-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdatasets.py
189 lines (158 loc) · 9.17 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import pandas as pd
import torch
from PIL import Image
from sklearn.preprocessing import MultiLabelBinarizer
from torch.utils.data import Dataset
from transformers import CLIPTokenizer, CLIPProcessor, AutoTokenizer
class HatefulMemesDataset(Dataset):
def __init__(self, root_folder, image_folder, split='train', labels='original', image_size=224):
super(HatefulMemesDataset, self).__init__()
self.root_folder = root_folder
self.image_folder = image_folder
self.split = split
self.labels = labels
self.image_size = image_size
self.info_file = os.path.join(root_folder, 'hateful_memes_expanded.csv')
self.df = pd.read_csv(self.info_file)
self.df = self.df[self.df['split']==self.split].reset_index(drop=True)
float_cols = self.df.select_dtypes(float).columns
self.df[float_cols] = self.df[float_cols].fillna(-1).astype('Int64')
if split in ['test_seen', 'test_unseen']:
self.fine_grained_labels = []
elif self.labels == 'fine_grained':
self.pc_columns = [col for col in self.df.columns if col.endswith('_pc') and not col.endswith('_gold_pc')]
self.pc_columns.remove('gold_pc')
self.attack_columns = [col for col in self.df.columns if col.endswith('_attack') and not col.endswith('_gold_attack')]
self.attack_columns.remove('gold_attack')
self.fine_grained_labels = self.pc_columns + self.attack_columns
elif self.labels == 'fine_grained_gold':
self.pc_columns = [col for col in self.df.columns if col.endswith('_gold_pc')]
self.attack_columns = [col for col in self.df.columns if col.endswith('_gold_attack')]
self.fine_grained_labels = self.pc_columns + self.attack_columns
else:
self.fine_grained_labels = []
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
row = self.df.iloc[idx]
item = {}
image_fn = row['img'].split('/')[1]
item['image'] = Image.open(f"{self.image_folder}/{image_fn}").convert('RGB').resize((self.image_size, self.image_size))
item['text'] = row['text']
item['label'] = row['label']
item['idx_meme'] = row['id']
item['idx_image'] = row['pseudo_img_idx']
item['idx_text'] = row['pseudo_text_idx']
item['caption'] = row['caption']
if self.labels.startswith('fine_grained'):
for label in self.fine_grained_labels:
item[label] = row[label]
return item
class TamilMemesDataset(Dataset):
def __init__(self, root_folder, split='train', image_size=224):
"""
First, preprocess Tamil Troll Memes using `hateclipper/preprocessing/format_tamil_memes.ipynb`
"""
super(TamilMemesDataset, self).__init__()
self.root_folder = root_folder
self.split = split
self.image_size = image_size
self.info_file = os.path.join(root_folder, 'labels.csv')
self.df = pd.read_csv(self.info_file)
self.df = self.df[self.df['split']==self.split].reset_index(drop=True)
self.fine_grained_labels = []
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
row = self.df.iloc[idx]
item = {}
item['image'] = Image.open(f"{self.root_folder}/{row['meme_path']}").convert('RGB').resize((self.image_size, self.image_size))
item['text'] = row['text']
item['caption'] = row['text_transliterated'] # named as caption just to match the format of HatefulMemesDataset
item['label'] = row['is_troll']
return item
class PropMemesDataset(Dataset):
def __init__(self, root_folder, split='train', image_size=224):
super(PropMemesDataset, self).__init__()
self.root_folder = root_folder
self.split = split
self.image_size = image_size
self.info_file = os.path.join(root_folder, f'annotations/{self.split}.jsonl')
self.df = pd.read_json(self.info_file, lines=True)
self.fine_grained_labels = ['Black-and-white Fallacy/Dictatorship', 'Name calling/Labeling', 'Smears', 'Reductio ad hitlerum', 'Transfer', 'Appeal to fear/prejudice', \
'Loaded Language', 'Slogans', 'Causal Oversimplification', 'Glittering generalities (Virtue)', 'Flag-waving', "Misrepresentation of Someone's Position (Straw Man)", \
'Exaggeration/Minimisation', 'Repetition', 'Appeal to (Strong) Emotions', 'Doubt', 'Obfuscation, Intentional vagueness, Confusion', 'Whataboutism', 'Thought-terminating cliché', \
'Presenting Irrelevant Data (Red Herring)', 'Appeal to authority', 'Bandwagon']
mlb = MultiLabelBinarizer().fit([self.fine_grained_labels])
self.df = self.df.join(pd.DataFrame(mlb.transform(self.df['labels']),
columns=mlb.classes_,
index=self.df.index))
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
row = self.df.iloc[idx]
item = {}
item['image'] = Image.open(f"{self.root_folder}/images/{row['image']}").convert('RGB').resize((self.image_size, self.image_size))
item['text'] = " ".join(row['text'].replace("\n", " ").strip().lower().split())
item['labels'] = row[self.fine_grained_labels].values.tolist()
for label in self.fine_grained_labels:
item[label] = row[label]
return item
class CustomCollator(object):
def __init__(self, args, fine_grained_labels, multilingual_tokenizer_path='none'):
self.args = args
self.fine_grained_labels = fine_grained_labels
self.image_processor = CLIPProcessor.from_pretrained(args.clip_pretrained_model)
self.text_processor = CLIPTokenizer.from_pretrained(args.clip_pretrained_model)
if multilingual_tokenizer_path != 'none':
self.text_processor = AutoTokenizer.from_pretrained(multilingual_tokenizer_path)
def __call__(self, batch):
pixel_values = self.image_processor(images=[item['image'] for item in batch], return_tensors="pt")['pixel_values']
if self.args.caption_mode == 'replace_text':
text_output = self.text_processor([item['caption'] for item in batch], padding=True, return_tensors="pt", truncation=True)
elif self.args.caption_mode == 'concat_with_text':
text_output = self.text_processor([item['text'] + ' [SEP] ' + item['caption'] for item in batch], padding=True, return_tensors="pt", truncation=True)
else:
text_output = self.text_processor([item['text'] for item in batch], padding=True, return_tensors="pt", truncation=True)
if self.args.dataset in ['original', 'masked', 'inpainted', 'tamil']:
caption_output = self.text_processor([item['caption'] for item in batch], padding=True, return_tensors="pt", truncation=True)
labels = torch.LongTensor([item['label'] for item in batch])
if self.args.dataset in ['original', 'masked', 'inpainted']:
idx_memes = torch.LongTensor([item['idx_meme'] for item in batch])
idx_images = torch.LongTensor([item['idx_image'] for item in batch])
idx_texts = torch.LongTensor([item['idx_text'] for item in batch])
batch_new = {}
batch_new['pixel_values'] = pixel_values,
batch_new['input_ids'] = text_output['input_ids']
batch_new['attention_mask'] = text_output['attention_mask']
if self.args.dataset in ['original', 'masked', 'inpainted', 'tamil']:
batch_new['input_ids_caption'] = caption_output['input_ids']
batch_new['attention_mask_caption'] = caption_output['attention_mask']
batch_new['labels'] = labels
if self.args.dataset in ['original', 'masked', 'inpainted']:
batch_new['idx_memes'] = idx_memes
batch_new['idx_images'] = idx_images
batch_new['idx_texts'] = idx_texts
if self.args.dataset in ['original', 'masked', 'inpainted', 'prop']:
#if self.args.labels.startswith('fine_grained'):
for label in self.fine_grained_labels:
batch_new[label] = torch.LongTensor([item[label] for item in batch])
if self.args.dataset == 'prop':
batch_new['labels'] = torch.LongTensor([item['labels'] for item in batch])
return batch_new
def load_dataset(args, split):
if args.dataset == 'original':
image_folder = 'data/hateful_memes/img'
elif args.dataset == 'masked':
image_folder = 'data/hateful_memes_masked/'
elif args.dataset == 'inpainted':
image_folder = 'data/hateful_memes_inpainted/'
if args.dataset == 'tamil':
dataset = TamilMemesDataset(root_folder='data/Tamil_troll_memes', split=split, image_size=args.image_size)
elif args.dataset == 'prop':
dataset = PropMemesDataset(root_folder='data/propaganda-techniques-in-memes/data/datasets/propaganda/defaults', split=split, image_size=args.image_size)
else:
dataset = HatefulMemesDataset(root_folder='data/hateful_memes', image_folder=image_folder, split=split,
labels=args.labels, image_size=args.image_size)
return dataset