-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
509 lines (413 loc) · 15.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import warnings
warnings.filterwarnings('ignore')
import argparse
import time
import numpy as np
from scipy.sparse import coo_matrix, csc_matrix
from scipy.sparse.linalg import svds
import torch
from input_data import load_data
from preprocessing import general_train_test_split_edges,biased_train_test_split_edges, bidirectional_train_test_split_edges
from layers import DirectedGCNConvEncoder, DirectedInnerProductDecoder
from layers import SingleLayerDirectedGCNConvEncoder
from models import DirectedGAE
from layers import InnerProductDecoder
from layers import DummyEncoder, DummyPairEncoder
from models import GAE
parser = argparse.ArgumentParser()
parser.add_argument('--dataset',
nargs= '?',
default='cora_ml',
type=str)
parser.add_argument('--task',
nargs= '?',
default='task_1',
type=str)
parser.add_argument('--model',
nargs= '?',
default='digae',
type=str)
parser.add_argument('--learning_rate',
nargs= '?',
default=0.01,
type=float)
parser.add_argument('--epochs',
nargs= '?',
default=200,
type=int)
parser.add_argument('--hidden',
nargs= '?',
default=64,
type=int)
parser.add_argument('--dimension',
nargs= '?',
default=32,
type=int)
parser.add_argument('--alpha',
nargs= '?',
default=1.0,
type=float)
parser.add_argument('--beta',
nargs= '?',
default=0.0,
type=float)
parser.add_argument('--nb_run',
nargs= '?',
default=1,
type=int)
parser.add_argument('--prop_val',
nargs= '?',
default=5.0,
type=float)
parser.add_argument('--prop_test',
nargs= '?',
default=10.0,
type=float)
parser.add_argument('--verbose',
nargs= '?',
default=True,
type=bool)
parser.add_argument('--self_loops',
nargs= '?',
default=True,
type=bool)
parser.add_argument('--adaptive',
nargs= '?',
default=False,
type=bool)
parser.add_argument('--feature_vector_type',
nargs= '?',
const=None)
parser.add_argument('--feature_vector_size',
nargs= '?',
const=None,
type=int)
parser.add_argument('--directed',
nargs= '?',
default=True,
type=bool)
parser.add_argument('--logfile',
nargs='?',
default='logs.json',
type=str)
parser.add_argument('--validate',
nargs='?',
default=False,
type=bool)
args = parser.parse_args()
def train_single():
model.train()
optimizer.zero_grad()
z = model.encode(x, train_pos_edge_index)
loss = model.recon_loss(z, train_pos_edge_index)
loss.backward()
optimizer.step()
return float(loss)
def test_single(pos_edge_index, neg_edge_index):
model.eval()
with torch.no_grad():
z = model.encode(x, train_pos_edge_index)
return model.test(z, pos_edge_index, neg_edge_index)
def dummy_train_single():
model.train()
z = model.encode(x, train_pos_edge_index)
loss = model.recon_loss(z, train_pos_edge_index)
return float(loss)
def dummy_test_single(pos_edge_index, neg_edge_index):
model.eval()
with torch.no_grad():
z = model.encode(x, train_pos_edge_index)
return model.test(z, pos_edge_index, neg_edge_index)
def train_pair():
model.train()
optimizer.zero_grad()
s, t = model.encode(u, v, train_pos_edge_index)
loss = model.recon_loss(s, t, train_pos_edge_index)
loss.backward()
optimizer.step()
return float(loss)
def test_pair(pos_edge_index, neg_edge_index):
model.eval()
with torch.no_grad():
s, t = model.encode(u, v, train_pos_edge_index)
return model.test(s, t, pos_edge_index, neg_edge_index)
def dummy_train_pair():
model.train()
s, t = model.encode(u, v, train_pos_edge_index)
loss = model.recon_loss(s, t, train_pos_edge_index)
return float(loss)
def dummy_test_pair(pos_edge_index, neg_edge_index):
model.eval()
with torch.no_grad():
s, t = model.encode(u, v, train_pos_edge_index)
return model.test(s, t, pos_edge_index, neg_edge_index)
def svd_features(data, k):
num_nodes = data.x.size(0)
num_edges = data.edge_weight.size(0)
indices = data.train_pos_edge_index.clone().numpy()
row, col = indices[0], indices[1]
values = np.ones(indices.shape[1])
num_rows = num_nodes
num_columns = num_nodes
adjacency_matrix = csc_matrix(coo_matrix((values, (row, col)),
shape=(num_rows, num_columns),
dtype=float))
u, s, vt = svds(adjacency_matrix, k)
sorting_indices = np.argsort(s)[::-1]
s = s[sorting_indices]
u = u[:, sorting_indices]
vt = vt[sorting_indices, :]
sqrt_s = np.sqrt(s)
diag_sqrt_s = np.diag(sqrt_s)
u_hat = np.dot(u, diag_sqrt_s)
vt_hat = np.dot(diag_sqrt_s, vt)
v_hat = vt_hat.T
u_hat = torch.tensor(u_hat).float()
v_hat = torch.tensor(v_hat).float()
return u_hat, v_hat
def svd_randomized_features(data, k):
num_nodes = data.x.size(0)
num_edges = data.edge_weight.size(0)
indices = data.train_pos_edge_index.clone()
values = torch.ones(indices.size(1))
rows = num_nodes
columns = num_nodes
adjacency_tensor = torch.sparse_coo_tensor(indices, values, (rows, columns))
u, s, v = torch.svd_lowrank(adjacency_tensor, k)
vh = v.t()
sqrt_s = torch.sqrt(s)
diag_sqrt_s = torch.diag(sqrt_s)
u_hat = torch.matmul(u, diag_sqrt_s)
vh_hat = torch.matmul(diag_sqrt_s, vh)
v_hat = vh_hat.t()
return u_hat, v_hat
def random_features(data, k):
num_nodes = data.x.size(0)
u_hat = torch.rand(num_nodes, k)
v_hat = torch.rand(num_nodes, k)
return u_hat, v_hat
def normal_features(data, k):
num_nodes = data.x.size(0)
u_hat = torch.randn(num_nodes, k)
v_hat = torch.randn(num_nodes, k)
return u_hat, v_hat
def identity_features(data, k=None):
num_nodes = data.x.size(0)
x = torch.eye(num_nodes)
u_hat = x.clone()
v_hat = x.clone()
return u_hat, v_hat
def random_ones_features(data, k):
num_nodes = data.x.size(0)
u_hat = torch.zeros(num_nodes, k)
u_idx = [np.random.randint(0, k-1) for _ in range(num_nodes)]
for i in range(num_nodes):
u_hat[i, u_idx[i]] = 1.0
v_hat = torch.zeros(num_nodes, k)
v_idx = [np.random.randint(0, k-1) for _ in range(num_nodes)]
for i in range(num_nodes):
v_hat[i, v_idx[i]] = 1.0
return u_hat, v_hat
dummy_run = False
if args.verbose:
print("Loading data...")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
directed = args.directed
dataset_name = args.dataset
out_channels = args.dimension
hidden_channels = args.hidden
feature_vector_type = args.feature_vector_type
if feature_vector_type == 'svd':
compute_features = svd_features
elif feature_vector_type == 'svd_randomized':
compute_features = svd_randomized_features
elif feature_vector_type == 'random':
compute_features = random_features
elif feature_vector_type == 'normal':
compute_features = normal_features
elif feature_vector_type == 'identity':
compute_features = identity_features
elif feature_vector_type == 'random_ones':
compute_features = random_ones_features
feature_vector_size = args.feature_vector_size
if args.model in ['gae',
'source_target']:
train_func = train_single
test_func = test_single
elif args.model in ['dummy']:
train_func = dummy_train_single
test_func = dummy_test_single
elif args.model in ['dummy_pair']:
train_func = dummy_train_pair
test_func = dummy_test_pair
else:
train_func = train_pair
test_func = test_pair
val_ratio = args.prop_val / 100.
test_ratio = args.prop_test / 100.
loaded_data = load_data(dataset_name, directed=directed)
mean_roc = []
mean_ap = []
mean_time = []
for i in range(args.nb_run):
if args.verbose:
print("Masking test edges...")
if args.task == 'task_1':
data = loaded_data.clone()
data.train_mask = data.val_mask = data.test_mask = data.y = None
data = general_train_test_split_edges(data,
val_ratio=val_ratio,
test_ratio=test_ratio,
directed=directed)
elif args.task == 'task_2':
data = loaded_data.clone()
data.train_mask = data.val_mask = data.test_mask = data.y = None
data = biased_train_test_split_edges(data,
val_ratio=val_ratio,
test_ratio=test_ratio,
directed=directed)
elif args.task == 'task_3':
data = loaded_data.clone()
data.train_mask = data.val_mask = data.test_mask = data.y = None
data = bidirectional_train_test_split_edges(data,
val_ratio=val_ratio,
test_ratio=test_ratio,
directed=directed)
else:
raise ValueError('Undefined task!')
data = data.to(device)
train_pos_edge_index = data.train_pos_edge_index.to(device)
if args.validate is True:
test_pos_edge_index = data.val_pos_edge_index.to(device)
test_neg_edge_index = data.val_neg_edge_index.to(device)
else:
test_pos_edge_index = data.test_pos_edge_index.to(device)
test_neg_edge_index = data.test_neg_edge_index.to(device)
in_channels = data.x.shape[1]
if feature_vector_type in ['svd', 'svd_randomized', 'random', 'normal', 'random_ones']:
in_channels = feature_vector_size
u, v = compute_features(data, in_channels)
data.u = u
data.v = v
data.x = torch.cat([data.u, data.v], dim=1)
elif feature_vector_type in ['identity']:
in_channels = data.x.size(0)
u, v = compute_features(data, in_channels)
data.u = u
data.v = v
data.x = torch.cat([data.u, data.v], dim=1)
else:
data.u = data.x.clone()
data.v = data.x.clone()
u = data.u.to(device)
v = data.v.to(device)
print(u.shape, v.shape)
x = data.x.to(device)
if args.model == 'digae':
encoder = DirectedGCNConvEncoder(in_channels, hidden_channels, out_channels, alpha=args.alpha, beta=args.beta,
self_loops=args.self_loops,
adaptive=args.adaptive)
decoder = DirectedInnerProductDecoder()
model = DirectedGAE(encoder, decoder)
model = model.to(device)
elif args.model == 'digae_single_layer':
encoder = SingleLayerDirectedGCNConvEncoder(in_channels, out_channels, alpha=args.alpha, beta=args.beta,
self_loops=args.self_loops,
adaptive=args.adaptive)
decoder = DirectedInnerProductDecoder()
model = DirectedGAE(encoder, decoder)
model = model.to(device)
elif args.model == 'dummy':
encoder = DummyEncoder()
decoder = InnerProductDecoder()
model = GAE(encoder, decoder)
model = model.to(device)
dummy_run = True
elif args.model == 'dummy_pair':
encoder = DummyPairEncoder()
decoder = DirectedInnerProductDecoder()
model = DirectedGAE(encoder, decoder)
model = model.to(device)
dummy_run =True
else:
raise ValueError('Undefined model!')
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=5e-4)
if args.verbose:
print("Training...")
# Flag to compute total running time
t_start = time.time()
for epoch in range(args.epochs):
# Flag to compute running time for each epoch
t = time.time()
loss = train_func()
avg_cost = loss
print("Epoch:", '%04d' % (epoch + 1), "train_loss=", "{:.5f}".format(avg_cost),
"time=", "{:.5f}".format(time.time() - t))
mean_time.append(time.time() - t_start)
if args.verbose:
print("Testing model...")
auc, ap = test_func(test_pos_edge_index, test_neg_edge_index)
roc_score, ap_score = auc, ap
mean_roc.append(roc_score)
mean_ap.append(ap_score)
# if adaptive...
print('=' * 60)
print(args.adaptive)
print(args.model)
print('=' * 60)
# Report final results
print("\nTest results for", args.model,
"model on", args.dataset, "on", args.task, "\n",
"___________________________________________________\n")
print("AUC scores\n", mean_roc)
print("Mean AUC score: ", np.mean(mean_roc),
"\nStd of AUC scores: ", np.std(mean_roc), "\n \n")
print("AP scores \n", mean_ap)
print("Mean AP score: ", np.mean(mean_ap),
"\nStd of AP scores: ", np.std(mean_ap), "\n \n")
print("Running times\n", mean_time)
print("Mean running time: ", np.mean(mean_time),
"\nStd of running time: ", np.std(mean_time), "\n \n")
############################################################
from datetime import datetime
import json
now = datetime.now()
date_time = now.strftime("%m/%d/%Y, %H:%M:%S")
log = {
'dataset' : args.dataset,
'task' : args.task,
'model' : args.model,
'learning_rate' : args.learning_rate,
'epochs' : args.epochs,
'hidden' : args.hidden,
'dimension' : args.dimension,
'alpha' : args.alpha,
'beta' : args.beta,
'nb_run' : args.nb_run,
'prop_val' : args.prop_val,
'prop_test' : args.prop_test,
'directed' : args.directed,
'feature_vector_type' : args.feature_vector_type,
'feature_vector_size' : args.feature_vector_size,
'validate' : args.validate,
'date_time' : date_time,
'auc_mean' : np.mean(mean_roc),
'auc_std' : np.std(mean_roc),
'ap_mean' : np.mean(mean_ap),
'ap_std' : np.std(mean_ap),
'time_mean' : np.mean(mean_time),
'time_std' : np.std(mean_time)
}
logfile = args.logfile
try:
data = json.load(open(logfile))
# convert data to list if not
if type(data) is dict:
data = [data]
except:
data = []
# append new item to data list
data.append(log)
# write list to file
with open(logfile, 'w') as outfile:
json.dump(data, outfile, indent=4, sort_keys=True)