-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_classifier.py
205 lines (179 loc) · 8.33 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import logging
import yaml
import matplotlib
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import wandb
from sklearn.metrics import accuracy_score
from torchvision import datasets, transforms
from tqdm.auto import tqdm
from classifiers import Classifier1, Classifier2
with open('config.yaml', 'r') as file:
config = yaml.safe_load(file)['train_classifier']
seed = config['seed']
dataset = config['dataset']
classifier = config['classifier']
num_epochs = config['num_epochs']
batch_size = config['batch_size']
lr = config['lr']
step_size = config['step_size']
gamma = config['gamma']
interval_log_loss = config['interval_log_loss']
interval_checkpoint = config['interval_checkpoint']
torch.manual_seed(seed)
matplotlib.use('TkAgg')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Device: {device}")
wandb.init(project='adversarial-defense-autoencoders', config=config)
def train(model, train_loader, num_epochs, **kwargs):
logging.info("Entering the function 'train' in 'train_classifier.py")
criterion = nn.CrossEntropyLoss(reduction="mean")
optimizer = optim.SGD(model.parameters(), lr=lr)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer=optimizer,
step_size=step_size,
gamma=gamma)
epoch_losses_train, epoch_losses_val = [], []
for epoch in tqdm(range(num_epochs), leave=False, desc='Training Epochs:'):
# training
model.train()
epoch_loss_train = 0
for batch_idx, (X, Y) in tqdm(enumerate(train_loader), leave=False, desc='Mini-Batches', total=len(train_loader)):
X, Y = X.to(device), Y.to(device)
optimizer.zero_grad()
Y_pred_logits = model(X)
loss = criterion(Y_pred_logits, Y)
epoch_loss_train += loss.item()
loss.backward()
optimizer.step()
if epoch % interval_log_loss == 0:
epoch_loss_train /= len(train_loader)
epoch_losses_train.append(epoch_loss_train)
lr_scheduler.step()
# validation
model.eval()
epoch_loss_val = 0
with torch.no_grad():
if 'val_loader' in kwargs and epoch % interval_log_loss == 0:
for batch_idx, (X, Y) in enumerate(val_loader):
X, Y = X.to(device), Y.to(device)
Y_pred_logits = model(X)
loss = criterion(Y_pred_logits, Y)
epoch_loss_val += loss.item()
epoch_loss_val /= len(val_loader)
epoch_losses_val.append(epoch_loss_val)
wandb.log({
'epoch_num': epoch,
'epoch_loss_train': epoch_loss_train,
'epoch_loss_val': epoch_loss_val
})
if epoch % interval_checkpoint == 0:
model_path = f'models/checkpoints/{dataset}_{classifier}_epoch-{epoch}_checkpoint.pth'
model_checkpoint = {
'epoch_num': epoch,
'state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss_train': epoch_loss_train,
'loss_val': epoch_loss_val,
}
torch.save(model_checkpoint, model_path)
x_axis_values = range(0, num_epochs, interval_log_loss)
plt.plot(x_axis_values, epoch_losses_train, label='Training Loss')
plt.plot(x_axis_values, epoch_losses_val, label='Validation Loss')
plt.xlabel('Epochs')
plt.legend()
#plt.show()
logging.info("Exiting the function 'train' in 'train_classifier.py")
return True
def test(model, data_loader):
logging.info("Entering the function 'test' in 'train_classifier.py")
model.eval()
Y, Y_pred = [], []
with torch.no_grad():
for batch_idx, (X_mb, Y_mb) in tqdm(enumerate(data_loader), total=len(data_loader), desc='Testing', leave=False):
X_mb, Y_mb = X_mb.to(device), Y_mb.to(device)
Y_pred_logits_mb = model(X_mb)
Y_pred_mb = Y_pred_logits_mb.argmax(1)
Y.extend(Y_mb.flatten().tolist())
Y_pred.extend(Y_pred_mb.flatten().tolist())
accuracy = accuracy_score(Y, Y_pred)
accuracy = round(accuracy, 4)
logging.info("Exiting the function 'test' in 'train_classifier.py")
return accuracy
if dataset == 'mnist':
train_set = datasets.MNIST('../data', train=True, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.1307,), (0.3081,))
]))
train_set, val_set = torch.utils.data.random_split(train_set, [55000, 5000])
test_set = datasets.MNIST('../data', train=False, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.1307,), (0.3081,))
]))
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=False)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False)
elif dataset == 'fashion-mnist':
train_set = datasets.FashionMNIST('../data', train=True, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.5,), (0.5,))
]))
train_set, val_set = torch.utils.data.random_split(train_set, [55000, 5000])
test_set = datasets.FashionMNIST('../data', train=False, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.5,), (0.5,))
]))
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=False)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False)
elif dataset == 'cifar-10':
train_set = datasets.CIFAR10('../data', train=True, download=False,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
#transforms.Normalize((0.5, 0.5, 0.5), (0.25, 0.25, 0.25))
]))
train_set, val_set = torch.utils.data.random_split(train_set, [45000, 5000])
test_set = datasets.CIFAR10('../data/', train=False, download=False,
transform=transforms.Compose([
transforms.ToTensor(),
#transforms.Normalize((0.5, 0.5, 0.5), (0.25, 0.25, 0.25))
]))
train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
val_loader = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=False)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size, shuffle=False)
else:
raise ValueError("Undefined dataset")
if classifier == 'classifier-1':
model = Classifier1()
elif classifier == 'classifier-2':
model = Classifier2()
else:
raise ValueError("Undefined classifier")
model = model.to(device)
wandb.watch(model)
train(model, train_loader, num_epochs, val_loader=val_loader)
train_accuracy = test(model, train_loader)
val_accuracy = test(model, val_loader)
test_accuracy = test(model, test_loader)
wandb.log({
'train_accuracy': train_accuracy,
'val_accuracy': val_accuracy,
'test_accuracy': test_accuracy,
})
message = f'Model Accuracy:\nTrain: {train_accuracy}; Val: {val_accuracy}; Test: {test_accuracy}'
print(message)
model_path = f'models/{dataset}_{classifier}_checkpoint.pth'
model_checkpoint = {
'epoch_num': num_epochs,
'state_dict': model.state_dict(),
'train_accuracy': train_accuracy,
'val_accuracy': val_accuracy,
'test_accuracy': test_accuracy,
}
torch.save(model_checkpoint, model_path)