-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpredict.py
93 lines (71 loc) · 2.99 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import tensorflow as tf
from WDSR3D.network import wdsr_3d, res_block_b
import numpy as np
from tqdm import tqdm
from skimage import io
import click
import os
import logging
logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO)
logger = logging.getLogger('__name__')
def resolve(model, lr_batch, lr_mean_batch):
lr_batch = tf.cast(lr_batch, tf.float32)
lr_mean_batch = tf.cast(lr_mean_batch, tf.float32)
sr_batch = model([lr_batch,lr_mean_batch])
sr_batch = tf.clip_by_value(sr_batch, 0, 2**16)
sr_batch = tf.round(sr_batch)
sr_batch = tf.cast(sr_batch, tf.float32)
return sr_batch
def evaluate(model, X_test_patches, X_test_merged_patches):
y_preds = []
for i in tqdm(range(0, X_test_patches.shape[0], 16)):
# Resolve
res_patches = resolve(model,np.expand_dims(X_test_patches[i:i+16],4),X_test_merged_patches[i:i+16])
y_pred = reconstruct_from_patches(np.array(res_patches))
y_preds.append(y_pred)
return y_preds
def reconstruct_from_patches(images):
rec_img = np.zeros((384, 384, 1))
block_n = 0
first_block = images[0, :, :, ]
for i in range(1, 5):
for j in range(1, 5):
rec_img[(i-1)*96:i*96, (j-1)*96:j*96] = images[block_n, :, :, ]
block_n += 1
return rec_img.reshape((384, 384, 1))
@click.command()
@click.option("--band", help="RED|NIR band.")
@click.option("--patches-file", help="Patches .npy file.")
@click.option("--merged-patches-file", help="Merged patches .npy file.")
@click.option("--checkpoint-dir", help="Checkpoint dir where model is saved.")
@click.option("--output", help="Output to save predicted images.")
def predict(band, patches_file, merged_patches_file,checkpoint_dir, output):
try:
(band == 'RED') | (band == 'NIR')
except:
raise ValueError("Band should be RED or NIR")
logging.info('Loading test patches...')
X_test_patches = np.load(patches_file, allow_pickle=True)
X_test_merged_patches = np.load(merged_patches_file, allow_pickle=True)
logging.info('Loading model from ckpt...')
model = wdsr_3d(3, 32, 8, 6, res_block_b, 7)
checkpoint = tf.train.Checkpoint(step=tf.Variable(0),
psnr=tf.Variable(1.0),
model=model)
checkpoint_manager = tf.train.CheckpointManager(checkpoint=checkpoint,
directory=checkpoint_dir,
max_to_keep=5)
checkpoint.restore(checkpoint_manager.latest_checkpoint)
logging.info('Evaluating...')
y_preds = evaluate(model, X_test_patches, X_test_merged_patches)
band = band.upper()
if band == 'NIR':
i = 1306
elif band=='RED':
i = 1160
logging.info(f'Saving predicted images to {output}')
for img in tqdm(y_preds):
io.imsave(os.path.join(output,f'imgset{i}.png'),img[:,:,0].astype(np.uint16))
i+=1
if __name__ == '__main__':
predict()