_desc pd, float scale, int dim = 0) { CHECK(dim < pd.desc().data.ndims) << "dimension cannot be larger than total dimensions of input"; - nnvm::TShape s(pd.desc().data.ndims); + mxnet::TShape s(pd.desc().data.ndims); for (size_t i = 0; i < pd.desc().data.ndims; i++) s[i] = pd.desc().data.dims[i]; s[dim] = static_cast(s[dim] * scale); @@ -58,7 +58,7 @@ inline static mkldnn::memory::primitive_desc GetExpandedMemPD( } struct TestArrayShapes { - std::vector shapes; + std::vector shapes; std::vector pds; }; @@ -85,7 +85,7 @@ inline static void InitMKLDNNArray(NDArray *arr, const mkldnn::memory::primitive arr->WaitToRead(); } -inline static bool IsSameShape(mkldnn::memory::primitive_desc pd, TShape shape) { +inline static bool IsSameShape(mkldnn::memory::primitive_desc pd, mxnet::TShape shape) { if (pd.desc().data.ndims != shape.ndim()) return false; for (size_t i = 0; i < shape.ndim(); i++) if (pd.desc().data.dims[i] != shape[i]) return false; @@ -161,11 +161,11 @@ inline static std::vector GetMKLDNNFormat(size_t num_dim inline static TestArrayShapes GetTestArrayShapes(bool spatial_data_format = false) { int dtype = mshadow::DataType::kFlag; - std::vector shapes; + mxnet::ShapeVector shapes; std::vector pds; { // 1D - TShape s(1); + mxnet::TShape s(1); s[0] = 279936; shapes.push_back(s); pds.push_back(GetMemPD(s, dtype, mkldnn::memory::format::x)); @@ -175,7 +175,7 @@ inline static TestArrayShapes GetTestArrayShapes(bool spatial_data_format = fals } { // 2D - TShape s(2); + mxnet::TShape s(2); s[0] = 96; s[1] = 2916; shapes.push_back(s); @@ -187,12 +187,12 @@ inline static TestArrayShapes GetTestArrayShapes(bool spatial_data_format = fals } { // 4D - TShape s1(4); + mxnet::TShape s1(4); s1[0] = 10; s1[1] = 96; s1[2] = 54; s1[3] = 54; shapes.push_back(s1); pds.push_back(GetMemPD(s1, dtype, mkldnn::memory::format::nchw)); - TShape s2(4); + mxnet::TShape s2(4); s2[0] = 96; s2[1] = 3; s2[2] = 11; s2[3] = 11; shapes.push_back(s2); pds.push_back(GetMemPD(s2, dtype, mkldnn::memory::format::oihw)); @@ -204,7 +204,7 @@ inline static TestArrayShapes GetTestArrayShapes(bool spatial_data_format = fals } { // 5D - TShape s(5); + mxnet::TShape s(5); s[0] = 96; s[1] = 1; s[2] = 3; s[3] = 11; s[4] = 11; shapes.push_back(s); pds.push_back(GetMemPD(s, dtype, mkldnn::memory::format::goihw)); @@ -256,10 +256,10 @@ enum ArrayTypes { }; -inline NDArray CreateKernelNDArray(TShape kernel, int num_filters, TShape input, +inline NDArray CreateKernelNDArray(mxnet::TShape kernel, int num_filters, mxnet::TShape input, bool is_deconv = false) { CHECK_EQ(kernel.ndim(), 2) << "mkldnn only supports 2d filters on 4d inputs"; - TShape target_shape(4); + mxnet::TShape target_shape(4); target_shape[0] = is_deconv ? input[1] : num_filters; target_shape[1] = is_deconv ? num_filters : input[1]; target_shape[2] = kernel[0]; @@ -271,7 +271,7 @@ inline NDArray CreateKernelNDArray(TShape kernel, int num_filters, TShape input, return arr; } -inline NDArray CreateBiasNDArray(TShape target_shape) { +inline NDArray CreateBiasNDArray(mxnet::TShape target_shape) { int dtype = mshadow::DataType::kFlag; NDArray arr(target_shape, Context()); auto pd = GetMemPD(target_shape, dtype, mkldnn::memory::format::x); @@ -299,8 +299,8 @@ inline std::string CreateShapeString(int value, int dim) { } inline void PrintVerifyMsg(const NDArrayAttrs &arr1, const NDArrayAttrs &arr2) { - TShape t1 = arr1.arr.shape(); - TShape t2 = arr2.arr.shape(); + mxnet::TShape t1 = arr1.arr.shape(); + mxnet::TShape t2 = arr2.arr.shape(); std::stringstream ss; std::cout << "Verifying: " << arr1.desc.c_str() << " " << t1 << " with " << arr2.desc.c_str() << " " << t2 << "\n"; @@ -332,7 +332,7 @@ inline std::vector GetTestInputArrays( int types = ArrayTypes::All, bool rand = false, std::vector scale = {1}, bool spatial_data_format = false) { TestArrayShapes tas = GetTestArrayShapes(spatial_data_format); - std::vector shapes = tas.shapes; + std::vector shapes = tas.shapes; std::vector pds = tas.pds; std::vector in_arrs; @@ -443,10 +443,10 @@ inline std::vector GetTestInputArrays( * Optional num_inputs / dim args can be passed to modify input shape (used for Concat test) */ inline std::vector GetTestOutputArrays( - const TShape &shp, + const mxnet::TShape &shp, const std::vector &pds, std::vectorscale = {1}, bool rand = true, int types = ArrayTypes::All) { - TShape shape = shp; + mxnet::TShape shape = shp; for (int dim = 0; dim < scale.size(); dim++) shape[dim] = static_cast(shape[dim] * scale[dim]); @@ -461,7 +461,7 @@ inline std::vector GetTestOutputArrays( InitDefaultArray(&in_arrs.back().arr, rand); } - TShape tmp_shape = shape; + mxnet::TShape tmp_shape = shape; if (types & ArrayTypes::NormalReshaped) { // Type 4. tmp_shape[0] = shape[0] * 2; @@ -470,7 +470,7 @@ inline std::vector GetTestOutputArrays( in_arrs.emplace_back(arr0.Slice(1, shape[0] + 1), "Reshaped NDArray"); } - nnvm::TShape s(1); + mxnet::TShape s(1); if (types & ArrayTypes::NormalReused) { // Type 5. // Get a reused version. @@ -528,7 +528,7 @@ inline std::vector GetTestOutputArrays( // Type 8, 9. // Get a reused version. - nnvm::TShape s(1); + mxnet::TShape s(1); s[0] = shape.Size(); NDArray arr = NDArray(s, Context()); arr = arr.AsArray(shape, arr.dtype()); @@ -553,7 +553,7 @@ inline std::vector GetTestOutputArrays( * Determines axis ndarrays are concatenated by * Used to verify concat/concat backwards operator */ -inline int GetDim(TShape input_shape, TShape output_shape) { +inline int GetDim(mxnet::TShape input_shape, mxnet::TShape output_shape) { CHECK(input_shape.Size() != output_shape.Size()); for (size_t i = 0; i < input_shape.ndim(); i++) { if (input_shape[i] != output_shape[i]) @@ -566,7 +566,7 @@ inline int GetDim(TShape input_shape, TShape output_shape) { * Calculates the size of continuous block of array inside larger concatenated array * Used to verify concat/concat backwards operator */ -inline int GetBlockSize(TShape shape, int dim) { +inline int GetBlockSize(mxnet::TShape shape, int dim) { int block_size = 1; for (int i = shape.ndim() - 1; i >= dim; i--) block_size *= shape[i]; diff --git a/tests/cpp/include/test_ndarray_utils.h b/tests/cpp/include/test_ndarray_utils.h index f5ab96794ada..8a53298f4811 100644 --- a/tests/cpp/include/test_ndarray_utils.h +++ b/tests/cpp/include/test_ndarray_utils.h @@ -60,7 +60,7 @@ inline float RandFloat() { } // Get an NDArray with provided indices, prepared for a RowSparse NDArray. -inline NDArray RspIdxND(const TShape shape, const Context ctx, +inline NDArray RspIdxND(const mxnet::TShape shape, const Context ctx, const std::vector &values) { NDArray nd(shape, ctx, false, ROW_SPARSE_IDX_TYPE); size_t num_val = values.size(); @@ -74,7 +74,7 @@ inline NDArray RspIdxND(const TShape shape, const Context ctx, } // Get a dense NDArray with provided values. -inline NDArray DnsND(const TShape shape, const Context ctx, std::vector vs) { +inline NDArray DnsND(const mxnet::TShape shape, const Context ctx, std::vector vs) { NDArray nd(shape, ctx, false); size_t num_val = shape.Size(); // generate random values @@ -109,8 +109,10 @@ static void inline CopyBlob(mshadow::Stream *s, } // Get a RowSparse NDArray with provided indices and values -inline NDArray RspND(const TShape shape, const Context ctx, const std::vector idx, - std::vector vals) { +inline NDArray RspND(const mxnet::TShape shape, + const Context ctx, + const std::vector idx, + std::vector vals) { CHECK(shape.ndim() <= 2) << "High dimensional row sparse not implemented yet"; index_t num_rows = idx.size(); index_t num_cols = vals.size() / idx.size(); @@ -122,7 +124,7 @@ inline NDArray RspND(const TShape shape, const Context ctx, const std::vector aux_shapes = {mshadow::Shape1(num_rows)}; + mxnet::ShapeVector aux_shapes = {mshadow::Shape1(num_rows)}; NDArray nd(kRowSparseStorage, shape, ctx, false, mshadow::default_type_flag, {}, aux_shapes); @@ -213,7 +215,7 @@ class Array { public: Array() = default; - explicit Array(const TShape &shape) + explicit Array(const mxnet::TShape &shape) : shape_(shape) {} explicit Array(const NDArray &arr) @@ -223,7 +225,7 @@ class Array { void clear() { items_.clear(); - shape_ = TShape(0); + shape_ = mxnet::TShape(0); } static inline bool IsNear(const DType v1, const DType v2) { return fabs(v2 - v1) <= EPSILON; } @@ -288,7 +290,7 @@ class Array { case kUndefinedStorage: default: LOG(ERROR) << "Unsupported storage type: " << storageType; - return NDArray(TShape(0), ctx); + return NDArray(mxnet::TShape(0), ctx); } } @@ -337,7 +339,7 @@ class Array { } private: - TShape shape_; + mxnet::TShape shape_; TItems items_; }; diff --git a/tests/cpp/include/test_op.h b/tests/cpp/include/test_op.h index 7a0c6d3878ee..d581e88357de 100644 --- a/tests/cpp/include/test_op.h +++ b/tests/cpp/include/test_op.h @@ -281,8 +281,8 @@ static test::op::OpInfo createOpAndInfoF(const k return info; } -inline std::vector ShapesOf(const std::vector& arrays) { - std::vector res; +inline mxnet::ShapeVector ShapesOf(const std::vector& arrays) { + mxnet::ShapeVector res; res.reserve(arrays.size()); for (const NDArray& ar : arrays) { res.emplace_back(ar.shape()); diff --git a/tests/cpp/include/test_op_runner.h b/tests/cpp/include/test_op_runner.h index 1e00e30a1b34..b46065bb5cdb 100644 --- a/tests/cpp/include/test_op_runner.h +++ b/tests/cpp/include/test_op_runner.h @@ -64,7 +64,7 @@ class OperatorRunner { test::op::OpInfo RunGenericOperatorForward( bool isGPU, - const std::vector& inputShapes, + const mxnet::ShapeVector& inputShapes, const std::vector > &kwargs, const size_t count = 1) { #if MXNET_USE_CUDA @@ -107,7 +107,7 @@ class OperatorRunner { */ test::op::OpInfo RunBidirectional( bool isGPU, - const std::vector& inputShapes, + const mxnet::ShapeVector& inputShapes, const std::vector > &kwargs, const size_t count = 1) { test::op::OpInfo info = @@ -137,7 +137,7 @@ class OperatorRunner { const test::op::kwargs_t& kwargs, int dim = 0, size_t count = 1, - const std::vector& timing_shapes = {}, + const mxnet::ShapeVector& timing_shapes = {}, bool backward = true) { if (mxnet::test::quick_test) { total_iterations_ = 2; @@ -193,7 +193,7 @@ class OperatorRunner { info = RunGenericOperatorForward(isGPU, !timing_shapes.empty() ? timing_shapes - : std::vector({TShape({batchSize, + : mxnet::ShapeVector({mxnet::TShape({batchSize, channels, width})}), kwargs, @@ -203,7 +203,7 @@ class OperatorRunner { info = RunGenericOperatorForward(isGPU, !timing_shapes.empty() ? timing_shapes - : std::vector({ TShape({batchSize, + : mxnet::ShapeVector({ mxnet::TShape({batchSize, channels, height, width})}), @@ -214,7 +214,7 @@ class OperatorRunner { info = RunGenericOperatorForward(isGPU, !timing_shapes.empty() ? timing_shapes - : std::vector({ TShape({batchSize, + : mxnet::ShapeVector({ mxnet::TShape({batchSize, channels, depth, height, diff --git a/tests/cpp/include/test_tune.h b/tests/cpp/include/test_tune.h index f5e15cc1811b..9f5a2e04c54e 100644 --- a/tests/cpp/include/test_tune.h +++ b/tests/cpp/include/test_tune.h @@ -67,7 +67,7 @@ class TuningTester { using bool_mode_pair = std::pair; - using shape_vect = std::vector; + using shape_vect = mxnet::ShapeVector; using shape_vec_to_bool_map = std::map; private: @@ -99,7 +99,7 @@ class TuningTester { // Do the performance runs const char *pu = isGPU ? "GPU" : "CPU"; - for (const std::vector &this_run_shapes : shapes) { + for (const mxnet::ShapeVector &this_run_shapes : shapes) { test::perf::timing_map_t tmap = runner.TimingTest(std::string(op_name) + " Operator " + pu, isGPU, false, kwargs, 0, calls_per_iteration_, @@ -189,13 +189,13 @@ class TuningTester { if (verbose || test::csv) { if (!test::csv) { for (size_t x = 0, n = shapes.size(); x < n; ++x) { - const TShape &shape = shapes[x]; + const mxnet::TShape &shape = shapes[x]; if (x) { std::cout << ", "; } std::cout << shape; } - const TShape &lhs_shape = shapes[0]; + const mxnet::TShape &lhs_shape = shapes[0]; std::cout << " lhs=" << test::pretty_num(lhs_shape.Size()) << " items"; std::cout << "\t(" << TimingDirectionAsString(direction) << ")" << std::endl; } else { diff --git a/tests/cpp/include/test_util.h b/tests/cpp/include/test_util.h index dee89039d3ef..aec3ddc5a59b 100644 --- a/tests/cpp/include/test_util.h +++ b/tests/cpp/include/test_util.h @@ -50,7 +50,7 @@ extern bool performance_run; extern bool csv; template -inline size_t shapeMemorySize(const TShape& shape) { +inline size_t shapeMemorySize(const mxnet::TShape& shape) { return shape.Size() * sizeof(DType); } @@ -87,7 +87,7 @@ class BlobMemory { class StandaloneBlob : public TBlob { public: - inline StandaloneBlob(const TShape& shape, const bool isGPU, const int dtype) + inline StandaloneBlob(const mxnet::TShape& shape, const bool isGPU, const int dtype) : TBlob(nullptr, shape, isGPU ? gpu::kDevMask : cpu::kDevMask, dtype) , memory_(std::make_shared(isGPU)) { MSHADOW_TYPE_SWITCH(dtype, DType, { @@ -261,12 +261,12 @@ inline void dump(Stream *os, const TBlob& blob, const char *suffix = "f") { /*! \brief Return reference to data at position indexes */ -inline index_t getMult(const TShape& shape, const index_t axis) { +inline index_t getMult(const mxnet::TShape& shape, const index_t axis) { return axis < shape.ndim() ? shape[axis] : 1; } /*! \brief offset, given indices such as bn, channel, depth, row, column */ -inline index_t offset(const TShape& shape, const std::vector& indices) { +inline index_t offset(const mxnet::TShape& shape, const std::vector& indices) { const size_t dim = shape.ndim(); CHECK_LE(indices.size(), dim); size_t offset = 0; @@ -314,8 +314,8 @@ inline std::string repeatedStr(const char *s, const signed int count, /*! \brief Pretty print a shape with optional label */ template -inline StreamType& print_shape(StreamType *_os, const std::string& label, const TShape& shape, - const bool add_endl = true) { +inline StreamType& print_shape(StreamType *_os, const std::string& label, + const mxnet::TShape& shape, const bool add_endl = true) { if (!label.empty()) { *_os << label << ": "; } @@ -355,14 +355,14 @@ inline StreamType& print_blob_(const RunContext& ctx, if (dim == 1) { // probably a 1d tensor (mshadow::Tensor is deprecated) - TBlob changed(blob.dptr(), TShape(3), blob.dev_mask(), blob.dev_id()); + TBlob changed(blob.dptr(), mxnet::TShape(3), blob.dev_mask(), blob.dev_id()); changed.shape_[0] = 1; changed.shape_[1] = 1; changed.shape_[2] = blob.shape_[0]; return print_blob_(ctx, &os, changed, false, false, add_endl); } else if (dim == 2) { // probably a 2d tensor (mshadow::Tensor is deprecated) - TBlob changed(blob.dptr(), TShape(4), blob.dev_mask(), blob.dev_id()); + TBlob changed(blob.dptr(), mxnet::TShape(4), blob.dev_mask(), blob.dev_id()); changed.shape_[0] = 1; changed.shape_[1] = 1; changed.shape_[2] = blob.shape_[0]; @@ -504,35 +504,35 @@ inline StreamType& print(const RunContext& ctx, StreamType *_os, switch (arr.storage_type()) { case kRowSparseStorage: { // data - const TShape& shape = arr.shape(); + const mxnet::TShape& shape = arr.shape(); print_shape(_os, "[row_sparse] main shape", shape, false); - const TShape& storage_shape = arr.storage_shape(); + const mxnet::TShape& storage_shape = arr.storage_shape(); const bool is_one_row = storage_shape[0] < 2; print_shape(_os, "storage shape", storage_shape, false); print(ctx, _os, arr.data(), true, true, !is_one_row); // indices - const TShape& indices_shape = arr.aux_shape(rowsparse::kIdx); + const mxnet::TShape& indices_shape = arr.aux_shape(rowsparse::kIdx); print_shape(_os, "indices shape", indices_shape, false); print(ctx, _os, arr.aux_data(rowsparse::kIdx), true, true, false) << std::endl; break; } case kCSRStorage: { // data - const TShape& shape = arr.shape(); + const mxnet::TShape& shape = arr.shape(); print_shape(_os, "[CSR] main shape", shape, false); - const TShape& storage_shape = arr.storage_shape(); + const mxnet::TShape& storage_shape = arr.storage_shape(); const bool is_one_row = storage_shape[0] < 2; print_shape(_os, "storage shape", storage_shape, false); print(ctx, _os, arr.data(), true, true, !is_one_row); // row ptrs - const TShape& ind_ptr_shape = arr.aux_shape(csr::kIndPtr); + const mxnet::TShape& ind_ptr_shape = arr.aux_shape(csr::kIndPtr); print_shape(_os, "row ptrs shape", ind_ptr_shape, false); print(ctx, _os, arr.aux_data(csr::kIndPtr), true, true, false) << std::endl; // col indices - const TShape& indices_shape = arr.aux_shape(csr::kIdx); + const mxnet::TShape& indices_shape = arr.aux_shape(csr::kIdx); print_shape(_os, "col indices shape", indices_shape, false); print(ctx, _os, arr.aux_data(csr::kIdx), true, true, false) << std::endl; @@ -540,7 +540,7 @@ inline StreamType& print(const RunContext& ctx, StreamType *_os, } case kDefaultStorage: { // data - const TShape& shape = arr.shape(); + const mxnet::TShape& shape = arr.shape(); const bool is_one_row = shape[0] < 2; print_shape(_os, "[dense] main shape", shape, !is_one_row); print(ctx, _os, arr.data(), true, true, !is_one_row) << std::endl; @@ -696,13 +696,13 @@ inline ScalarType rangedRand(const ScalarType min, const ScalarType max) { } /*! - * \brief Deterministically compare TShape objects as less-than, + * \brief Deterministically compare mxnet::TShape objects as less-than, * for use in stl sorted key such as map and set * \param s1 First shape * \param s2 Second shape * \return true if s1 is less than s2 */ -inline bool operator < (const nnvm::TShape &s1, const nnvm::TShape &s2) { +inline bool operator < (const mxnet::TShape &s1, const mxnet::TShape &s2) { if (s1.Size() == s2.Size()) { if (s1.ndim() == s2.ndim()) { for (size_t i = 0, n = s1.ndim(); i < n; ++i) { @@ -719,13 +719,14 @@ inline bool operator < (const nnvm::TShape &s1, const nnvm::TShape &s2) { } /*! - * \brief Deterministically compare a vector of TShape objects as less-than, + * \brief Deterministically compare a vector of mxnet::TShape objects as less-than, * for use in stl sorted key such as map and set * \param v1 First vector of shapes * \param v2 Second vector of shapes * \return true if v1 is less than v2 */ -inline bool operator < (const std::vector& v1, const std::vector& v2) { +inline bool operator < (const std::vector& v1, + const std::vector& v2) { if (v1.size() == v2.size()) { for (size_t i = 0, n = v1.size(); i < n; ++i) { if (v1[i] == v2[i]) { @@ -742,7 +743,8 @@ inline bool operator < (const std::vector& v1, const std::vector& v1, const std::vector& v2) const { + bool operator()(const std::vector& v1, + const std::vector& v2) const { if (v1.size() == v2.size()) { for (size_t i = 0, n = v1.size(); i < n; ++i) { if (v1[i] == v2[i]) { diff --git a/tests/cpp/misc/serialization.cc b/tests/cpp/misc/serialization.cc index 96f8b6c3a3a7..77014238c2fa 100644 --- a/tests/cpp/misc/serialization.cc +++ b/tests/cpp/misc/serialization.cc @@ -45,13 +45,13 @@ TEST(SerializerTest, InputMapCorrect) { } TEST(SerializerTest, OutputMapCorrect) { - std::map > output_map; - output_map.emplace("output_0", std::make_tuple(1, TShape({23, 12, 63, 432}), 0, 1)); - output_map.emplace("another_output", std::make_tuple(2, TShape({23, 123}), 14, -23)); - output_map.emplace("last_output", std::make_tuple(0, TShape({0}), -1, 0)); + std::map > output_map; + output_map.emplace("output_0", std::make_tuple(1, mxnet::TShape({23, 12, 63, 432}), 0, 1)); + output_map.emplace("another_output", std::make_tuple(2, mxnet::TShape({23, 123}), 14, -23)); + output_map.emplace("last_output", std::make_tuple(0, mxnet::TShape({0}), -1, 0)); std::string serialized_data; common::Serialize(output_map, &serialized_data); - std::map > deserialized_output_map; + std::map > deserialized_output_map; common::Deserialize(&deserialized_output_map, serialized_data); ASSERT_EQ(output_map.size(), deserialized_output_map.size()); for (auto& p : output_map) { diff --git a/tests/cpp/operator/activation_perf.cc b/tests/cpp/operator/activation_perf.cc index bba8a3ec5722..29deda92e01b 100644 --- a/tests/cpp/operator/activation_perf.cc +++ b/tests/cpp/operator/activation_perf.cc @@ -39,7 +39,7 @@ const kwargs_t basic_activation_args = { }; */ TEST(ACTIVATION_PERF, ExecuteBidirectional) { using namespace std; - TShape shape({5, 5}); + mxnet::TShape shape({5, 5}); vector activations = { "relu", "sigmoid", @@ -70,11 +70,11 @@ TEST(ACTIVATION_PERF, TimingCPU) { kwargs.push_back({"act_type", "tanh"}); kwargs = test::op::CoreOpExecutor::ArgsWithOpName(kwargs, "Activation", "_backward_Activation"); - TShape shape({10, 10, 10, 10}); + mxnet::TShape shape({10, 10, 10, 10}); test::op::CoreOperatorRunner runner; runner.RunBidirectional(false, { shape }, kwargs, 1); - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {1, 1, 28, 28}, @@ -89,7 +89,7 @@ TEST(ACTIVATION_PERF, TimingCPU) { {50, 3, 18, 32}, }; } - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { runner.TimingTest("Activation Operator CPU", false, false, kwargs, 2, 10, { shape }); } } @@ -104,17 +104,17 @@ TEST(ACTIVATION_PERF, TimingGPU) { kwargs.push_back({"act_type", "tanh"}); kwargs = test::op::CoreOpExecutor::ArgsWithOpName(kwargs, "Activation", "_backward_Activation"); - TShape shape({10, 10, 10, 10}); + mxnet::TShape shape({10, 10, 10, 10}); test::op::CoreOperatorRunner runner; runner.RunBidirectional(true, { shape }, kwargs, 1); - std::vector shapes = { + std::vector shapes = { {1, 1, 28, 28}, {1, 3, 28, 28}, {50, 1, 18, 32}, {50, 3, 18, 32}, {20, 3, 128, 128} }; - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { runner.TimingTest("Activation Operator GPU", true, false, kwargs, 2, 10, { shape }); } } diff --git a/tests/cpp/operator/batchnorm_test.cc b/tests/cpp/operator/batchnorm_test.cc index 2f9de742a35a..8beebfb1582e 100644 --- a/tests/cpp/operator/batchnorm_test.cc +++ b/tests/cpp/operator/batchnorm_test.cc @@ -105,7 +105,7 @@ class BNOperatorExecutor : public test::op::CoreOpExecutor { public: using Super::ctx; - BNOperatorExecutor(const bool isGPU, const TShape& inputShape, + BNOperatorExecutor(const bool isGPU, const mxnet::TShape& inputShape, const test::op::kwargs_t& kwargs, const bool hasWeightAndBias = false) : test::op::CoreOpExecutor(isGPU, { inputShape }) @@ -664,7 +664,7 @@ static StreamType& dumpB(StreamType *os, template static test::op::OpInfo TestBatchNormOperatorForward( bool isGPU, - const TShape& inputShape, + const mxnet::TShape& inputShape, const std::vector >& kwargs, const size_t count = 1) { #if MXNET_USE_CUDA @@ -712,7 +712,7 @@ template testForwardAndBackward( const bool isGPU1, const bool isGPU2, - const TShape &inputShape, + const mxnet::TShape &inputShape, const test::op::kwargs_t& kwargs, const size_t count = 1, const size_t cycleCount = CYCLE_COUNT) { @@ -781,7 +781,7 @@ static test::op::OpInfoPair test template static test::op::OpInfoPair testForwardAndBackward(const bool isGPU, - const TShape &inputShape, + const mxnet::TShape &inputShape, const test::op::kwargs_t kwargs, const size_t count = 1, const size_t cycleCount = CYCLE_COUNT @@ -821,7 +821,7 @@ struct BatchNormCoreOpProp : public mxnet::test::op::CoreOpProp { template static test::op::OpInfoPair testBNForwardAndBackward2D(const bool isGPU, - const TShape &inputShape, + const mxnet::TShape &inputShape, const test::op::kwargs_t& kwargs) { CHECK_EQ(inputShape.ndim(), 4); // V1 can only handle 2D return testForwardAndBackward( @@ -831,7 +831,7 @@ testBNForwardAndBackward2D(const bool isGPU, template static test::op::OpInfoPair testBNForwardAndBackward(const bool isGPU, - const TShape &inputShape, + const mxnet::TShape &inputShape, const test::op::kwargs_t& kwargs) { return testForwardAndBackward( isGPU, isGPU, inputShape, kwargs); @@ -1066,10 +1066,10 @@ inline std::ostream& operator << (std::ostream& os, const test::op::kwargs_t& kw #if 0 TEST(BATCH_NORM, TestIterAll) { - TShape shapes[] = { - TShape({BATCH_SIZE, CHANNELS, DH}), - TShape({BATCH_SIZE, CHANNELS, DH, DW}), - TShape({BATCH_SIZE, CHANNELS, DEPTH, DH, DW}) + mxnet::TShape shapes[] = { + mxnet::TShape({BATCH_SIZE, CHANNELS, DH}), + mxnet::TShape({BATCH_SIZE, CHANNELS, DH, DW}), + mxnet::TShape({BATCH_SIZE, CHANNELS, DEPTH, DH, DW}) }; int pass = 0; const char *tof[2] = { "False", "True" }; @@ -1082,7 +1082,7 @@ TEST(BATCH_NORM, TestIterAll) { if (x3) { kwargs.push_back({ "cudnn_off", "True" }); } - for (TShape shape : shapes) { + for (mxnet::TShape shape : shapes) { for (bool g1 : { false, true }) { for (bool g2 : { false, true }) { for (int type : v2_types) { @@ -1122,7 +1122,7 @@ TEST(BATCH_NORM, TestBackward3D) { MSHADOW_REAL_TYPE_SWITCH_EX( mshadow::kFloat32, DType, AccReal, { - const TShape inputShape({2, 3, 2, 3, 5}); + const mxnet::TShape inputShape({2, 3, 2, 3, 5}); test::op::OpInfo> info = TestBatchNormOperatorForward>( false, inputShape, blank_kwargs); @@ -1140,7 +1140,7 @@ class ChannelAxisTestData { void loadOrSave(const RunContext& run_ctx, const TBlob& blob, int channel_axis, const Mode mode) { test::CAccessAsCPU cpu_blob(run_ctx, blob, true); mxnet::op::batchnorm::BNTensor3 tensor3(cpu_blob(), channel_axis); - const TShape &shape = blob.shape_; + const mxnet::TShape &shape = blob.shape_; CHECK_GT(shape.ndim(), 0); if (channel_axis < 0) { channel_axis = shape.ndim() + channel_axis; @@ -1264,7 +1264,7 @@ static void testSaveAndLoad(const std::vector& dims, ChannelAxisTestData data; data.channel_data_ = inputChannelData; - TShape shape(dims.size()); + mxnet::TShape shape(dims.size()); for (size_t i = 0, n = dims.size(); i < n; ++i) { shape[i] = index_t(dims[i]); } @@ -1312,7 +1312,7 @@ TEST(BATCH_NORM, TestChannelAxisSaveAndLoad) { } /*! \brief Insert the channel field `channelCount` into the shape at `channelAxis` position */ -static TShape MakeShape(const std::vector& shape, +static mxnet::TShape MakeShape(const std::vector& shape, signed int channelAxis, const size_t channelCount) { if (channelAxis < 0) { @@ -1320,7 +1320,7 @@ static TShape MakeShape(const std::vector& shape, } CHECK_LT(channelAxis, shape.size() + 1); const index_t dim = index_t(shape.size()) + 1; - TShape newShape(dim); + mxnet::TShape newShape(dim); for (size_t x = 0; x < static_cast(channelAxis); ++x) { newShape[x] = index_t(shape[x]); } @@ -1386,8 +1386,8 @@ static void runChannelAxisTest( test::op::kwargs_t kwargs = base_kwargs; // Insert the channel field into the shape at channelAxis position - const TShape shape_c1 = MakeShape(shape, channelAxis1, channelCount); - const TShape shape_c2 = MakeShape(shape, channelAxis2, channelCount); + const mxnet::TShape shape_c1 = MakeShape(shape, channelAxis1, channelCount); + const mxnet::TShape shape_c2 = MakeShape(shape, channelAxis2, channelCount); // Create operator 1 with ChannelAxis2 (normally the experimental one) kwargs.push_back({"axis", std::to_string(channelAxis1)}); @@ -1575,7 +1575,7 @@ TEST(BATCH_NORM, Test2DBackwardMixed_gpu_cpu) { MSHADOW_REAL_TYPE_SWITCH_EX( type, DType, AccReal, { - const TShape inputShape({1, 1, 2, 1}); + const mxnet::TShape inputShape({1, 1, 2, 1}); testForwardAndBackward>( false, true, inputShape, blank_kwargs); @@ -1591,7 +1591,7 @@ TEST(BATCH_NORM, Test2DBackwardMixedComplex_gpu_cpu) { MSHADOW_REAL_TYPE_SWITCH_EX( type, DType, AccReal, { - const TShape inputShape({BATCH_SIZE, CHANNELS, DH, DW}); + const mxnet::TShape inputShape({BATCH_SIZE, CHANNELS, DH, DW}); testForwardAndBackward>( false, true, inputShape, blank_kwargs); @@ -1609,7 +1609,7 @@ TEST(BATCH_NORM, Test2DBackwardMixed_gpu_cpu_nfg) { MSHADOW_REAL_TYPE_SWITCH_EX( type, DType, AccReal, { - const TShape inputShape({1, 1, 2, 1}); + const mxnet::TShape inputShape({1, 1, 2, 1}); testForwardAndBackward>( false, true, inputShape, nonfixgamma_kwargs); @@ -1625,7 +1625,7 @@ TEST(BATCH_NORM, Test2DBackwardMixedComplex_gpu_cpu_nfg) { MSHADOW_REAL_TYPE_SWITCH_EX( type, DType, AccReal, { - const TShape inputShape({BATCH_SIZE, CHANNELS, DH, DW}); + const mxnet::TShape inputShape({BATCH_SIZE, CHANNELS, DH, DW}); testForwardAndBackward>( false, true, inputShape, nonfixgamma_kwargs); @@ -1643,7 +1643,7 @@ TEST(BATCH_NORM, Test2DBackwardMixed_gpu_cpu_ugs) { MSHADOW_REAL_TYPE_SWITCH_EX( type, DType, AccReal, { - const TShape inputShape({2, 3, 2, 2}); + const mxnet::TShape inputShape({2, 3, 2, 2}); testForwardAndBackward>( false, true, inputShape, useglobalstats_kwargs_nocudnn); @@ -1659,7 +1659,7 @@ TEST(BATCH_NORM, Test2DBackwardMixedComplex_gpu_cpu_ugs) { MSHADOW_REAL_TYPE_SWITCH_EX( type, DType, AccReal, { - const TShape inputShape({BATCH_SIZE, CHANNELS, DH, DW}); + const mxnet::TShape inputShape({BATCH_SIZE, CHANNELS, DH, DW}); testForwardAndBackward>( false, true, inputShape, useglobalstats_kwargs); diff --git a/tests/cpp/operator/coreop_perf.cc b/tests/cpp/operator/coreop_perf.cc index 31ecebdfee13..14ef625e6915 100644 --- a/tests/cpp/operator/coreop_perf.cc +++ b/tests/cpp/operator/coreop_perf.cc @@ -38,7 +38,7 @@ static void RunCoreOpBidirectional(const bool isGPU, const kwargs_t& op_kwargs, const char *op_name, const char *backward_op_name = "") { - const TShape shape({5, 5}); + const mxnet::TShape shape({5, 5}); test::op::CoreOpExecutor op(isGPU, { shape }); op.set_verbose(false); @@ -69,7 +69,7 @@ static void RunCoreOpTimingTest(const bool isGPU, runner.RunBidirectional(false, { {20, 3, 128, 128} }, kwargs, 1); // Do the performance runs - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {1, 1, 28, 28}, @@ -85,7 +85,7 @@ static void RunCoreOpTimingTest(const bool isGPU, }; } const char *pu = isGPU ? "GPU" : "CPU"; - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { runner.TimingTest(std::string(op_name) + " Operator " + pu, isGPU, false, kwargs, 2, 10, { shape }); } diff --git a/tests/cpp/operator/dropout_perf.cc b/tests/cpp/operator/dropout_perf.cc index 4afd56fe586a..2a1754e2606f 100644 --- a/tests/cpp/operator/dropout_perf.cc +++ b/tests/cpp/operator/dropout_perf.cc @@ -38,7 +38,7 @@ const kwargs_t basic_dropout_args = { }; * \brief Generic bidirectional sanity test */ TEST(DROPOUT_PERF, ExecuteBidirectional) { - TShape shape({5, 5}); + mxnet::TShape shape({5, 5}); kwargs_t kwargs = basic_dropout_args; kwargs.push_back({"mode", "always"}); test::op::CoreOperatorRunner runner; @@ -55,12 +55,12 @@ TEST(DROPOUT_PERF, TimingCPU) { kwargs_t kwargs = basic_dropout_args; // Which math function is arbitrary since it will have roughly constant timing among approaches kwargs.push_back({"mode", "always"}); - TShape shape({10, 10, 10, 10}); + mxnet::TShape shape({10, 10, 10, 10}); test::op::CoreOperatorRunner runner; kwargs = test::op::CoreOpExecutor::ArgsWithOpName(kwargs, "Dropout", "_backward_Dropout"); runner.RunBidirectional(false, { shape }, kwargs, 1); - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {1, 1, 28, 28}, @@ -75,7 +75,7 @@ TEST(DROPOUT_PERF, TimingCPU) { {50, 3, 18, 32}, }; } - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { kwargs = test::op::CoreOpExecutor::ArgsWithOpName(kwargs, "Dropout", "_backward_Dropout"); runner.TimingTest("Dropout Operator CPU", false, false, kwargs, 2, 10, { shape }, false); @@ -90,19 +90,19 @@ TEST(DROPOUT_PERF, TimingGPU) { kwargs_t kwargs = basic_dropout_args; // Which math function is arbitrary since it will have roughly constant timing among approaches kwargs.push_back({"mode", "always"}); - TShape shape({10, 10, 10, 10}); + mxnet::TShape shape({10, 10, 10, 10}); test::op::CoreOperatorRunner runner; kwargs = test::op::CoreOpExecutor::ArgsWithOpName(kwargs, "Dropout", "_backward_Dropout"); runner.RunBidirectional(false, { shape }, kwargs, 1); - std::vector shapes = { + std::vector shapes = { {1, 1, 28, 28}, {1, 3, 28, 28}, {50, 1, 18, 32}, {50, 3, 18, 32}, {20, 3, 128, 128} }; - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { kwargs = test::op::CoreOpExecutor::ArgsWithOpName(kwargs, "Dropout", "_backward_Dropout"); runner.TimingTest("Dropout Operator GPU", true, false, kwargs, 2, 10, { shape }, false); diff --git a/tests/cpp/operator/fully_conn_perf.cc b/tests/cpp/operator/fully_conn_perf.cc index e574ae2b4379..9fd70261dc93 100644 --- a/tests/cpp/operator/fully_conn_perf.cc +++ b/tests/cpp/operator/fully_conn_perf.cc @@ -26,7 +26,6 @@ #include #include -#include #include "../../src/operator/nn/fully_connected-inl.h" #include "../include/test_op_runner.h" #include "../include/test_core_op.h" @@ -40,8 +39,8 @@ const kwargs_t basic_fullyconn_args = { {"num_hidden", "250"}, {"no_bias", "true * \brief Generic bidirectional sanity test */ TEST(FULLY_CONNECTED, ExecuteBidirectionalFullyConnected) { - TShape shape1({5, 5}); - TShape shape2({250, 5}); + mxnet::TShape shape1({5, 5}); + mxnet::TShape shape2({250, 5}); kwargs_t kwargs = basic_fullyconn_args; test::op::CoreOperatorRunner runner; runner.set_verbose(true); @@ -55,13 +54,13 @@ TEST(FULLY_CONNECTED, ExecuteBidirectionalFullyConnected) { */ TEST(FULLY_CONNECTED, FullyConnectedTimingCPU) { kwargs_t kwargs = basic_fullyconn_args; - TShape shape1({10, 10, 10, 10}); - TShape shape2({250, 1000}); + mxnet::TShape shape1({10, 10, 10, 10}); + mxnet::TShape shape2({250, 1000}); test::op::CoreOperatorRunner runner; kwargs = test::op::CoreOpExecutor::ArgsWithOpName(kwargs, "FullyConnected", "_backward_FullyConnected"); runner.RunBidirectional(false, { shape1, shape2 }, kwargs, 1); - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {1, 1, 28, 28}, @@ -76,8 +75,8 @@ TEST(FULLY_CONNECTED, FullyConnectedTimingCPU) { {50, 3, 18, 32}, }; } - for (const TShape& shape : shapes) { - TShape shape2({250, static_cast(shape.ProdShape(1, shape.ndim()))}); + for (const mxnet::TShape& shape : shapes) { + mxnet::TShape shape2({250, static_cast(shape.ProdShape(1, shape.ndim()))}); kwargs = test::op::CoreOpExecutor::ArgsWithOpName(kwargs, "FullyConnected", "_backward_FullyConnected"); runner.TimingTest("Fully connected CPU", false, false, kwargs, 2, 10, @@ -91,13 +90,13 @@ TEST(FULLY_CONNECTED, FullyConnectedTimingCPU) { */ TEST(FULLY_CONNECTED, FullyConnectedTimingGPU) { kwargs_t kwargs = basic_fullyconn_args; - TShape shape1({10, 10, 10, 10}); - TShape shape2({250, 1000}); + mxnet::TShape shape1({10, 10, 10, 10}); + mxnet::TShape shape2({250, 1000}); test::op::CoreOperatorRunner runner; kwargs = test::op::CoreOpExecutor::ArgsWithOpName(kwargs, "FullyConnected", "_backward_FullyConnected"); runner.RunBidirectional(false, { shape1, shape2 }, kwargs, 1); - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {1, 1, 28, 28}, @@ -112,8 +111,8 @@ TEST(FULLY_CONNECTED, FullyConnectedTimingGPU) { {50, 3, 18, 32}, }; } - for (const TShape& shape : shapes) { - TShape shape2({250, static_cast(shape.ProdShape(1, shape.ndim()))}); + for (const mxnet::TShape& shape : shapes) { + mxnet::TShape shape2({250, static_cast(shape.ProdShape(1, shape.ndim()))}); kwargs = test::op::CoreOpExecutor::ArgsWithOpName(kwargs, "FullyConnected", "_backward_FullyConnected"); runner.TimingTest("Fully connected GPU", true, false, kwargs, 2, 10, diff --git a/tests/cpp/operator/mkldnn_operator_test.cc b/tests/cpp/operator/mkldnn_operator_test.cc index 3bf3228a4b44..559ab5da0ccc 100644 --- a/tests/cpp/operator/mkldnn_operator_test.cc +++ b/tests/cpp/operator/mkldnn_operator_test.cc @@ -437,7 +437,7 @@ void VerifyConcatResult(const std::vector &in_arrs, const std::vector &out_arrs) { int num_inputs = in_arrs.size(); int input_size = in_arrs[0]->shape().Size(); - TShape input_shape = in_arrs[0]->shape(); + mxnet::TShape input_shape = in_arrs[0]->shape(); NDArray output = out_arrs[0]->Reorder2Default(); size_t total_size = output.shape().Size(); EXPECT_EQ(input_size * num_inputs, total_size); @@ -462,7 +462,7 @@ void VerifyConcatBackwardsResult(const std::vector &in_arrs, // in_arrs is larger array, out_arr is ammler int num_inputs = out_arrs.size(); int input_size = out_arrs[0]->shape().Size(); - TShape input_shape = out_arrs[0]->shape(); + mxnet::TShape input_shape = out_arrs[0]->shape(); NDArray output = in_arrs[0]->Reorder2Default(); size_t total_size = output.shape().Size(); EXPECT_EQ(input_size * num_inputs, total_size); @@ -879,7 +879,7 @@ void TestOpExBN(const OpAttrs &forward_attrs, const OpAttrs &backwards_attrs) { } // Computes second dimension of FC weight matrix based on input shape -uint32_t GetFCWeightDim2(const nnvm::TShape arr) { +uint32_t GetFCWeightDim2(const mxnet::TShape arr) { uint32_t dim = 1; for (int i = 1; i < arr.ndim(); i++) { dim *= arr[i]; @@ -916,13 +916,13 @@ void TestFullyConnectedOp(const OpAttrs &forward_attrs, const OpAttrs &backwards if (in_shape.ndim() < 2) continue; - nnvm::TShape wt_shape(2); + mxnet::TShape wt_shape(2); wt_shape[0] = num_hid; wt_shape[1] = GetFCWeightDim2(in_shape); NDArray weights(wt_shape, Context()); InitDefaultArray(&weights, false); - nnvm::TShape bias_shape(1); + mxnet::TShape bias_shape(1); bias_shape[0] = num_hid; NDArray bias(bias_shape, Context()); InitDefaultArray(&bias, false); @@ -931,7 +931,7 @@ void TestFullyConnectedOp(const OpAttrs &forward_attrs, const OpAttrs &backwards inputs[1] = &weights; inputs[2] = &bias; - nnvm::TShape out_shape(2); + mxnet::TShape out_shape(2); out_shape[0] = in_shape[0]; out_shape[1] = num_hid; @@ -1018,9 +1018,9 @@ void TestConvOp(const OpAttrs &forward_attrs, const OpAttrs &backwards_attrs, P param; param.Init(forward_attrs.attrs.dict); - TShape kernel = param.kernel; - TShape padding = param.pad; - TShape stride = param.stride; + mxnet::TShape kernel = param.kernel; + mxnet::TShape padding = param.pad; + mxnet::TShape stride = param.stride; int num_filter = param.num_filter; std::vector in_arrs = GetTestInputArrays( @@ -1032,7 +1032,7 @@ void TestConvOp(const OpAttrs &forward_attrs, const OpAttrs &backwards_attrs, auto in_arr = in_arrs[i1]; // can only conv only 4D inputs - TShape input_shape = in_arr.arr.shape(); + mxnet::TShape input_shape = in_arr.arr.shape(); if (input_shape.ndim() != kernel.ndim() + 2) continue; @@ -1056,7 +1056,7 @@ void TestConvOp(const OpAttrs &forward_attrs, const OpAttrs &backwards_attrs, scale_vector, true, forward_attrs.output_types); } NDArray ndkernel = CreateKernelNDArray(kernel, num_filter, in_arr.arr.shape(), is_deconv); - TShape bias_shape = {num_filter}; + mxnet::TShape bias_shape = {num_filter}; NDArray ndbias = CreateBiasNDArray(bias_shape); inputs[0] = &in_arr.arr; inputs[1] = &ndkernel; @@ -1144,9 +1144,9 @@ void TestPoolingOp(const OpAttrs &forward_attrs, const OpAttrs &backwards_attrs) mxnet::op::PoolingParam param; param.Init(forward_attrs.attrs.dict); - TShape kernel = param.kernel; - TShape padding = param.pad; - TShape stride = param.stride; + mxnet::TShape kernel = param.kernel; + mxnet::TShape padding = param.pad; + mxnet::TShape stride = param.stride; std::vector in_arrs = GetTestInputArrays(); std::vector> out_arrs(forward_attrs.num_outputs); @@ -1156,7 +1156,7 @@ void TestPoolingOp(const OpAttrs &forward_attrs, const OpAttrs &backwards_attrs) auto in_arr = in_arrs[i1]; // can only pool only 3D and 4D inputs - TShape input_shape = in_arr.arr.shape(); + mxnet::TShape input_shape = in_arr.arr.shape(); if (input_shape.ndim() != kernel.ndim() + 2) continue; // cannot pool if ndarray and mkldnn memory have different ndim diff --git a/tests/cpp/operator/mkldnn_test.cc b/tests/cpp/operator/mkldnn_test.cc index 31e762f21720..1e7f09005c93 100644 --- a/tests/cpp/operator/mkldnn_test.cc +++ b/tests/cpp/operator/mkldnn_test.cc @@ -129,7 +129,7 @@ static void VerifyMem(const mkldnn::memory &mem) { TEST(MKLDNN_NDArray, GetDataReorder) { TestArrayShapes tas = GetTestArrayShapes(); - std::vector shapes = tas.shapes; + mxnet::ShapeVector shapes = tas.shapes; std::vector pds = tas.pds; @@ -373,7 +373,7 @@ TEST(MKLDNN_NDArray, GetTestInputArraysConcat) { TEST(MKLDNN_NDArray, GetTestOutputArraysConcat) { auto shapes_pds = GetTestArrayShapes(); - std::vector shapes; shapes = shapes_pds.shapes; + std::vector shapes; shapes = shapes_pds.shapes; std::vector pds = shapes_pds.pds; for (auto &shape : shapes) { for (int dim = 0; dim < 5; dim++) { diff --git a/tests/cpp/operator/runner/core_op_runner_test.cc b/tests/cpp/operator/runner/core_op_runner_test.cc index 6cc2baddae28..96458cd1c713 100644 --- a/tests/cpp/operator/runner/core_op_runner_test.cc +++ b/tests/cpp/operator/runner/core_op_runner_test.cc @@ -58,7 +58,7 @@ inline std::vector AsVect(const TT& t) { * \brief Generic bidirectional sanity test for simple unary op */ TEST(CORE_OP_RUNNER, ExecuteBidirectionalSimpleUnaryList) { - TShape shape({5, 5}); + mxnet::TShape shape({5, 5}); kwargs_t kwargs = basic_args; for (const std::pair& i : test_unary_operators) { @@ -90,7 +90,7 @@ TEST(CORE_OP_RUNNER, ExecuteBidirectionalList) { const char *op_name = i.first.c_str(); const char *backward_op_name = i.second.c_str(); - TShape shape({5, 5}); + mxnet::TShape shape({5, 5}); kwargs_t kwargs = basic_args; test::op::CoreOpExecutor op(false, AsVect(shape)); @@ -119,7 +119,7 @@ TEST(CORE_OP_RUNNER, ExecuteBidirectionalDotProduct) { kwargs_t kwargs = basic_args; - test::op::CoreOpExecutor op(false, { TShape({ 2, 3 }), TShape({ 3, 2 }) }); + test::op::CoreOpExecutor op(false, { mxnet::TShape({ 2, 3 }), mxnet::TShape({ 3, 2 }) }); op.set_verbose(false); op.Init(op.ArgsWithOpName(kwargs, op_name, backward_op_name)); @@ -137,7 +137,7 @@ TEST(CORE_OP_RUNNER, ExecuteBidirectionalDotProduct) { TEST(CORE_OP_RUNNER, ExecuteBidirectionalRunnerSimpleUnary) { typedef float DType; - TShape shape({5, 5}); + mxnet::TShape shape({5, 5}); for (const std::pair& i : test_unary_operators) { const char *op_name = i.first.c_str(); const char *backward_op_name = i.second.c_str(); @@ -149,7 +149,7 @@ TEST(CORE_OP_RUNNER, ExecuteBidirectionalRunnerSimpleUnary) { TEST(CORE_OP_RUNNER, ExecuteBidirectionalRunner) { typedef float DType; - TShape shape({5, 5}); + mxnet::TShape shape({5, 5}); for (const std::pair& i : test_binary_operators) { const char *op_name = i.first.c_str(); const char *backward_op_name = i.second.c_str(); @@ -168,7 +168,7 @@ TEST(CORE_OP_RUNNER, ExecuteBidirectionalRunnerDotProduct) { const char *backward_op_name = "_backward_dot"; test::op::CoreOperatorRunner runner; runner.RunBidirectional(false, - { TShape({ 2, 3 }), TShape({ 3, 2 }) }, + { mxnet::TShape({ 2, 3 }), mxnet::TShape({ 3, 2 }) }, test::op::CoreOpExecutor::ArgsWithOpName(basic_args, op_name, backward_op_name), @@ -186,9 +186,9 @@ TEST(CORE_OP_RUNNER, TimingCPUSimpleUnary) { const kwargs_t kwargs = test::op::CoreOpExecutor::ArgsWithOpName(basic_args, op_name); test::op::CoreOperatorRunner runner; - runner.RunBidirectional(false, { TShape({10, 10, 10, 10}) }, kwargs, 1); // prime code and cache + runner.RunBidirectional(false, { mxnet::TShape({10, 10, 10, 10}) }, kwargs, 1); - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {1, 1, 28, 28}, @@ -203,7 +203,7 @@ TEST(CORE_OP_RUNNER, TimingCPUSimpleUnary) { {50, 3, 18, 32}, }; } - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { runner.TimingTest(std::string(op_name) + "Operator CPU", false, false, kwargs, 2, 10, { shape }); } @@ -219,9 +219,9 @@ TEST(CORE_OP_RUNNER, TimingCPUBinary) { basic_args, op_name, backward_op_name); test::op::CoreOperatorRunner runner; - runner.RunBidirectional(false, { TShape({10, 10, 10, 10}) }, kwargs, 1); // prime code and cache + runner.RunBidirectional(false, { mxnet::TShape({10, 10, 10, 10}) }, kwargs, 1); - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {1, 1, 28, 28}, @@ -236,7 +236,7 @@ TEST(CORE_OP_RUNNER, TimingCPUBinary) { {50, 3, 18, 32}, }; } - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { runner.TimingTest(std::string(op_name) + "Operator CPU", false, false, kwargs, 2, 10, { shape }); } @@ -257,16 +257,16 @@ TEST(CORE_OP_RUNNER, TimingCPUBinaryDotProduct) { test::op::CoreOperatorRunner runner; runner.RunBidirectional(false, { {2, 3}, {3, 2} }, kwargs, 1); // prime code and cache - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {28, 28}, {18, 32}, {128, 24}, {128, 256} }; } else { shapes = { {28, 28}, {128, 24} }; } - std::vector input_shapes(2); - for (const TShape &shape : shapes) { + mxnet::ShapeVector input_shapes(2); + for (const mxnet::TShape &shape : shapes) { input_shapes[0] = shape; - input_shapes[1] = TShape({shape[1], shape[0]}); + input_shapes[1] = mxnet::TShape({shape[1], shape[0]}); runner.TimingTest(std::string(op_name) + " Operator CPU", false, false, kwargs, 2, 10, input_shapes); } @@ -281,11 +281,11 @@ TEST(CORE_OP_RUNNER, TimingGPUSimpleUnary) { test::op::CoreOperatorRunner runner; runner.RunBidirectional(false, - { TShape({10, 10, 10, 10}) }, + { mxnet::TShape({10, 10, 10, 10}) }, kwargs, 1); // prime code and cache - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {1, 1, 28, 28}, @@ -300,7 +300,7 @@ TEST(CORE_OP_RUNNER, TimingGPUSimpleUnary) { {50, 3, 18, 32}, }; } - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { runner.TimingTest(std::string(op_name) + "Operator GPU", true, false, kwargs, 2, 10, { shape }); }} @@ -315,11 +315,11 @@ TEST(CORE_OP_RUNNER, TimingGPUBinary) { test::op::CoreOperatorRunner runner; runner.RunBidirectional(true, - { TShape({10, 10, 10, 10}) }, + { mxnet::TShape({10, 10, 10, 10}) }, kwargs, 1); // prime code and cache - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {1, 1, 28, 28}, @@ -334,7 +334,7 @@ TEST(CORE_OP_RUNNER, TimingGPUBinary) { {50, 3, 18, 32}, }; } - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { runner.TimingTest(std::string(op_name) + "Operator GPU", true, false, kwargs, 2, 10, { shape }); } } diff --git a/tests/cpp/operator/slice_channel_perf.cc b/tests/cpp/operator/slice_channel_perf.cc index dc42d2a5d437..638613ea1ec9 100644 --- a/tests/cpp/operator/slice_channel_perf.cc +++ b/tests/cpp/operator/slice_channel_perf.cc @@ -38,7 +38,7 @@ const kwargs_t basic_activation_args = { }; * \brief Generic bidirectional sanity test */ TEST(SLICE_CHANNEL_PERF, ExecuteBidirectional) { - TShape shape({1, 160, 200}); + mxnet::TShape shape({1, 160, 200}); kwargs_t kwargs = basic_activation_args; kwargs.push_back({"num_outputs", "160"}); test::op::LegacyOpRunner runner; @@ -54,9 +54,9 @@ TEST(SLICE_CHANNEL_PERF, TimingCPU) { kwargs.push_back({"num_outputs", "160"}); test::op::LegacyOpRunner runner; runner.RunBidirectional(false, - { TShape({1, 160, 200}) }, + { mxnet::TShape({1, 160, 200}) }, kwargs, 1); // prime code and cache - std::vector shapes; + std::vector shapes; if (test::performance_run) { shapes = { {1, 160, 200}, @@ -71,7 +71,7 @@ TEST(SLICE_CHANNEL_PERF, TimingCPU) { {1, 160, 200} }; } - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { runner.TimingTest("SliceChannel Operator CPU", false, false, kwargs, 2, 10, { shape }); } } @@ -87,16 +87,16 @@ TEST(SLICE_CHANNEL_PERF, TimingGPU) { test::OperatorRunner> runner; runner.RunBidirectional(true, - { TShape({1, 160, 200}) }, + { mxnet::TShape({1, 160, 200}) }, kwargs, 1); // prime code and cache - std::vector shapes = { + std::vector shapes = { {1, 160, 200}, {1, 160, 200}, {1, 160, 200}, {1, 160, 200}, {1, 160, 200} }; - for (const TShape &shape : shapes) { + for (const mxnet::TShape &shape : shapes) { runner.TimingTest("SliceChannel Operator GPU", true, false, kwargs, 2, 10, { shape }); } } diff --git a/tests/cpp/operator/tune/operator_tune_test.cc b/tests/cpp/operator/tune/operator_tune_test.cc index 3c45b5e31446..00a062698b17 100644 --- a/tests/cpp/operator/tune/operator_tune_test.cc +++ b/tests/cpp/operator/tune/operator_tune_test.cc @@ -41,8 +41,8 @@ TEST(OMP_TUNING, ShowAllTunedOps) { using kwargs_t = test::op::kwargs_t; -static std::vector> tuning_shapes() { - std::vector> shapes; +static std::vector tuning_shapes() { + std::vector shapes; if (test::performance_run || test::csv) { shapes = { {{1, 1, 28, 28}}, @@ -127,7 +127,7 @@ static float EvaluateTune(const bool verbose = true) { std::cout << "******************************" << std::endl; // Do the performance runs - std::vector> shapes = tuning_shapes(); + std::vector shapes = tuning_shapes(); tuningTester.TestTunedOperator({}, verbose, shapes, binary_operators[i].first.c_str(),