-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdefensive_models.py
55 lines (43 loc) · 2.04 KB
/
defensive_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import torch
import torch.nn as nn
import torch.nn.functional as F
class DefensiveModel1(nn.Module):
"""Defensive model used for MNIST in MagNet paper
"""
def __init__(self, in_channels=1):
super(DefensiveModel1, self).__init__()
self.conv_11 = nn.Conv2d(in_channels=in_channels, out_channels=3, kernel_size=3, stride=1, padding=1)
self.conv_21 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=1, padding=1)
self.conv_22 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=1, padding=1)
self.conv_31 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=1, padding=1)
self.conv_32 = nn.Conv2d(in_channels=3, out_channels=in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, X):
"""Forward propagation
:param X: Mini-batch of shape [-1, 1, H, W]
:return: Mini-batch of shape [-1, 1, H, W]
"""
X = torch.sigmoid(self.conv_11(X))
X = F.avg_pool2d(X, 2)
X = torch.sigmoid(self.conv_21(X))
X = torch.sigmoid(self.conv_22(X))
X = F.interpolate(X, scale_factor=2)
X = torch.sigmoid(self.conv_31(X))
X = torch.sigmoid(self.conv_32(X))
return X
class DefensiveModel2(nn.Module):
"""Defensive model used for CIFAR-10 in MagNet paper
"""
def __init__(self, in_channels=3):
super(DefensiveModel2, self).__init__()
self.conv_11 = nn.Conv2d(in_channels=in_channels, out_channels=3, kernel_size=3, stride=1, padding=1)
self.conv_21 = nn.Conv2d(in_channels=3, out_channels=3, kernel_size=3, stride=1, padding=1)
self.conv_31 = nn.Conv2d(in_channels=3, out_channels=in_channels, kernel_size=3, stride=1, padding=1)
def forward(self, X):
"""Forward propagation
:param X: Mini-batch of shape [-1, 1, H, W]
:return: Mini-batch of shape [-1, 1, H, W]
"""
X = torch.sigmoid(self.conv_11(X))
X = torch.sigmoid(self.conv_21(X))
X = torch.sigmoid(self.conv_31(X))
return X