To quickly try out h2oGPT with limited document Q/A capability, create a fresh Python 3.10 environment and run:
- CPU or MAC (M1/M2):
# for windows/mac use "set" or relevant environment setting mechanism export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
- Linux/Windows CPU/CUDA/ROC:
# for windows/mac use "set" or relevant environment setting mechanism export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cu121 https://huggingface.github.io/autogptq-index/whl/cu121" # for cu118 use export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cu118 https://huggingface.github.io/autogptq-index/whl/cu118"
Then choose your llama_cpp_python options, by changing CMAKE_ARGS
to whichever system you have according to llama_cpp_python backend documentation.
E.g. CUDA on Linux:
export GGML_CUDA=1
export CMAKE_ARGS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=all"
export FORCE_CMAKE=1
Note for some reason things will fail with llama_cpp_python if don't add all cuda arches, and building with all those arches does take some time. Windows CUDA:
set CMAKE_ARGS=-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=all
set GGML_CUDA=1
set FORCE_CMAKE=1
Note for some reason things will fail with llama_cpp_python if don't add all cuda arches, and building with all those arches does take some time. Metal M1/M2:
export CMAKE_ARGS="-DLLAMA_METAL=on"
export FORCE_CMAKE=1
Run PyPI install:
pip install h2ogpt
or manually install
```bash
git clone /~https://github.com/h2oai/h2ogpt.git
cd h2ogpt
pip install -r requirements.txt
pip install -r reqs_optional/requirements_optional_langchain.txt
pip uninstall llama_cpp_python llama_cpp_python_cuda -y
pip install -r reqs_optional/requirements_optional_llamacpp_gpt4all.txt --no-cache-dir
pip install -r reqs_optional/requirements_optional_langchain.urls.txt
# GPL, only run next line if that is ok:
pip install -r reqs_optional/requirements_optional_langchain.gpllike.txt
# choose up to 32768 if have enough GPU memory:
python generate.py --base_model=TheBloke/Mistral-7B-Instruct-v0.2-GGUF --prompt_type=mistral --max_seq_len=4096
Next, go to your browser by visiting http://127.0.0.1:7860 or http://localhost:7860. Choose 13B for a better model than 7B.
For newer chat template models, a --prompt_type
is not required on CLI, but for GGUF files one should pass the HF tokenizer so it knows the chat template, e.g. for LLaMa-3:
python generate.py --base_model=llama --model_path_llama=https://huggingface.co/QuantFactory/Meta-Llama-3-8B-Instruct-GGUF/resolve/main/Meta-Llama-3-8B-Instruct.Q5_K_M.gguf?download=true --tokenizer_base_model=meta-llama/Meta-Llama-3-8B-Instruct --max_seq_len=8192
Or for Phi:
python generate.py --tokenizer_base_model=microsoft/Phi-3-mini-4k-instruct --base_model=llama --llama_cpp_model=https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-q4.gguf --max_seq_len=4096
the --llama_cpp_path
could be a local path as well if you already downloaded it, or we will also check the llamacpp_path
for the file.
See Offline for how to run h2oGPT offline.
Note that for all platforms, some packages such as DocTR, Unstructured, Florence-2, Stable Diffusion, etc. download models at runtime that appear to delay operations in the UI. The progress appears in the console logs.