-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSN_Properties.v
1248 lines (1169 loc) · 41.9 KB
/
SN_Properties.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
Set Implicit Arguments.
Require Import Arith Metatheory Lambda_Ex Lambda.
Require Import Rewriting LambdaES_Infra.
Require Import LambdaES_Defs.
Require NormalizationTheory. Module NT := NormalizationTheory.
(* LambdaES_Def *)
Inductive SN_ind (n : nat) (R : pterm -> pterm -> Prop) (t : pterm) : Prop :=
| SN_intro : (forall t', R t t' -> exists k, k < n /\ SN_ind k R t') -> SN_ind n R t.
Lemma SN_ind_Succ : forall R t n, SN_ind n R t -> SN_ind (S n) R t.
Proof.
intros. constructor. intros t' Ht. inversion H.
specialize H0 with t'. apply H0 in Ht. inversion Ht.
destruct H1 as [H1 H2]. exists x. split.
- omega.
- assumption.
Qed.
Definition SN (R : pterm -> pterm -> Prop) (t : pterm) :=
exists n, SN_ind n R t.
Lemma SN_Red : forall R t u, SN R t -> R t u -> SN R u.
Proof.
intros R t u Ht Hr. inversion Ht. inversion H. apply H0 in Hr.
inversion Hr. destruct H1 as [H1 H2]. exists x0. assumption.
Qed.
(* =================================================================
Relacoes entre SN e NT.SN: falta provar se SN e patriarcal:
necessidade de garantir um numero finito de redutos a partir
de um termo t em lex, para do MAX entre os n' de cada t'
obtermos um n para t.
====================================================================
Lemma SNisPat : NT.patriarchal lex (SN lex).
Proof.
unfold NT.patriarchal. intros.
Theorem SNindP {R: pterm -> pterm -> Prop} {P: pterm -> Prop}
: (forall t, (forall t', R t t' -> P t') -> SN R t -> P t)
-> (forall t, SN R t -> P t).
Proof.
intros HI t Ht. apply HI.
Lemma SNequivNTSN : forall t, SN lex t <-> NT.SN lex t.
Proof.
split; intros H.
- apply NT.toSN. inversion H as [x H1]. intros y Ht. induction Ht.
+ inversion H0. apply H0 in Ht. inversion Ht.
inversion H2. inversion H3.
+ apply IHx.
===================================================================*)
Definition NF (R : pterm -> pterm -> Prop) (t : pterm) :=
forall t', ~ R t t'.
Inductive SNalt (R : pterm -> pterm -> Prop) (t : pterm) : Prop :=
| SN_nf : NF R t -> SNalt R t
| SN_acc : (forall t', R t t' -> SNalt R t') -> SNalt R t.
Lemma SNaltPat {R : pterm -> pterm -> Prop} : NT.patriarchal R (SNalt R).
Proof.
unfold NT.patriarchal. intros x H. apply SN_acc. assumption.
Qed.
Lemma SNaltStab : forall R t u, SNalt R t -> R t u -> SNalt R u.
Proof.
intros R t u Ht Hr. inversion Ht.
- apply H in Hr. inversion Hr.
- specialize H with u. apply H in Hr. assumption.
Qed.
Theorem SNindP {R: pterm -> pterm -> Prop} {P: pterm -> Prop}
: (forall t, (forall t', R t t' -> P t') -> SNalt R t -> P t)
-> (forall t, SNalt R t -> P t).
Proof.
intros IH t Ht.
(*
assert (Hpat: NT.patriarchal R (fun x => SNalt R x -> P x)).
{ unfold NT.patriarchal.
intros.
apply IH.
- intros.
apply H.
+ assumption.
+ apply SNaltStab with x; assumption.
- assumption.
} *)
induction Ht.
- apply IH.
+ intros. apply H in H0. inversion H0.
+ constructor; assumption.
- apply IH.
+ assumption.
+ apply SN_acc. assumption.
Qed.
Theorem SNaltEquivNTSN {R: pterm -> pterm -> Prop}: forall t, SNalt R t <-> NT.SN R t.
Proof.
split; intro H.
- inversion H.
+ apply NT.toSN. intros. apply H0 in H1. inversion H1.
+ eapply SNindP.
* intros. apply NT.SNpatriarchal. apply H1.
* assumption.
- eapply NT.SNind.
+ intros. apply SNaltPat. apply H0.
+ assumption.
Qed.
Lemma SNalt_app : forall t t', SNalt lex (pterm_app t t') -> SNalt lex t /\ SNalt lex t'. Admitted.
(* Inductive headApp : pterm -> Prop := *)
(* | hvar : forall x, headApp (pterm_fvar x) *)
(* | happ : forall t u, *)
(* headApp t -> Lterm u -> *)
(* (*-------------------------------------------------------------------------*) *)
(* headApp (pterm_app t u) *)
(* . *)
(* Inductive HNF_Beta : pterm -> Prop := *)
(* | hnfB_headApp : forall t, headApp t -> HNF_Beta t *)
(* | hnfB_abs : forall L t, *)
(* (forall x, x \notin L -> HNF_Beta (t ^ x))-> *)
(* (*-------------------------------------------------------------------------*) *)
(* HNF_Beta (pterm_abs t) *)
(* . *)
(* Inductive nfbApp : pterm -> Prop := *)
(* | nfb_var : forall x, nfbApp (pterm_fvar x) *)
(* | nfb_app : forall t u, *)
(* nfbApp t -> Lterm u -> NF Beta u -> *)
(* (*-------------------------------------------------------------------------*) *)
(* nfbApp (pterm_app t u) *)
(* . *)
(* Inductive NF_Beta : pterm -> Prop := *)
(* | nfB_nfbApp : forall t, nfbApp t -> NF_Beta t *)
(* | nfB_abs : forall L t, *)
(* (forall x, x \notin L -> NF_Beta (t ^ x))-> *)
(* (*-------------------------------------------------------------------------*) *)
(* NF_Beta (pterm_abs t) *)
(* . *)
Lemma NFB_app : forall u v, NF Beta (pterm_app u v) -> NF Beta u /\ NF Beta v.
Proof.
intros. split; unfold NF; unfold not; intros.
- assert ( pterm_app u v -->Beta pterm_app t' v).
{ apply L_app_left. assumption. }
apply H in H1. assumption.
- assert ( pterm_app u v -->Beta pterm_app u t').
{ apply L_app_right. assumption. }
apply H in H1. assumption.
Qed.
(* Lemma NF_Beta_NF : forall t, Lterm t -> (NF Beta t <-> NF_Beta t). *)
(* Proof. *)
(* split; intro H'. *)
(* - induction H. *)
(* + do 2 constructor. *)
(* + constructor. apply NFB_app in H'; destruct H' as [H1 H2]. apply nfb_app. *)
(* (*=================================================================================*) *)
(* (* Lambda *) *)
(* (* Lemma L_SN_app : forall n R t u, L_red_regular R -> Lterm t -> Lterm u -> *) *)
(* (* SN_ind n (L_contextual_closure R) (pterm_app t u) -> *) *)
(* (* SN_ind n (L_contextual_closure R) t /\ SN_ind n (L_contextual_closure R) u. *) *)
(* (* Proof. *) *)
(* (* intros n R t u Reg. *) *)
(* (* generalize t u; clear t u. *) *)
(* (* induction n. intros. split; rewrite <- NF_eq_SN0 in *|-*; unfold NF in *|-*. *) *)
(* (* intros t' H'. apply (H1 (pterm_app t' u)). apply L_app_left; trivial. *) *)
(* (* intros u' H'. apply (H1 (pterm_app t u')). apply L_app_right; trivial. *) *)
(* (* intros t u Tt Tu H. destruct H. split. *) *)
(* (* apply SN_intro. intros t' H'. exists n. split; try omega. *) *)
(* (* apply IHn with (t := t') (u := u); trivial. apply red_regular_Lctx in Reg. *) *)
(* (* apply Reg in H'. apply H'. case (H (pterm_app t' u)). apply L_app_left; trivial. *) *)
(* (* intros k H''. apply WSN with (k := k). omega. apply H''. *) *)
(* (* apply SN_intro. intros u' H'. exists n. split; try omega. *) *)
(* (* apply IHn with (t := t) (u := u'); trivial. apply red_regular_Lctx in Reg. *) *)
(* (* apply Reg in H'. apply H'. case (H (pterm_app t u')). apply L_app_right; trivial. *) *)
(* (* intros k H''. apply WSN with (k := k). omega. apply H''. *) *)
(* (* Qed. *) *)
(* (* Lemma L_SN_abs : forall x n R t, L_red_regular R -> L_red_out R -> *) *)
(* (* SN_ind n (L_contextual_closure R) (pterm_abs t) -> *) *)
(* (* x \notin (fv t) -> SN_ind n (L_contextual_closure R) (t ^ x). *) *)
(* (* Proof. *) *)
(* (* intros x n R t Reg Out. *) *)
(* (* generalize t; clear t. *) *)
(* (* apply red_regular_Lctx in Reg. *) *)
(* (* apply red_out_Lctx in Out. *) *)
(* (* apply L_red_out_to_rename in Out. *) *)
(* (* induction n. intros. *) *)
(* (* apply SN0_to_NF in H. *) *)
(* (* apply NF_to_SN0; unfold NF in *|-*. *) *)
(* (* intros t' H'. gen_eq t0 : (close t' x). intro H1. *) *)
(* (* replace t' with (t0 ^ x) in H'. *) *)
(* (* assert (Q: L_contextual_closure R (pterm_abs t) (pterm_abs t0)). *) *)
(* (* apply L_abs_in with (L := {{x}}). intros z H2. *) *)
(* (* apply notin_singleton in H2. apply Out with (x := x); trivial. *) *)
(* (* rewrite H1. apply fv_close'. *) *)
(* (* assert (Q': ~ L_contextual_closure R (pterm_abs t) (pterm_abs t0)). *) *)
(* (* apply H. *) *)
(* (* contradiction. rewrite H1. rewrite open_close_var with (x := x). *) *)
(* (* reflexivity. apply Reg in H'. apply Lterm_is_term. apply H'. *) *)
(* (* intros. destruct H. apply SN_intro. *) *)
(* (* intros. exists n. split; try omega. *) *)
(* (* gen_eq t0 : (close t' x). intro H2. *) *)
(* (* replace t' with (t0 ^ x). replace t' with (t0 ^ x) in H1. *) *)
(* (* apply IHn; trivial. case (H (pterm_abs t0)); trivial. *) *)
(* (* apply L_abs_in with (L := {{x}}). *) *)
(* (* intros z H3. apply notin_singleton in H3. *) *)
(* (* apply Out with (x := x); trivial. *) *)
(* (* rewrite H2. apply fv_close'. *) *)
(* (* intros k H3. apply WSN with (k := k); try omega. *) *)
(* (* apply H3. rewrite H2. apply fv_close'. *) *)
(* (* rewrite H2. rewrite open_close_var with (x := x). *) *)
(* (* reflexivity. apply Lterm_is_term. apply Reg in H1. apply H1. *) *)
(* (* rewrite H2. rewrite open_close_var with (x := x). *) *)
(* (* reflexivity. apply Lterm_is_term. apply Reg in H1. apply H1. *) *)
(* (* Qed. *) *)
(* (* Lemma L_SN_mult_app : forall n R t l, L_red_regular R -> Lterm t -> Lterm %% l -> *) *)
(* (* SN_ind n (L_contextual_closure R) (t // l) -> *) *)
(* (* SN_ind n (L_contextual_closure R) t /\ SN_ind n (L_contextual_closure R) %% l. *) *)
(* (* Proof. *) *)
(* (* intros n R t l Reg. generalize n t; clear n t. *) *)
(* (* induction l; simpl. intros n t T H0 H. split; trivial. *) *)
(* (* intros n t T H0 H. destruct H0. apply L_SN_app in H; trivial. destruct H. *) *)
(* (* assert (Q : SN_ind n (L_contextual_closure R) t /\ SN_ind n (L_contextual_closure R) %% l). *) *)
(* (* apply IHl; trivial. *) *)
(* (* clear IHl. destruct Q. split; trivial. split; trivial. *) *)
(* (* rewrite Lterm_mult_app. split; trivial. *) *)
(* (* Qed. *) *)
(* Lemma Lctx_red_h_mult_app : forall R t t' lu, Lterm %% lu -> (L_contextual_closure R) t t' -> (L_contextual_closure R) (t // lu) (t' // lu). *)
(* Proof. *)
(* intros R t t' lu Tlu H. induction lu; simpl in *|-*; trivial. *)
(* destruct Tlu. apply L_app_left; trivial. *)
(* apply IHlu; trivial. *)
(* Qed. *)
(* (* Lemma Lctx_red_t_mult_app : forall R t lu lu', Lterm t -> Lterm %% lu -> R_list (L_contextual_closure R) lu lu' -> (L_contextual_closure R) (t // lu) (t // lu'). *) *)
(* (* Proof. *) *)
(* (* intros R t lu lu' Tt Tlu H. unfold R_list in H. *) *)
(* (* case H; clear H; intros t0 H. *) *)
(* (* case H; clear H; intros t1 H. *) *)
(* (* case H; clear H; intros l0 H. *) *)
(* (* case H; clear H; intros l1 H. *) *)
(* (* destruct H. destruct H0. *) *)
(* (* rewrite H. rewrite H0. rewrite H in Tlu. *) *)
(* (* clear H H0. induction l0; simpl. destruct l1; simpl. *) *)
(* (* apply L_app_right; trivial. *) *)
(* (* apply L_app_right; trivial. *) *)
(* (* simpl in Tlu. apply Lterm_app. rewrite Lterm_mult_app. *) *)
(* (* destruct Tlu. destruct H0. *) *)
(* (* split; trivial. apply Tlu. *) *)
(* (* simpl in Tlu. destruct Tlu. *) *)
(* (* apply L_app_left; trivial. *) *)
(* (* apply IHl0; trivial. *) *)
(* (* Qed. *) *)
(* (** Inductive Characterisation of NF Beta **) *)
(* (* Lemma NF_ind_eq_Beta : forall t, Lterm t -> (NF_ind Beta t <-> NF Beta t). *) *)
(* (* Proof. *) *)
(* (* intros. split. *) *)
(* (* intro H'. induction H'. *) *)
(* (* induction l; simpl in *|-*. *) *)
(* (* intros t H2. inversion H2. inversion H3. *) *)
(* (* intros t H2. inversion H2. inversion H3. *) *)
(* (* case eqdec_nil with (l := l). intro. rewrite H11 in H6. simpl in H6. *) *)
(* (* generalize H6. discriminate. *) *)
(* (* intro H11. case m_app_eq_app with (t := (pterm_fvar x)) (lu := l); trivial. *) *)
(* (* intros t2 H12. case H12; clear H12; intros t3 H12. *) *)
(* (* generalize H6. rewrite H12. discriminate. *) *)
(* (* unfold NF in IHl. apply IHl with (t' := t'). inversion H. trivial. *) *)
(* (* intros u' H'. apply H0. right; trivial. *) *)
(* (* intros u' H8 Tu' t1. apply H1; trivial. right; trivial. trivial. *) *)
(* (* unfold NF in H1. apply H1 with (u := a) (t' := u'). *) *)
(* (* left; trivial. inversion H; trivial. trivial. *) *)
(* (* intros t' H2. inversion H2. inversion H3. inversion H. *) *)
(* (* unfold NF in H1. case var_fresh with (L := L \u L0 \u L1). *) *)
(* (* intros x Fr. apply notin_union in Fr. destruct Fr. apply notin_union in H8; destruct H8. *) *)
(* (* apply H1 with (x := x) (t' := t'0 ^x); trivial. *) *)
(* (* apply H7; trivial. apply H4; trivial. *) *)
(* (* assert (Reg : L_red_regular rule_beta). apply L_beta_regular. *) *)
(* (* assert (Out : L_red_out rule_beta). apply L_beta_red_out. *) *)
(* (* apply Lterm_size_induction3 with (t := t); trivial; intros. *) *)
(* (* apply NF_ind_app; intros. *) *)
(* (* apply H0; trivial. rewrite NF_eq_SN0 in H1|-*. apply L_SN_mult_app in H1; trivial. *) *)
(* (* destruct H1. rewrite <- P_list_eq with (P := SN_ind 0 (L_contextual_closure rule_beta)) in H3. *) *)
(* (* apply H3; trivial. rewrite <- P_list_eq with (P := Lterm). intros. *) *)
(* (* apply H0; trivial. case eqdec_nil with (l := l); intro. *) *)
(* (* rewrite H4 in *|-*. simpl in *|-*. unfold Lbody in H1. *) *)
(* (* case H1; clear H1; intros L H1. apply NF_ind_abs with (L := fv t1 \u L). *) *)
(* (* intros x Fr. apply notin_union in Fr. destruct Fr. apply H2; trivial. *) *)
(* (* apply H1; trivial. rewrite NF_eq_SN0 in H3. apply L_SN_abs with (x := x) in H3; trivial. *) *)
(* (* rewrite <- NF_eq_SN0 in H3. trivial. *) *)
(* (* apply False_ind. case not_nil_append with (l := l); trivial. *) *)
(* (* intros t0 H5. case H5; clear H5; intros l' H5. rewrite H5 in H3. *) *)
(* (* rewrite <- mult_app_append in H3. unfold NF in H3. apply (H3 ((t1 ^^ t0) // l')). *) *)
(* (* apply Lctx_red_h_mult_app. rewrite <- P_list_eq with (P := Lterm). intros. *) *)
(* (* apply H0. rewrite H5. apply in_or_app. left; trivial. *) *)
(* (* apply L_redex. apply reg_rule_beta; trivial. unfold body. unfold Lbody in H1. *) *)
(* (* case H1; clear H1; intros L H1. apply H0. rewrite H5. *) *)
(* (* apply in_or_app. right. simpl. left; trivial. *) *)
(* (* Qed. *) *)
(* (** Inductive Characterisation of NF Beta **) *)
(* (* Lemma NF_ind_eq_Beta : forall t, Lterm t -> (NF_ind Beta t <-> NF Beta t). *) *)
(* (* Proof. *) *)
(* (* intros. split. *) *)
(* (* intro H'. induction H'. *) *)
(* (* induction l; simpl in *|-*. *) *)
(* (* intros t H2. inversion H2. inversion H3. *) *)
(* (* intros t H2. inversion H2. inversion H3. *) *)
(* (* case eqdec_nil with (l := l). intro. rewrite H11 in H6. simpl in H6. *) *)
(* (* generalize H6. discriminate. *) *)
(* (* intro H11. case m_app_eq_app with (t := (pterm_fvar x)) (lu := l); trivial. *) *)
(* (* intros t2 H12. case H12; clear H12; intros t3 H12. *) *)
(* (* generalize H6. rewrite H12. discriminate. *) *)
(* (* unfold NF in IHl. apply IHl with (t' := t'). inversion H. trivial. *) *)
(* (* intros u' H'. apply H0. right; trivial. *) *)
(* (* intros u' H8 Tu' t1. apply H1; trivial. right; trivial. trivial. *) *)
(* (* unfold NF in H1. apply H1 with (u := a) (t' := u'). *) *)
(* (* left; trivial. inversion H; trivial. trivial. *) *)
(* (* intros t' H2. inversion H2. inversion H3. inversion H. *) *)
(* (* unfold NF in H1. case var_fresh with (L := L \u L0 \u L1). *) *)
(* (* intros x Fr. apply notin_union in Fr. destruct Fr. apply notin_union in H8; destruct H8. *) *)
(* (* apply H1 with (x := x) (t' := t'0 ^x); trivial. *) *)
(* (* apply H7; trivial. apply H4; trivial. *) *)
(* (* assert (Reg : L_red_regular rule_beta). apply L_beta_regular. *) *)
(* (* assert (Out : L_red_out rule_beta). apply L_beta_red_out. *) *)
(* (* apply Lterm_size_induction3 with (t := t); trivial; intros. *) *)
(* (* apply NF_ind_app; intros. *) *)
(* (* apply H0; trivial. rewrite NF_eq_SN0 in H1|-*. apply L_SN_mult_app in H1; trivial. *) *)
(* (* destruct H1. rewrite <- P_list_eq with (P := SN_ind 0 (L_contextual_closure rule_beta)) in H3. *) *)
(* (* apply H3; trivial. rewrite <- P_list_eq with (P := Lterm). intros. *) *)
(* (* apply H0; trivial. case eqdec_nil with (l := l); intro. *) *)
(* (* rewrite H4 in *|-*. simpl in *|-*. unfold Lbody in H1. *) *)
(* (* case H1; clear H1; intros L H1. apply NF_ind_abs with (L := fv t1 \u L). *) *)
(* (* intros x Fr. apply notin_union in Fr. destruct Fr. apply H2; trivial. *) *)
(* (* apply H1; trivial. rewrite NF_eq_SN0 in H3. apply L_SN_abs with (x := x) in H3; trivial. *) *)
(* (* rewrite <- NF_eq_SN0 in H3. trivial. *) *)
(* (* apply False_ind. case not_nil_append with (l := l); trivial. *) *)
(* (* intros t0 H5. case H5; clear H5; intros l' H5. rewrite H5 in H3. *) *)
(* (* rewrite <- mult_app_append in H3. unfold NF in H3. apply (H3 ((t1 ^^ t0) // l')). *) *)
(* (* apply Lctx_red_h_mult_app. rewrite <- P_list_eq with (P := Lterm). intros. *) *)
(* (* apply H0. rewrite H5. apply in_or_app. left; trivial. *) *)
(* (* apply L_redex. apply reg_rule_beta; trivial. unfold body. unfold Lbody in H1. *) *)
(* (* case H1; clear H1; intros L H1. apply H0. rewrite H5. *) *)
(* (* apply in_or_app. right. simpl. left; trivial. *) *)
(* (* Qed. *) *)
(* (** Inductive Characterisation of SN Beta **) *)
(* Inductive SN_Beta : pterm -> Prop := *)
(* | sn_beta_var : forall (x : var) (lu : list pterm), *)
(* (forall u, (In u lu) -> SN_Beta u) -> *)
(* (*-------------------------------------------------------------------------*) *)
(* SN_Beta ((pterm_fvar x) // lu) *)
(* | sn_beta_abs : forall L (u : pterm), *)
(* (forall x, x \notin L -> SN_Beta (u ^ x))-> *)
(* (*-------------------------------------------------------------------------*) *)
(* SN_Beta (pterm_abs u) *)
(* | sn_beta_meta_sub : forall (t u : pterm) (lv : list pterm), *)
(* SN_Beta u -> SN_Beta ((t ^^ u) // lv) -> *)
(* (*-------------------------------------------------------------------------*) *)
(* SN_Beta ((pterm_app (pterm_abs t) u) // lv) *)
(* . *)
(* Theorem SN_Beta_prop : forall t, Lterm t -> SN Beta t -> SN_Beta t. *)
(* Proof. *)
(* intros t T. *)
(* intro H. case H; clear H; intros n H. *)
(* generalize t T H; clear T t H. induction n; intros. *)
(* (* rewrite <- NF_eq_SN0 in H. rewrite <- NF_ind_eq_Beta in H; trivial. *) *)
(* (* induction H. apply sn_beta_var; intros. *) *)
(* (* apply H0; trivial. rewrite Lterm_mult_app in T. destruct T. *) *)
(* (* rewrite <- P_list_eq in H3. apply H3; trivial. *) *)
(* (* inversion T; clear T. apply sn_beta_abs with (L := L \u L0); intros. *) *)
(* (* apply notin_union in H3. destruct H3. apply H0; trivial. apply H2; trivial. *) *)
(* (* assert (Reg : L_red_regular rule_beta); try apply L_beta_regular. *) *)
(* (* assert (Out : L_red_out rule_beta); try apply L_beta_red_out. *) *)
(* (* generalize H; clear H. apply Lterm_size_induction3 with (t := t); intros; trivial. *) *)
(* (* apply sn_beta_var; intros. *) *)
(* (* assert (Q : SN_ind (S n) Beta %% l). *) *)
(* (* apply L_SN_mult_app in H0; trivial. apply H0. *) *)
(* (* rewrite <- P_list_eq with (P := Lterm). *) *)
(* (* intros u' H2. apply H; trivial. *) *)
(* (* apply H; trivial. rewrite <- P_list_eq with (P := SN_ind (S n) Beta) in Q. *) *)
(* (* apply Q; trivial. *) *)
(* (* case eqdec_nil with (l := l). *) *)
(* (* intro H3. rewrite H3 in *|-*. simpl in *|-*. clear H H3. *) *)
(* (* inversion H0; clear H0. *) *)
(* (* apply sn_beta_abs with (L := fv t1 \u x). intros y Fr. *) *)
(* (* apply notin_union in Fr. destruct Fr. *) *)
(* (* apply H1; trivial. apply H; trivial. apply L_SN_abs; trivial. *) *)
(* (* intro H3. case not_nil_append with (l := l); trivial. *) *)
(* (* intros a Hl. case Hl; clear Hl. intros l' Hl. *) *)
(* (* rewrite Hl in *|-*. rewrite <- mult_app_append in *|-*. *) *)
(* (* clear H3 Hl. *) *)
(* (* assert (Tl : Lterm a /\ Lterm %% l'). *) *)
(* (* split. apply H. apply in_or_app. right. *) *)
(* (* simpl; left; trivial. *) *)
(* (* apply P_list_eq with (P := Lterm). *) *)
(* (* intros u Hu. apply H. apply in_or_app. left. *) *)
(* (* trivial. *) *)
(* (* destruct Tl. apply sn_beta_meta_sub. apply H. *) *)
(* (* apply in_or_app. simpl. right. left; trivial. *) *)
(* (* apply L_SN_mult_app in H2; trivial. destruct H2. apply L_SN_app in H2; trivial. *) *)
(* (* destruct H2; trivial. *) *)
(* (* inversion H0. apply Lterm_abs with (L := x); intros. *) *)
(* (* apply H6; trivial. apply Lterm_app. inversion H0. apply Lterm_abs with (L := x); intros. *) *)
(* (* apply H5; trivial. trivial. apply IHn. rewrite Lterm_mult_app. split; trivial. *) *)
(* (* apply Lbody_open_term; trivial. *) *)
(* (* apply SN_one_step with (t := pterm_app (pterm_abs t1) a // l'); trivial. *) *)
(* (* apply Lctx_red_h_mult_app; trivial. apply L_redex. apply reg_rule_beta. *) *)
(* (* unfold Lbody in H0. case H0; clear H0; intros L H0. exists L. intros. *) *)
(* (* apply H0; trivial. trivial. *) *)
(* (* Qed. *) *)
(* Admitted. *)
(* (*=============================================================================*) *)
(* (* Lambda_Ex *) *)
(* (** The two definitions of SN are equivalent for lex. *) *)
(* Lemma SN_equivSN_alt: forall t, SN lex t <-> SN_alt lex t. *)
(* Proof. Admitted. *)
(* (* *)
(* (** NF lex Properties **) *)
(* *)
(* Lemma NF_eqC : forall t t', t =e t' -> NF lex t -> NF lex t'. *)
(* Proof. *)
(* intros t t'. intros. unfold NF in *|-*. *)
(* intros t1 H1. rewrite <- H in H1. *)
(* apply (H0 t1); trivial. *)
(* Qed. *)
(* *)
(* Lemma NF_fvar : forall x, NF lex (pterm_fvar x). *)
(* Proof. *)
(* intros x t H'. *)
(* case H'; clear H'. *)
(* intros t0 H0. case H0; clear H0. *)
(* intros t1 H1. destruct H1. destruct H0. *)
(* assert (Q : pterm_fvar x = t0). *)
(* clear H0 H1 t1. gen_eq t1 : (pterm_fvar x). *)
(* intro H1. induction H. rewrite H1. rewrite H1 in H. *)
(* inversion H; trivial. clear H H1 H2 H3 s t0. inversion H0; trivial. *)
(* rewrite IHtrans_closure in H. rewrite H1. rewrite H1 in H. inversion H. *)
(* inversion H2; trivial. rewrite H1 in H. symmetry. inversion H. inversion H2; trivial. *)
(* rewrite <- Q in H0. inversion H0. inversion H2. inversion H5. inversion H5. *)
(* Qed. *)
(* *)
(* *)
(* Lemma NF_app_lex : forall t u v, NF lex u -> NF lex v -> (pterm_app u v -->lex t) -> *)
(* exists t', u =e pterm_abs t' /\ t =e (t'[v]). *)
(* Proof. *)
(* intros t u v NFu NFv H. apply lex_app in H. case H; clear H; intro H. *)
(* case H; clear H; intros t' H. exists t'; trivial. *)
(* case H; clear H; intro H; case H; clear H; intros t' H; destruct H. *)
(* assert (Q : ~ u -->lex t'). apply (NFu t'). contradiction. *)
(* assert (Q : ~ v -->lex t'). apply (NFv t'). contradiction. *)
(* Qed. *)
(* *)
(* Lemma NF_app_lex_eq : forall t u v, NF lex u -> NF lex v -> (pterm_app u v -->lex t) -> *)
(* exists t' t'' v', u = pterm_abs t' /\ t = (t''[v']). *)
(* Proof. *)
(* intros t u v NFu NFv H. apply NF_app_lex in H; trivial. *)
(* case H; clear H. intros t' H. destruct H. *)
(* apply eqC_sym in H. apply eqC_abs_term in H. *)
(* apply eqC_sym in H0. apply eqC_sub_term in H0. *)
(* case H; clear H. intros t1 H. case H; clear H. intros L H. destruct H. *)
(* case H0; clear H0. intros t1' H0. case H0; clear H0. intros u' H0. *)
(* exists t1 t1' u'. split. rewrite H. reflexivity. rewrite H0. reflexivity. *)
(* Qed. *)
(* *)
(* Lemma NF_mult_app_var : forall x lt, NF lex %% lt -> NF lex ((pterm_fvar x) // lt). *)
(* Proof. *)
(* intros x lt H. *)
(* induction lt; simpl in *|-*. apply NF_fvar. *)
(* destruct H. assert (Q : NF lex (pterm_fvar x // lt)). apply IHlt; trivial. *)
(* clear IHlt. unfold NF. intros t' H'. case eqdec_nil with (l := lt). intro H''. *)
(* rewrite H'' in H'. simpl in H'. *)
(* apply NF_app_lex_eq in H'; trivial. case H'; clear H'. intros t0 H'. *)
(* case H'; clear H'. intros t0' H'. case H'; clear H'. intros v' H'. *)
(* destruct H'. inversion H1. *)
(* apply NF_fvar. intro H''. *)
(* assert (Q' : exists t' u', (pterm_fvar x) // lt = pterm_app t' u'). *)
(* apply m_app_eq_app; trivial. *)
(* case Q'; clear Q'. intros u H1. case H1; clear H1. intros v H1. *)
(* rewrite H1 in H'. apply NF_app_lex_eq in H'; trivial. *)
(* case H'; clear H'. intros t0 H'. case H'; clear H'. intros t0' H'. *)
(* case H'; clear H'. intros v' H'. *)
(* destruct H'. inversion H2; trivial. *)
(* rewrite <- H1; trivial. *)
(* Qed. *)
(* *)
(* *)
(* *)
(* Lemma lex_abs_not_NF : forall l t, l <> nil -> term (pterm_abs t // l) -> ~ NF lex (pterm_abs t // l). *)
(* Proof. *)
(* intros. induction l. intro H'. apply H; trivial. *)
(* simpl in *|-*. case eqdec_nil with (l := l). intro H'. *)
(* rewrite H' in *|-*. simpl in *|-*. intro H1. *)
(* apply (H1 (t[a])). apply ctx_to_mod_eqC. apply redex. *)
(* apply B_lx. apply term_distribute_over_application in H0. *)
(* destruct H0. apply term_abs_to_body in H0. apply reg_rule_b; trivial. *)
(* intro H'. apply term_distribute_over_application in H0. destruct H0. *)
(* assert (Q : ~ NF lex (pterm_abs t // l)). *)
(* apply IHl; trivial. *)
(* clear IHl H'. intro H'. apply Q. intros t' H2. *)
(* apply (H' (pterm_app t' a)). apply left_app_lex; trivial. *)
(* Qed. *)
(* *)
(* Lemma lex_sub_not_NF : forall x t u, body t -> term u -> x \notin (fv t) -> *)
(* ~ NF lex (t ^ x) -> ~ NF lex (t[u]). *)
(* Proof. *)
(* intros. intro H3. apply H2. clear H2. *)
(* intros t0 H2. gen_eq t1 : (close t0 x). intro H4. *)
(* replace t0 with (t1 ^ x) in H2. apply (H3 (t1 [u])). *)
(* apply left_subst_lex with (L:= (fv t) \u (fv t1)); trivial. *)
(* intros z Fr. apply notin_union in Fr. destruct Fr. *)
(* apply ctx_sys_lex_red_rename with (x := x); trivial. *)
(* rewrite H4. apply fv_close'. rewrite H4. *)
(* rewrite open_close_var with (x := x); trivial. *)
(* apply ctx_sys_Bex_regular in H2. apply H2. *)
(* Qed. *)
(* *)
(* Lemma lex_sub_not_NF' : forall t u, body t -> term u -> ~ NF lex (t[u]). *)
(* Proof. *)
(* intros. apply body_size_induction with (t := t); trivial; intros; intro H'. *)
(* apply (H' u). apply ctx_to_mod_eqC. apply redex. apply sys_x_lx. apply reg_rule_var; trivial. *)
(* apply (H' (pterm_fvar x)). apply ctx_to_mod_eqC. apply redex. apply sys_x_lx. apply reg_rule_gc; trivial. *)
(* apply (H' (pterm_abs ((& t1)[u]))). apply ctx_to_mod_eqC. apply redex. apply sys_x_lx. apply reg_rule_lamb; trivial. *)
(* rewrite body_eq_body'; unfold body'. simpl; trivial. *)
(* apply (H' (pterm_app (t1[u]) (t2[u]))). apply ctx_to_mod_eqC. apply redex. apply sys_x_lx. apply reg_rule_app; trivial; *)
(* rewrite body_eq_body' in *|-*; unfold body' in *|-*; simpl in *|-*; apply H2. *)
(* case var_fresh with (L := fv t3). *)
(* intros x Hx. case fv_in_or_notin with (t := t3 ^ x) (x := x); intros. *)
(* apply (H' ((& t1)[u][ t3[ u ] ])). apply ctx_to_mod_eqC. apply redex. apply sys_x_lx. apply reg_rule_comp; trivial. *)
(* rewrite body_eq_body' in *|-*; unfold body' in *|-*; simpl in *|-*; split; trivial. *)
(* rewrite term_eq_term'. unfold term'. apply not_body_term_fvar with (x := x); trivial. *)
(* rewrite body_eq_body' in H2. unfold body' in H2. trivial. *)
(* assert (T : term t3). *)
(* rewrite term_eq_term'; simpl. unfold term'. *)
(* rewrite body_eq_body' in *|-; unfold body' in *|-. *)
(* apply body_term_fvar with (x := x); trivial. *)
(* clear x Hx H2 H5. rewrite eqC_redex in H'; trivial. *)
(* generalize H'. case var_fresh with (L := fv ((& t1)[u])). *)
(* intros x Fr. apply lex_sub_not_NF with (x := x); trivial. *)
(* rewrite body_eq_body'. unfold body'. simpl. *)
(* split. apply lc_at_bswap; try omega; trivial. *)
(* rewrite <- body_eq_body'. apply term_is_a_body; trivial. *)
(* unfold open. unfold bswap. simpl. *)
(* replace (open_rec 0 (pterm_fvar x) u) with u. *)
(* apply H4. *)
(* simpl in Fr. apply notin_union in Fr. apply Fr. *)
(* rewrite size_bswap_rec; trivial. *)
(* rewrite body_eq_body'. unfold body'. *)
(* rewrite <- lc_at_open with (u := pterm_fvar x); trivial. *)
(* apply lc_at_bswap; try omega; trivial. *)
(* rewrite open_lc_at; trivial. *)
(* rewrite <- term_eq_term'; trivial. *)
(* Qed. *)
(* (** SN lex Properties **) *)
(* *)
(* *)
(* Lemma SN_app_var : forall x t, SN lex t -> SN lex (pterm_app (pterm_fvar x) t). *)
(* Proof. *)
(* intros x t H. case H; clear H. intros n H. exists n. generalize t H; clear t H. *)
(* induction n. intros t H. rewrite <- NF_eq_SN0 in *|-*. *)
(* replace (pterm_app (pterm_fvar x) t) with ((pterm_fvar x) // (t :: nil)). *)
(* apply NF_mult_app_var. simpl; split; trivial. simpl; trivial. *)
(* intros t H. inversion H. apply SN_intro. intros u H'. *)
(* apply lex_app_var in H'. case H'; clear H'; intros t' H'. *)
(* destruct H'. case (H0 t'); clear H0; trivial. intros k H0. *)
(* destruct H0. exists n; split; try omega. rewrite H1. apply IHn. *)
(* apply WSN with (k := k); try omega; trivial. *)
(* Qed. *)
(* *)
(* *)
(* *)
(* Lemma SN_mult_app_var : forall x lt, term %% lt -> SN lex %% lt -> SN lex ((pterm_fvar x) // lt). *)
(* Proof. *)
(* intros x lt T H. induction lt; simpl. exists 0. rewrite <- NF_eq_SN0. apply NF_fvar. *)
(* simpl in *|-*. destruct T. destruct H. assert (H': SN lex (pterm_fvar x // lt)). apply IHlt; trivial. clear H2 IHlt. *)
(* case H; clear H. intros n H. case H'; clear H'. intros n' H'. *)
(* gen_eq k : (n + n'). intro Hk. exists k. generalize a lt n n' H0 H1 H H' Hk. clear a lt n n' H0 H1 H H' Hk. *)
(* induction k. intros. *)
(* assert (Qn : n = 0). symmetry in Hk. omega. *)
(* assert (Qn': n' = 0). symmetry in Hk. omega. clear Hk. *)
(* rewrite Qn in H. rewrite Qn' in H'. clear Qn Qn'. *)
(* rewrite <- NF_eq_SN0 in *|-*. *)
(* replace (pterm_app (pterm_fvar x // lt) a) with ((pterm_fvar x) // (a :: lt)). *)
(* apply NF_mult_app_var. simpl. split; trivial. clear a n n' H0 H. *)
(* induction lt; simpl in *|-*; trivial. split. intros a' Ha'. *)
(* apply (H' (pterm_app (pterm_fvar x // lt) a')). *)
(* apply right_app_lex; trivial. rewrite term_mult_app. destruct H1. split; trivial. *)
(* apply IHlt. apply H1. intros t' Ht'. apply (H' (pterm_app t' a)). *)
(* apply left_app_lex; trivial. apply H1. simpl; trivial. *)
(* intros. apply SN_intro. intros t' Ht'. inversion H. inversion H'. *)
(* apply lex_app in Ht'. case Ht'; clear Ht'. intro Ht'. case Ht'; clear Ht'. intros u Ht'. destruct Ht'. *)
(* case eqdec_nil with (l := lt). intro H6. rewrite H6 in H4. simpl in H4. apply eqC_fvar_term in H4. apply False_ind. *)
(* generalize H4. discriminate. intro H6. case m_app_eq_app with (t := (pterm_fvar x)) (lu := lt); trivial. *)
(* intros u0 H7. case H7; clear H7. intros v0 H7. rewrite H7 in H4. apply eqC_app_term in H4. *)
(* case H4; clear H4. intros u' H4. case H4; clear H4. intros v' H4. destruct H4. apply False_ind. *)
(* generalize H4. discriminate. *)
(* intro H4. case H4; clear H4. intro H4. case H4; clear H4; intros u H4. destruct H4. *)
(* case (H3 u); trivial; clear H3. intros k' H3. destruct H3. exists k. split; try omega. *)
(* rewrite H4. apply lex_mult_app_var in H5. case H5; clear H5. intros lt' H5. destruct H5. rewrite H5. *)
(* apply IHk with (n := n) (n' := n' - 1); trivial. apply lex_R_list_regular in H7. apply H7; trivial. *)
(* apply WSN with (k := k'); try omega. rewrite <- H5; trivial. omega. *)
(* intro H4. case H4; clear H4. intros a' H4. destruct H4. exists k; split; try omega. *)
(* case (H2 a'); clear H2; trivial. intros k' H2. destruct H2. rewrite H4. *)
(* apply IHk with (n := n - 1) (n' := n'); trivial. apply ctx_sys_Bex_regular in H5. apply H5. *)
(* apply WSN with (k := k'); try omega; trivial. omega. *)
(* Qed. *)
(* *)
(* *)
(* Lemma lex_SN_abs : forall n L t, (forall x, x \notin L -> SN_ind n lex (t ^ x)) -> *)
(* (SN_ind n lex (pterm_abs t)). *)
(* Proof. *)
(* intros n L t. generalize t; clear t. induction n. *)
(* intros. rewrite <- NF_eq_SN0. setoid_rewrite <- NF_eq_SN0 in H. *)
(* intros t' H'. apply lex_abs in H'. case H'; clear H'; intros L0 H'. case H'; clear H'; intros t0 H'. *)
(* destruct H'. pick_fresh x. apply notin_union in Fr. destruct Fr. apply notin_union in H2. destruct H2. *)
(* apply notin_union in H2. destruct H2. apply notin_union in H2. destruct H2. *)
(* case H with (x := x) (t' := (t0 ^ x)); trivial. apply H1; trivial. *)
(* intros t H. apply SN_intro. intros t' H'. exists n; split; try omega. *)
(* apply lex_abs in H'. case H'; clear H'; intros L0 H'. case H'; clear H'; intros t0 H'. *)
(* destruct H'. pick_fresh x. apply notin_union in Fr. destruct Fr. apply notin_union in H2. destruct H2. *)
(* apply notin_union in H2. destruct H2. apply notin_union in H2. destruct H2. apply notin_union in H2. destruct H2. *)
(* rewrite H0. apply IHn. intros x' H8. destruct (H x'); trivial. case (H9 (t0 ^ x')). *)
(* apply ctx_sys_lex_red_rename with (x := x); trivial. apply H1; trivial. *)
(* intros k H10. destruct H10. apply WSN with (k := k); try omega; trivial. *)
(* Qed. *)
(* *)
(* *)
(* Lemma lex_SN_ind_rename : forall n x x' t, body t -> x' \notin ({{x}} \u (fv t)) -> SN_ind n lex (t ^ x) -> SN_ind n lex (t ^ x'). *)
(* Proof. *)
(* intros n x x' t B Fr H. apply notin_union in Fr; destruct Fr. apply notin_singleton in H0. *)
(* generalize t B H0 H1 H. clear t B H0 H1 H. induction n. *)
(* intros t B H0 H1 H. rewrite <- NF_eq_SN0 in *|-*. *)
(* intros t' H'. gen_eq t0 : (close t' x'). intro H2. *)
(* replace t' with (t0 ^ x') in H'. apply (H (t0 ^x)). apply ctx_sys_lex_red_rename with (x := x'); trivial. *)
(* rewrite H2. apply fv_close'. rewrite H2. rewrite open_close_var with (x := x'). reflexivity. *)
(* apply ctx_sys_Bex_regular in H'. apply H'. intros t B H0 H1 H. destruct H. *)
(* apply SN_intro. intros t' H'. exists n; split; try omega. gen_eq t0 : (close t' x'). intro H2. *)
(* generalize H'. intro T. apply ctx_sys_Bex_regular in T. destruct T. *)
(* replace t' with (t0 ^ x') in H'. case (H (t0 ^ x)); clear H. apply ctx_sys_lex_red_rename with (x := x'); trivial. *)
(* rewrite H2. apply fv_close'. intros k H. destruct H. replace t' with (t0 ^ x'). apply (IHn t0); trivial. *)
(* apply ctx_sys_Bex_regular in H'. destruct H'. rewrite term_eq_term' in H7. unfold term' in H7. unfold open in H7. *)
(* rewrite body_eq_body'. unfold body'. rewrite lc_at_open with (u := pterm_fvar x'); trivial. *)
(* rewrite H2. apply fv_close'. apply WSN with (k := k); try omega; trivial. *)
(* rewrite H2; rewrite open_close_var with (x := x'); try reflexivity; trivial. *)
(* rewrite H2; rewrite open_close_var with (x := x'); try reflexivity; trivial. *)
(* Qed. *)
(* *)
(* Lemma lex_SN_rename : forall x x' t, body t -> x' \notin ({{x}} \u (fv t)) -> SN lex (t ^ x) -> SN lex (t ^ x'). *)
(* Proof. *)
(* intros. case H1; clear H1; intros n H1; exists n; apply lex_SN_ind_rename with (x := x); trivial. *)
(* Qed. *)
(* *)
(* Lemma lex_SN_ind_swap : forall n x y t, SN_ind n lex t -> SN_ind n lex ([(x,y)]t). *)
(* Proof. *)
(* intros. generalize t H. clear t H. induction n. *)
(* intros. rewrite <- NF_eq_SN0 in *|-*. intros t' H'. *)
(* apply (H ([(x,y)]t')). rewrite <- swap_inv with (t := t) (x := x) (y := y). *)
(* apply ctx_sys_lex_red_swap; trivial. *)
(* intros. inversion H. clear H. apply SN_intro. intros t' H'. *)
(* rewrite <- swap_inv with (t := t') (x := x) (y := y). *)
(* case (H0 ([(x, y)]t')). rewrite <- swap_inv with (t := t) (x := x) (y := y). *)
(* apply ctx_sys_lex_red_swap; trivial. *)
(* intros k H. destruct H. exists n; split; try omega. apply IHn; trivial. *)
(* apply WSN with (k := k); try omega; trivial. *)
(* Qed. *)
(* *)
(* Lemma lex_SN_swap : forall x y t, SN lex t -> SN lex ([(x,y)]t). *)
(* Proof. intros; case H; clear H; intros n H; exists n; apply lex_SN_ind_swap; trivial. Qed. *)
(* *)
(* *) *)
(* (* LexSN *) *)
(* (** Inductive Characterisation of SN lex **) *)
(* *)
(* Inductive ISN : pterm -> Prop := *)
(* *)
(* *)
(* | isn_var : forall (x : var) (lu : list pterm), *)
(* *)
(* (forall u, (In u lu) -> ISN u) -> *)
(* (*-------------------------------------------------------------------------*) *)
(* ISN ((pterm_fvar x) // lu) *)
(* *)
(* *)
(* | isn_NF : forall (u : pterm), *)
(* *)
(* NF lex u -> *)
(* (*-------------------------------------------------------------------------*) *)
(* ISN u *)
(* *)
(* *)
(* | isn_app : forall (u v : pterm) (lu : list pterm), *)
(* *)
(* ISN (u[v] // lu) -> *)
(* (*-------------------------------------------------------------------------*) *)
(* ISN ((pterm_app (pterm_abs u) v) // lu) *)
(* *)
(* *)
(* | isn_subs : forall (u v : pterm) (lu : list pterm), *)
(* *)
(* ISN ((u ^^ v) // lu) -> ISN v -> *)
(* (*-------------------------------------------------------------------------*) *)
(* ISN (u[v] // lu) *)
(* *)
(* *)
(* | isn_abs : forall L (u : pterm), *)
(* *)
(* (forall x, x \notin L -> ISN (u ^ x)) -> *)
(* (*-------------------------------------------------------------------------*) *)
(* ISN (pterm_abs u) . *)
(* *)
(* *)
(* *)
(* *)
(* Lemma ISN_prop : forall t, term t -> (ISN t <-> SN lex t). *)
(* Proof. *)
(* (* intros t T. split. intro H. induction H. *) *)
(* (* (* -> *) *) *)
(* (* (* isn_var *) *) *)
(* (* rewrite term_mult_app in T. destruct T. clear H1. *) *)
(* (* assert (Q : SN lex %% lu). *) *)
(* (* clear H. induction lu; simpl in *|-*; trivial. *) *)
(* (* destruct H2. split. apply H0; trivial. left. trivial. *) *)
(* (* apply IHlu; trivial. intros u Hu Tu. *) *)
(* (* apply H0; trivial. right; trivial. *) *)
(* (* apply SN_mult_app_var; trivial. *) *)
(* (* (* isn_NF *) *) *)
(* (* exists 0. rewrite <- NF_eq_SN0; trivial. *) *)
(* (* (* isn_app *) *) *)
(* (* apply perpetuality with (t' := ((u [v]) // lu)); trivial. *) *)
(* (* apply p_B. apply IHISN. rewrite term_mult_app in *|-*. *) *)
(* (* destruct T. split; trivial. rewrite term_eq_term' in *|-*. *) *)
(* (* unfold term' in *|-*. simpl in *|-*. trivial. *) *)
(* (* (* isn_subs *) *) *)
(* (* generalize T. intro T'. rewrite term_mult_app in T. destruct T. *) *)
(* (* apply subs_to_body in H1. destruct H1. *) *)
(* (* apply perpetuality with (t' := ((u ^^ v) // lu)); trivial. *) *)
(* (* apply p_subst1; trivial. apply IHISN2; trivial. apply IHISN1; trivial. *) *)
(* (* rewrite term_mult_app. split; trivial. *) *)
(* (* apply body_open_term; trivial. *) *)
(* (* (* isn_abs *) *) *)
(* (* apply term_abs_to_body in T. *) *)
(* (* case var_fresh with (L := L \u fv u). intros x Fr. *) *)
(* (* apply notin_union in Fr. destruct Fr. *) *)
(* (* case (H0 x); trivial. apply body_to_term; trivial. *) *)
(* (* intros n H3. exists n. apply lex_SN_abs with (L := {{x}} \u (fv u)). *) *)
(* (* intros x' Fr. apply lex_SN_ind_rename with (x := x); trivial. *) *)
(* (* (* <- *) *) *)
(* (* intro H. unfold SN in H. case H; clear H; intros n H. *) *)
(* (* generalize t T H; clear T t H. induction n; intros. *) *)
(* (* apply isn_NF. apply SN0_to_NF. trivial. *) *)
(* (* generalize H; clear H. *) *)
(* (* assert (Reg : red_regular sys_Bx). *) *)
(* (* apply sys_Bx_regular. *) *)
(* (* assert (Out : red_out sys_Bx). *) *)
(* (* apply sys_Bx_red_out. *) *)
(* (* apply term_size_induction3 with (t := t); intros; trivial. *) *)
(* (* (* var *) *) *)
(* (* apply isn_var; intros. *) *)
(* (* assert (Q : SN_ind (S n) lex %% l). *) *)
(* (* apply eqC_SN_app_list in H0; trivial. apply H0. *) *)
(* (* rewrite <- P_list_eq with (P := term). *) *)
(* (* intros u' H2. apply H; trivial. *) *)
(* (* apply H; trivial. rewrite <- P_list_eq with (P := SN_ind (S n) lex) in Q. *) *)
(* (* apply Q; trivial. *) *)
(* (* (* abs *) *) *)
(* (* case eqdec_nil with (l := l). *) *)
(* (* intro H3. rewrite H3 in *|-*. simpl in *|-*. clear H H3. *) *)
(* (* apply isn_abs with (L := fv t1). intros x Fr. *) *)
(* (* apply H1; trivial. apply body_to_term; trivial. *) *)
(* (* apply eqC_SN_abs; trivial. *) *)
(* (* intro H3. case not_nil_append with (l := l); trivial. *) *)
(* (* intros a Hl. case Hl; clear Hl. intros l' Hl. *) *)
(* (* rewrite Hl in *|-*. rewrite <- mult_app_append in *|-*. *) *)
(* (* clear H3 Hl. *) *)
(* (* assert (Tl : term a /\ term %% l'). *) *)
(* (* split. apply H. apply in_or_app. right. *) *)
(* (* simpl; left; trivial. *) *)
(* (* apply P_list_eq with (P := term). *) *)
(* (* intros u Hu. apply H. apply in_or_app. left. *) *)
(* (* trivial. *) *)
(* (* clear H H1. destruct Tl. *) *)
(* (* apply isn_app. apply IHn. *) *)
(* (* rewrite term_mult_app. split; trivial. *) *)
(* (* apply body_to_subs; trivial. *) *)
(* (* apply SN_one_step with (t := pterm_app (pterm_abs t1) a // l'); trivial. *) *)
(* (* apply left_m_app_lex; trivial. apply ctx_to_mod_eqC. apply redex. *) *)
(* (* apply B_lx. apply reg_rule_b; trivial. *) *)
(* (* (* subs *) *) *)
(* (* assert (Tl : term %% l). *) *)
(* (* apply P_list_eq with (P := term). *) *)
(* (* intros u Hu. apply H; trivial. *) *)
(* (* apply isn_subs. *) *)
(* (* apply IHn. apply term_mult_app. split; trivial. *) *)
(* (* apply body_open_term; trivial. *) *)
(* (* case SN_trs with (n := S n) (R := lex) (t := (t1 [t3]) // l) (u := (t1 ^^ t3) // l); trivial. *) *)
(* (* apply left_trans_m_app_lex; trivial. *) *)
(* (* apply trs_ex_to_lex. apply full_comp; trivial. *) *)
(* (* intros k Hk. destruct Hk. apply WSN with (k := k); try omega; trivial. *) *)
(* (* apply eqC_SN_app_list in H4; trivial. destruct H4. *) *)
(* (* case var_fresh with (L := (fv t1)). intros x Fr. *) *)
(* (* apply eqC_SN_sub with (x := x) in H4; trivial. *) *)
(* (* destruct H4. apply H1; trivial. *) *)
(* (* apply body_to_subs; trivial. *) *)
(* (* Qed. *) Admitted. *)