-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.py
197 lines (170 loc) · 9.07 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import argparse
from operator import contains
import pandas as pd
import wandb
from transformers import EarlyStoppingCallback, default_data_collator
from transformers import TrainingArguments, Trainer
from datasets_local import load_dataset, postprocess_qa_predictions, add_pair_idx_column
from engine import CustomTrainer, EvaluationCallback, create_tokenizer, create_model, evaluate_model
from utils.metrics import compute_f1_score, computer_jaccard_score
def str2bool(v):
"""
src: https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse
Converts string to bool type; enables command line
arguments in the format of '--arg1 true --arg2 false'
"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def is_even(v):
if isinstance(v, int):
if v % 2 == 0:
return True
return False
def get_arg_parser():
parser = argparse.ArgumentParser(description='Training and evaluation script for multilingual question answering')
# dataset parameters
parser.add_argument('--dataset', default='chaii', choices=['chaii'])
parser.add_argument('--dataset_augmentation', default='translation', choices=['translation', 'transliteration'])
parser.add_argument('--dataset_split_k', type=int, default=0)
parser.add_argument('--langs', choices=['hi', 'ta', 'en^', 'bn^', 'hi^', 'mr^', 'ml^', 'ta^', 'te^'], nargs='+')
parser.add_argument('--min_langs', type=int, default=1)
parser.add_argument('--langs_for_min_langs_filter', choices=['hi', 'ta', 'en^', 'bn^', 'hi^', 'mr^', 'ml^', 'ta^', 'te^'], nargs='+')
parser.add_argument('--max_length', type=int, default=384)
parser.add_argument('--doc_stride', type=int, default=128)
# model parameters
parser.add_argument('--model_name', type=str, default="", choices=['mbert', 'mbert-squad', 'xlmroberta', 'xlmroberta-squad', 'distillmbert', 'muril', 'indic-bert'], required=False)
parser.add_argument('--model_ckpt', type=str, default="", help='Local path or huggingface url', required=False)
# training parameters
parser.add_argument('--wt_contrastive_loss', type=float, default=0.0)
parser.add_argument('--contrastive_loss_layers', nargs='+')
parser.add_argument('--agg_for_contrastive', type=str, default="mean", choices=['mean', 'max', 'concat', 'cls', 'cls_sep'], required=False)
parser.add_argument('--temperature_for_contrastive', type=float, default=1.0, help='set negative value for learnable temperature')
parser.add_argument('--max_steps_for_contrastive', type=int, default=5000)
parser.add_argument('--num_epochs', type=int, default=10)
parser.add_argument('--max_steps', type=int, default=5000)
parser.add_argument('--logging_steps', type=int, default=500)
parser.add_argument('--eval_steps', type=int, default=500)
parser.add_argument('--save_steps', type=int, default=500)
parser.add_argument('--train_batch_size', type=int, default=4, help='Batch size must be an even number')
parser.add_argument('--eval_batch_size', type=int, default=4, help='Batch size must be an even number')
parser.add_argument('--gradient_accumulation_steps', type=int, default=1)
parser.add_argument('--lr', type=float, default=3e-6)
parser.add_argument('--warmup_ratio', type=float, default=0.1)
parser.add_argument('--weight_decay', type=float, default=0.01)
# other parameters
parser.add_argument('--eval', type=str2bool, default=False, help='Perform evaluation only')
parser.add_argument('--debug', type=str2bool, default=False, help='Set to debug mode')
parser.add_argument('--max_rows', type=int, default=-1, help='Used only in debug mode')
return parser
def main(args):
tokenizer = create_tokenizer(args)
dataset_train, dataset_train_tokenized = load_dataset(args=args, split='train', mode='train', tokenizer=tokenizer)
dataset_val, dataset_val_tokenized = load_dataset(args=args, split='val', mode='train', tokenizer=tokenizer)
model = create_model(args)
# for contrastive training
dataset_train_tokenized = add_pair_idx_column(dataset_train, dataset_train_tokenized)
# for evaluation callback
#dataset_train_4eval, dataset_train_tokenized_4eval = load_dataset(args=args, split='train', mode='eval', tokenizer=tokenizer)
dataset_val_4eval, dataset_val_tokenized_4eval = load_dataset(args=args, split='val', mode='eval', tokenizer=tokenizer)
dataset_test_4eval, dataset_test_tokenized_4eval = load_dataset(args=args, split='test', mode='eval', tokenizer=tokenizer)
if args.debug:
wandb.init(project='mlqa', mode='disabled')
else:
wandb.init(project='mlqa', mode='online')
wandb.config.update(args)
wandb.config.update({
'num_params': sum(p.numel() for p in model.parameters()),
'num_train_examples': len(dataset_train),
'num_train_features': len(dataset_train_tokenized)
})
run_name = wandb.run.name
training_args = TrainingArguments(
f"ckpts/{run_name}",
per_device_train_batch_size=args.train_batch_size,
per_device_eval_batch_size=args.eval_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
learning_rate=args.lr,
warmup_ratio=args.warmup_ratio,
weight_decay=args.weight_decay,
num_train_epochs=args.num_epochs,
max_steps = args.max_steps,
seed=0,
logging_strategy='steps',
logging_steps=args.logging_steps,
evaluation_strategy="steps",
eval_steps=args.eval_steps,
save_strategy="steps",
save_steps=args.save_steps,
save_total_limit=1,
load_best_model_at_end=True,
report_to='wandb',
run_name='mlqa'
)
trainer = CustomTrainer(
model,
training_args,
train_dataset=dataset_train_tokenized,
eval_dataset=dataset_val_tokenized,
data_collator=default_data_collator,
tokenizer=tokenizer,
callbacks = [
# EarlyStoppingCallback(early_stopping_patience = 5),
# EvaluationCallback(dataset=dataset_train_4eval, dataset_tokenized=dataset_train_tokenized_4eval, prefix='train'),
EvaluationCallback(dataset=dataset_val_4eval, dataset_tokenized=dataset_val_tokenized_4eval, prefix='val'),
EvaluationCallback(dataset=dataset_test_4eval, dataset_tokenized=dataset_test_tokenized_4eval, prefix='test')
],
wt_contrastive_loss = args.wt_contrastive_loss,
contrastive_loss_layers = [int(x) for x in args.contrastive_loss_layers],
agg_for_contrastive = args.agg_for_contrastive,
temperature_for_contrastive = args.temperature_for_contrastive,
max_steps_for_contrastive = args.max_steps_for_contrastive
)
if not args.eval:
# wandb.summary.best - [val, test] split metric based on [corresponding best scores] in the [corresponding] split
trainer.train()
# Final Evaluation
# wandb.summary.final - [train, val, test] split metrics based on [overall eval loss] on [val] split
wandb.summary['final/step'] = int(trainer.state.best_model_checkpoint.rsplit('-', 1)[-1])
#evaluate_model(model, tokenizer, dataset_train_4eval, dataset_train_tokenized_4eval, prefix='train', run_name=run_name)
evaluate_model(model, tokenizer, dataset_val_4eval, dataset_val_tokenized_4eval, prefix='val', run_name=run_name)
evaluate_model(model, tokenizer, dataset_test_4eval, dataset_test_tokenized_4eval, prefix='test', run_name=run_name)
# wandb.summary.result - [test] split metric based on [corresponding best scores] in the [val] split
groups = wandb.summary['best/val/jaccard'].keys() # overall, hi, ta
jaccard_result = {}
f1_result = {}
for group in groups:
best_jaccard_step = wandb.summary[f'best/val/jaccard'][group]['step']
jaccard_result[group] = wandb.summary['test_list_jaccard'][group][(best_jaccard_step//trainer.args.eval_steps)-1]
best_f1_step = wandb.summary[f'best/val/f1'][group]['step']
f1_result[group] = wandb.summary['test_list_f1'][group][(best_f1_step//trainer.args.eval_steps)-1]
wandb.summary['result'] = {
'jaccard': jaccard_result,
'f1': f1_result
}
if __name__ == '__main__':
parser = get_arg_parser()
args = parser.parse_args()
if args.debug:
args.max_steps = 50
args.logging_steps = 10
args.eval_steps = 10
args.save_steps = 10
args.max_rows = 100
model_name_to_ckpt = {
'mbert': 'bert-base-multilingual-cased',
'mbert-squad': 'salti/bert-base-multilingual-cased-finetuned-squad',
'xlmroberta': 'xlm-roberta-base',
'xlmroberta-squad': 'deepset/xlm-roberta-base-squad2',
'distillmbert': 'distilbert-base-multilingual-cased',
'muril': 'google/muril-base-cased',
'indicbert': 'ai4bharat/indic-bert'
}
if args.model_name:
args.model_ckpt = model_name_to_ckpt[args.model_name]
main(args)