Skip to content

Latest commit

 

History

History
81 lines (70 loc) · 3.67 KB

README_quickstart.md

File metadata and controls

81 lines (70 loc) · 3.67 KB

Quick Start

Install

To quickly try out h2oGPT with limited document Q/A capability, create a fresh Python 3.10 environment and run:

  • CPU or MAC (M1/M2):
    # for windows/mac use "set" or relevant environment setting mechanism
    export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cpu"
  • Linux/Windows CPU/CUDA/ROC:
    # for windows/mac use "set" or relevant environment setting mechanism
    export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cu121 https://huggingface.github.io/autogptq-index/whl/cu121"
    # for cu118 use export PIP_EXTRA_INDEX_URL="https://download.pytorch.org/whl/cu118 https://huggingface.github.io/autogptq-index/whl/cu118"

Then choose your llama_cpp_python options, by changing CMAKE_ARGS to whichever system you have according to llama_cpp_python backend documentation. E.g. CUDA on Linux:

export GGML_CUDA=1
export CMAKE_ARGS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=all"
export FORCE_CMAKE=1

Note for some reason things will fail with llama_cpp_python if don't add all cuda arches, and building with all those arches does take some time. Windows CUDA:

set CMAKE_ARGS=-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=all
set GGML_CUDA=1
set FORCE_CMAKE=1

Note for some reason things will fail with llama_cpp_python if don't add all cuda arches, and building with all those arches does take some time. Metal M1/M2:

export CMAKE_ARGS="-DLLAMA_METAL=on"
export FORCE_CMAKE=1

Run PyPI install:

pip install h2ogpt

or manually install

   ```bash
   git clone /~https://github.com/h2oai/h2ogpt.git
   cd h2ogpt
   pip install -r requirements.txt
   pip install -r reqs_optional/requirements_optional_langchain.txt

   pip uninstall llama_cpp_python llama_cpp_python_cuda -y
   pip install -r reqs_optional/requirements_optional_llamacpp_gpt4all.txt --no-cache-dir

   pip install -r reqs_optional/requirements_optional_langchain.urls.txt
   # GPL, only run next line if that is ok:
   pip install -r reqs_optional/requirements_optional_langchain.gpllike.txt

Chat with h2oGPT

   # choose up to 32768 if have enough GPU memory:
   python generate.py --base_model=TheBloke/Mistral-7B-Instruct-v0.2-GGUF --prompt_type=mistral --max_seq_len=4096

Next, go to your browser by visiting http://127.0.0.1:7860 or http://localhost:7860. Choose 13B for a better model than 7B.

Chat template based GGUF models

For newer chat template models, a --prompt_type is not required on CLI, but for GGUF files one should pass the HF tokenizer so it knows the chat template, e.g. for LLaMa-3:

python generate.py --base_model=llama --model_path_llama=https://huggingface.co/QuantFactory/Meta-Llama-3-8B-Instruct-GGUF/resolve/main/Meta-Llama-3-8B-Instruct.Q5_K_M.gguf?download=true --tokenizer_base_model=meta-llama/Meta-Llama-3-8B-Instruct --max_seq_len=8192

Or for Phi:

python generate.py  --tokenizer_base_model=microsoft/Phi-3-mini-4k-instruct --base_model=llama --llama_cpp_model=https://huggingface.co/microsoft/Phi-3-mini-4k-instruct-gguf/resolve/main/Phi-3-mini-4k-instruct-q4.gguf --max_seq_len=4096 

the --llama_cpp_path could be a local path as well if you already downloaded it, or we will also check the llamacpp_path for the file.

See Offline for how to run h2oGPT offline.


Note that for all platforms, some packages such as DocTR, Unstructured, Florence-2, Stable Diffusion, etc. download models at runtime that appear to delay operations in the UI. The progress appears in the console logs.