-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgendiagrams.py
271 lines (229 loc) · 9.07 KB
/
gendiagrams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
"""
This module generates the diagrams of our paper
"""
from experiment1 import *
import numpy as np
import matplotlib.pyplot as plt
import os
import pickle
from multiprocessing import Pool
from scipy.optimize import curve_fit
import warnings
def func(x, a, b, c):
"""
The general exponential function to fit on the experimental data
:param float a: coefficient of exponential term
:param float b: coefficient of the exponent
:param float c: constant term
:return: a*exp(b*x) + c
:rtype: float
"""
return a * np.exp(-b * x) + c
def generate_digrams_data(number_of_faults=1,\
max_number_of_queries=1000,\
number_of_experiment_per_query=10):
"""
Generate the required data for our diagrams
:param int number_of_faults: number of faults
:param int max_number_of_queries: max number of queries specifying the maximum point on the x axis of our digrams (1, max_number_of_queries)
:param int number_of_experiment_per_query: number of random experiments for each fixed number of queries
"""
remained_deltas = []
for nq in range(1, max_number_of_queries):
mean_output, total_mean = experiment1(number_of_experiments=number_of_experiment_per_query,\
number_of_faults=number_of_faults,\
number_of_queries_in_each_exper=nq)
remained_deltas.append(total_mean)
return remained_deltas
def read_or_gen_data():
"""
Generate (or read) the required data to plot a figure
for number of non-observed values with respect to the number
of available ciphertexts
"""
lam = 1
m = 2**8 - lam
expected_number_of_queries = int(np.ceil((m*harmonic_number(m))))
max_number_of_queries = expected_number_of_queries + 800
#################################################################
number_of_faults = range(1, 17)
if not os.path.exists("candidates"):
number_of_experiment_per_query = 10
with Pool(16) as pool:
arguments = [(nf, max_number_of_queries, number_of_experiment_per_query) for nf in number_of_faults]
candidates = pool.starmap(generate_digrams_data, arguments)
with open('candidates', 'wb') as f:
pickle.dump(candidates, f)
else:
with open('candidates', 'rb') as f:
candidates = pickle.load(f)
return candidates
def plot_diagram1():
"""
Plot the number of non-observed values with
respect to the number of available ciphertexts - overview
"""
candidates = read_or_gen_data()
lam = 1
m = 2**8 - lam
expected_number_of_queries = int(np.ceil((m*harmonic_number(m))))
max_number_of_queries = expected_number_of_queries + 800
x_start_point = 1
x_end_point = max_number_of_queries
x_data = range(x_start_point, x_end_point)
y_start_point = 0
y_end_point = 256
cmap = plt.get_cmap('hsv')
colors = [cmap(i) for i in np.linspace(0, 1, 17)]
for i in range(16):
y_data = candidates[i][x_start_point - 1:]
plt.plot(x_data, y_data,\
color=colors[i], label='$\lambda = %d$' % (i + 1), linewidth=0.6)
m = 2**8 - (i + 1)
expect_number_of_queries = np.ceil((m*harmonic_number(m)))
plt.plot([expect_number_of_queries]*2, [y_start_point, y_end_point],\
'--', color=colors[i], label='', linewidth=0.6)
plt.legend(fontsize='xx-small', ncol=1, loc='best')
x_tick_step = 215
y_tick_step = 16
plt.xticks(list(range(0, max_number_of_queries, x_tick_step)))
plt.yticks([1] + list(range(16, 260, y_tick_step)))
plt.grid(True)
plt.xlabel('$N$: Number of known ciphertexts')
plt.ylabel('Number of non-observed values')
folder_name = "Figures"
file_name = "overview_diagram_of_non_observed_values.svg"
file_dir = os.path.join(folder_name, file_name)
plt.savefig(file_dir, format='svg', dpi=1200)
return plt
def plot_diagram2():
"""
Plot the number of non-observed values with respect to
the number of available ciphertexts - close up'
"""
candidates = read_or_gen_data()
lam = 1
m = 2**8 - lam
expected_number_of_queries = int(np.ceil((m*harmonic_number(m))))
max_number_of_queries = expected_number_of_queries + 800
x_start_point = 1
x_end_point = max_number_of_queries
x_data = range(x_start_point, x_end_point)
y_start_point = 0
y_end_point = 256
cmap = plt.get_cmap('hsv')
colors = [cmap(i) for i in np.linspace(0, 1, 17)]
for i in range(16):
y_data = candidates[i][x_start_point - 1:]
plt.plot(x_data, y_data,\
color=colors[i], label='$\lambda = %d$' % (i + 1), linewidth=0.6)
m = 2**8 - (i + 1)
expect_number_of_queries = np.ceil((m*harmonic_number(m)))
plt.plot([expect_number_of_queries]*2, [y_start_point, y_end_point],\
'--', color=colors[i], label='', linewidth=0.6)
plt.legend(fontsize='xx-small', ncol=2, loc='best')
x_tick_step = 150
y_tick_step = 1
plt.xticks(list(range(700, 2000, x_tick_step)))
plt.yticks(list(range(1, 20, y_tick_step)))
plt.xlim(600, 2000)
plt.ylim(0, 20)
plt.grid(True)
plt.xlabel('$N$: Number of known ciphertexts')
plt.ylabel('Number of non-observed values')
folder_name = "Figures"
file_name = "close_up_diagram_of_non_observed_values.svg"
file_dir = os.path.join(folder_name, file_name)
plt.savefig(file_dir, format='svg', dpi=1200)
return plt
def fit_to_exp1():
"""
Fit an exponential curve to derived data - overview
"""
candidates = read_or_gen_data()
lam = 1
m = 2**8 - lam
expected_number_of_queries = int(np.ceil((m*harmonic_number(m))))
max_number_of_queries = expected_number_of_queries + 800
warnings.filterwarnings('ignore')
x_start_point = 1
x_end_point = max_number_of_queries
x_data = np.arange(x_start_point, x_end_point)
y_start_point = 0
y_end_point = 256
cmap = plt.get_cmap('hsv')
colors = [cmap(i) for i in np.linspace(0, 1, 17)]
for i in range(16):
y_data = candidates[i][x_start_point - 1:]
# Fit a curve to data
popt, pcov = curve_fit(func, x_data, y_data)
plt.plot(x_data, func(x_data, *popt),\
color=colors[i],
label='$\lambda = %d, a=%5.3f, b=%5.3f, c=%5.3f$' % (i + 1, *popt), linewidth=0.6)
m = 2**8 - (i + 1)
expect_number_of_queries = np.ceil((m*harmonic_number(m)))
plt.plot([expect_number_of_queries]*2, [y_start_point, y_end_point],\
'--', color=colors[i], label='', linewidth=0.6)
plt.legend(fontsize='xx-small', ncol=2, loc='best')
plt.title("$y = a \cdot e^{-b \cdot N} + c$")
x_tick_step = 215
y_tick_step = 16
plt.xticks(list(range(0, max_number_of_queries, x_tick_step)))
plt.yticks([1] + list(range(16, 260, y_tick_step)))
plt.grid(True)
plt.xlabel('$N$: Number of known ciphertexts')
plt.ylabel("$y$")
folder_name = "Figures"
file_name = "overview_fit_on_non_observed_values.svg"
file_dir = os.path.join(folder_name, file_name)
plt.savefig(file_dir, format='svg', dpi=1200)
return plt
def fit_to_exp2():
"""
Fit an exponential curve to derived data - close up
"""
candidates = read_or_gen_data()
lam = 1
m = 2**8 - lam
expected_number_of_queries = int(np.ceil((m*harmonic_number(m))))
max_number_of_queries = expected_number_of_queries + 800
x_start_point = 1
x_end_point = max_number_of_queries
x_data = np.arange(x_start_point, x_end_point)
y_start_point = 0
y_end_point = 260
cmap = plt.get_cmap('hsv')
colors = [cmap(i) for i in np.linspace(0, 1, 17)]
for i in range(16):
y_data = candidates[i][x_start_point - 1:]
# Fit a curve to data
popt, pcov = curve_fit(func, x_data, y_data)
plt.plot(x_data, func(x_data, *popt),\
color=colors[i],
label='$\lambda = %d, a=%5.3f, b=%5.3f, c=%5.3f$' % (i + 1, *popt), linewidth=0.9)
# Draw a vertical line to show the expected number of queries based on our estimation
m = 2**8 - (i + 1)
expect_number_of_queries = np.ceil((m*harmonic_number(m)))
plt.plot([expect_number_of_queries]*2, [y_start_point, y_end_point],\
'--', color=colors[i], label='', linewidth=0.6)
plt.legend(fontsize='xx-small', ncol=1, loc='best')
plt.title("$y = a \cdot e^{-b \cdot N} + c$")
x_tick_step = 150
y_tick_step = 1
plt.xticks(list(range(700, 2000, x_tick_step)))
plt.yticks([1] + list(range(1, 20, y_tick_step)))
plt.xlim(600, 2000)
plt.ylim(0, 20)
plt.grid(True)
plt.xlabel('$N$: Number of known ciphertexts')
plt.ylabel('$y$')
folder_name = "Figures"
file_name = "close_up_fit_on_non_obsereved_values.svg"
file_dir = os.path.join(folder_name, file_name)
plt.savefig(file_dir, format='svg', dpi=1200)
return plt
if __name__ == "__main__":
plot_diagram1()
plot_diagram2()
fit_to_exp1()
fit_to_exp2()