-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshortest_path_gif_gen.py
231 lines (208 loc) · 8.2 KB
/
shortest_path_gif_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import heapq
import random
import osmnx as ox
import matplotlib.pyplot as plt
place_name = "San Francisco, California, USA"
G = ox.graph_from_place(place_name, network_type='drive')
# Cleaning 'maxspeed' attribute and setting edge weights
for edge in G.edges:
# Cleaning the "maxspeed" attribute, some values are lists, some are strings, some are None
maxspeed = 40 # Default speed
if "maxspeed" in G.edges[edge]:
maxspeed_value = G.edges[edge]["maxspeed"]
if isinstance(maxspeed_value, list):
speeds = [int(speed) for speed in maxspeed_value if speed.isdigit()]
maxspeed = min(speeds) if speeds else maxspeed # Use default if no valid speeds found
elif isinstance(maxspeed_value, str):
maxspeed = int(maxspeed_value) if maxspeed_value.isdigit() else maxspeed # Use default if not a digit
G.edges[edge]["maxspeed"] = maxspeed
# Adding the "weight" attribute (time = distance / speed)
G.edges[edge]["weight"] = G.edges[edge]["length"] / maxspeed
def style_unvisited_edge(edge):
G.edges[edge]["color"] = "#2432B0"
G.edges[edge]["alpha"] = 0.3
G.edges[edge]["linewidth"] = 0.5
def style_visited_edge(edge):
G.edges[edge]["color"] = "#2432B0"
G.edges[edge]["alpha"] = 1
G.edges[edge]["linewidth"] = 1
def style_active_edge(edge):
G.edges[edge]["color"] = '#3F50E7'
G.edges[edge]["alpha"] = 1
G.edges[edge]["linewidth"] = 1
def style_path_edge(edge):
G.edges[edge]["color"] = "white"
G.edges[edge]["alpha"] = 1
G.edges[edge]["linewidth"] = 1
def plot_graph(iteration=None): # Add iteration parameter
fig, ax = ox.plot_graph(
G,
node_size=[G.nodes[node]["size"] for node in G.nodes],
edge_color=[G.edges[edge]["color"] for edge in G.edges],
edge_alpha=[G.edges[edge]["alpha"] for edge in G.edges],
edge_linewidth=[G.edges[edge]["linewidth"] for edge in G.edges],
node_color="white",
bgcolor="#0F1126",
show=False, # Don't show the plot immediately
close=False # Don't close the plot, so we can save it
)
if iteration is not None:
plt.savefig(f'./output/graph_iteration_{6000+iteration}.png', dpi=300) # Save the figure
plt.close(fig) # Close the plot to free up memory
def dijkstra(orig, dest, plot=False):
for node in G.nodes:
G.nodes[node]["visited"] = False
G.nodes[node]["distance"] = float("inf")
G.nodes[node]["previous"] = None
G.nodes[node]["size"] = 0
for edge in G.edges:
style_unvisited_edge(edge)
G.nodes[orig]["distance"] = 0
G.nodes[orig]["size"] = 50
G.nodes[dest]["size"] = 50
pq = [(0, orig)]
step = 0
while pq:
_, node = heapq.heappop(pq)
if node == dest:
if plot:
plot_graph(step) # Save final step before returning
return
if G.nodes[node]["visited"]:
continue
G.nodes[node]["visited"] = True
for edge in G.out_edges(node):
style_visited_edge((edge[0], edge[1], 0))
neighbor = edge[1]
weight = G.edges[(edge[0], edge[1], 0)]["weight"]
if G.nodes[neighbor]["distance"] > G.nodes[node]["distance"] + weight:
G.nodes[neighbor]["distance"] = G.nodes[node]["distance"] + weight
G.nodes[neighbor]["previous"] = node
heapq.heappush(pq, (G.nodes[neighbor]["distance"], neighbor))
for edge2 in G.out_edges(neighbor):
style_active_edge((edge2[0], edge2[1], 0))
if plot and step % 10 == 0:
plot_graph(step)
step += 1
def distance(node1, node2):
x1, y1 = G.nodes[node1]["x"], G.nodes[node1]["y"]
x2, y2 = G.nodes[node2]["x"], G.nodes[node2]["y"]
return ((x2 - x1)**2 + (y2 - y1)**2)**0.5
def a_star(orig, dest, plot=False):
for node in G.nodes:
G.nodes[node]["previous"] = None
G.nodes[node]["size"] = 0
G.nodes[node]["g_score"] = float("inf")
G.nodes[node]["f_score"] = float("inf")
for edge in G.edges:
style_unvisited_edge(edge)
G.nodes[orig]["size"] = 50
G.nodes[dest]["size"] = 50
G.nodes[orig]["g_score"] = 0
G.nodes[orig]["f_score"] = distance(orig, dest)
pq = [(G.nodes[orig]["f_score"], orig)]
step = 0
while pq:
_, node = heapq.heappop(pq)
if node == dest:
if plot:
plot_graph(step) # Save final step before returning
return
for edge in G.out_edges(node):
style_visited_edge((edge[0], edge[1], 0))
neighbor = edge[1]
tentative_g_score = G.nodes[node]["g_score"] + distance(node, neighbor)
if tentative_g_score < G.nodes[neighbor]["g_score"]:
G.nodes[neighbor]["previous"] = node
G.nodes[neighbor]["g_score"] = tentative_g_score
G.nodes[neighbor]["f_score"] = tentative_g_score + distance(neighbor, dest)
heapq.heappush(pq, (G.nodes[neighbor]["f_score"], neighbor))
for edge2 in G.out_edges(neighbor):
style_active_edge((edge2[0], edge2[1], 0))
if plot and step % 10 == 0:
plot_graph(step)
step += 1
def bfs(orig, dest, plot=False):
for node in G.nodes:
G.nodes[node]["visited"] = False
G.nodes[node]["previous"] = None
G.nodes[node]["size"] = 0
for edge in G.edges:
style_unvisited_edge(edge)
G.nodes[orig]["size"] = 50
G.nodes[dest]["size"] = 50
queue = [orig]
step = 0
while queue:
node = queue.pop(0)
if node == dest:
if plot:
print("Iterations:", step)
plot_graph()
return
if not G.nodes[node]["visited"]:
G.nodes[node]["visited"] = True
for edge in G.out_edges(node):
style_visited_edge((edge[0], edge[1], 0))
neighbor = edge[1]
if not G.nodes[neighbor]["visited"]:
G.nodes[neighbor]["previous"] = node
queue.append(neighbor)
for edge2 in G.out_edges(neighbor):
style_active_edge((edge2[0], edge2[1], 0))
if plot and step % 10 == 0:
plot_graph(step)
step += 1
def reconstruct_path(orig, dest, plot=False, algorithm=None):
for edge in G.edges:
style_unvisited_edge(edge)
dist = 0
speeds = []
curr = dest
step_count = 0 # Initialize a counter for the steps
while curr != orig:
prev = G.nodes[curr]["previous"]
if prev is None: # Add a check for when there is no previous node (e.g., start node)
break
dist += G.edges[(prev, curr, 0)]["length"]
speeds.append(G.edges[(prev, curr, 0)]["maxspeed"])
style_path_edge((prev, curr, 0))
if algorithm:
G.edges[(prev, curr, 0)][f"{algorithm}_uses"] = G.edges[(prev, curr, 0)].get(f"{algorithm}_uses", 0) + 1
curr = prev
step_count += 1 # Increment the step counter
if plot and step_count % 2 == 0: # Check if the step count is a multiple of 10
plot_graph(step_count) # Call your plotting function here
# Make sure to plot the final path if we haven't done so in the last few steps
if plot and step_count % 2 != 0:
plot_graph(step_count)
# Add 5 extra frames to the end of the GIF
for i in range(60):
plot_graph(step_count + i + 1)
# Print the path metrics
if speeds: # Ensure speeds list is not empty to avoid division by zero
dist /= 1000 # Convert distance to kilometers
print(f"Distance: {dist} km")
print(f"Avg. speed: {sum(speeds) / len(speeds)} km/h")
print(f"Total time: {dist / (sum(speeds) / len(speeds)) * 60} minutes")
start = random.choice(list(G.nodes))
end = random.choice(list(G.nodes))
print(f"Start: {start}")
print(f"End: {end}")
# Used to generate the GIF
# Start: 65336339
# End: 258757444
start = 65336339
end = 258757444
"""
dijkstra(start, end, plot=False)
reconstruct_path(start, end, plot=True)
"""
"""
a_star(start, end, plot=False)
reconstruct_path(start, end, plot=True)
"""
bfs(start, end, plot=False)
reconstruct_path(start, end, plot=True)
"""
"""