-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathpredict.py
27 lines (25 loc) · 868 Bytes
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
from __future__ import print_function
import os
import torch
from torch.autograd import Variable
from PIL import Image
import numpy as np
from models.u_net import UNet
from models.seg_net import Segnet
from data_loader.dataset import input_transform, colorize_mask
#model = Segnet(3,2)
#model_path = './checkpoint/Segnet/model/netG_final.pth'
model = UNet(3, 2)
model_path = './checkpoint/Unet/model/netG_1.pth'
model.load_state_dict(torch.load(model_path, map_location='cpu'))
test_image_path = './data/train/src/21.png'
test_image = Image.open(test_image_path).convert('RGB')
print('Operating...')
img = input_transform(test_image)
img = img.unsqueeze(0)
img = Variable(img)
pred_image = model(img)
predictions = pred_image.data.max(1)[1].squeeze_(1).cpu().numpy()
prediction = predictions[0]
predictions_color = colorize_mask(prediction)
predictions_color.show()