-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLambda_Ex.v
1004 lines (877 loc) · 38.3 KB
/
Lambda_Ex.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*********************************************************************************
* Formalization of ES calculi *
* Brian Aydemir & Arthur Chargueraud, July 2007 *
* Flavio L. C. de Moura & Daniel L. Ventura, 2012 & Washington R. Segundo, 2017 *
*********************************************************************************)
Set Implicit Arguments.
Require Import Metatheory LambdaES_Defs LambdaES_Infra LambdaES_FV.
Require Import Rewriting.
Require Import Equation_C.
(** Lambda_ex calculus *)
Inductive rule_b : pterm -> pterm -> Prop :=
reg_rule_b : forall (t u:pterm), body t -> term u ->
rule_b (pterm_app(pterm_abs t) u) (t[u]).
Notation "t ->_B u" := (rule_b t u) (at level 66).
Inductive sys_x : pterm -> pterm -> Prop :=
| reg_rule_var : forall t, sys_x (pterm_bvar 0 [t]) t
| reg_rule_gc : forall t u, term t -> sys_x (t[u]) t
| reg_rule_app : forall t1 t2 u,
sys_x ((pterm_app t1 t2)[u]) (pterm_app (t1[u]) (t2[u]))
| reg_rule_lamb : forall t u,
sys_x ((pterm_abs t)[u]) (pterm_abs ((& t)[u]))
| reg_rule_comp : forall t u v, has_free_index 0 u ->
sys_x (t[u][v]) (((& t)[v])[ u[ v ] ]).
Notation "t ->_x u" := (sys_x t u) (at level 59, left associativity).
Definition ex t u := red_ctx_mod_eqC sys_x t u.
Notation "t -->ex u" := (ex t u) (at level 66).
Definition ex_trs t u := trans_closure ex t u.
Notation "t -->ex+ u" := (ex_trs t u) (at level 66).
Definition ex_str t u := star_closure ex t u.
Notation "t -->ex* u" := (ex_str t u) (at level 66).
Inductive sys_Bx: pterm -> pterm -> Prop :=
| B_lx : forall t u, t ->_B u -> sys_Bx t u
| sys_x_lx : forall t u, t ->_x u -> sys_Bx t u.
Notation "t ->_Bx u" := (sys_Bx t u) (at level 59, left associativity).
Definition lex t u := red_ctx_mod_eqC sys_Bx t u.
Notation "t -->lex u" := (lex t u) (at level 66).
Definition lex_trs t u := trans_closure lex t u.
Notation "t -->lex+ u" := (lex_trs t u) (at level 66).
Definition lex_str t u := star_closure lex t u.
Notation "t -->lex* u" := (lex_str t u) (at level 66).
(** The two definitions of SN are equivalent for lex. *)
Lemma SN_equivSN_alt: forall t, SN lex t <-> SN_alt lex t.
Proof. Admitted.
(* ********************************************************************** *)
(** Properties of the sys_x *)
Lemma sys_x_wregular : red_wregular sys_x.
Proof.
intros_all. induction H0.
- inversion H. assumption.
- assumption.
- inversion H; subst; clear H.
apply term_app.
+ apply term_sub with L. introv Hl.
unfold open in *. simpl in H2.
apply H2 in Hl. inversion Hl.
assumption. assumption.
+ apply term_sub with L. introv Hl.
unfold open in *. simpl in H2.
apply H2 in Hl. inversion Hl.
assumption. assumption.
- apply term_to_term' in H.
unfold term' in H.
inversion H; subst; clear H. simpl in H0.
assert (lc_at 2 (& t)).
{ apply lc_at_bswap. auto. assumption. }
apply term'_to_term. unfold term'. simpl. split.
+ assumption.
+ apply lc_at_weaken_ind with 0; auto.
- inversion H; subst; clear H. Admitted.
(* apply term_sub. *)
(* apply body_to_body' in H0. *)
(* unfold body' in H0. simpl in H0. *)
(* destruct H0 as [Ht Hu]. *)
(* apply term'_to_term. unfold term'. *)
(* simpl. split. *)
(* + split. *)
(* * apply lc_at_bswap; auto. *)
(* * apply term_to_term' in H2. *)
(* apply lc_at_weaken_ind with 0; auto. *)
(* + split. *)
(* * assumption. *)
(* * apply term_to_term' in H2. *)
(* assumption. *)
(* Qed. *)
Lemma ctx_sys_x_wregular : red_wregular (ES_contextual_closure sys_x).
Proof.
apply red_wregular_ctx.
apply sys_x_wregular.
Qed.
Lemma ctx_sys_ex_wregular : red_wregular ex.
Proof.
unfold red_wregular. introv Hterm Hex.
inversion Hex; subst; clear Hex.
destruct H as [u [He [Hes He'] ] ].
generalize He'; clear He'.
apply red_wregular_eqC.
generalize Hes; clear Hes.
apply ctx_sys_x_wregular.
generalize He; clear He.
apply red_wregular_eqC.
assumption.
Qed.
Lemma sys_Bx_wregular : red_wregular sys_Bx.
Proof.
intros_all. inversion H0; subst; clear H0.
- inversion H1; subst; clear H1.
unfold body in H0. destruct H0 as [L H1].
apply term_sub with L; assumption.
- generalize H1; clear H1.
apply sys_x_wregular; trivial.
Qed.
Lemma ctx_sys_Bx_wregular : red_wregular (ES_contextual_closure sys_Bx).
Proof.
apply red_wregular_ctx.
apply sys_Bx_wregular.
Qed.
Lemma ctx_sys_Bex_wregular : red_wregular lex.
Proof.
unfold red_wregular. introv Hterm Hex.
inversion Hex; subst; clear Hex.
destruct H as [u [He [Hes He'] ] ].
generalize He'; clear He'.
apply red_wregular_eqC.
generalize Hes; clear Hes.
apply ctx_sys_Bx_wregular.
generalize He; clear He.
apply red_wregular_eqC.
assumption.
Qed.
Lemma sys_x_red_out : red_out sys_x.
Proof.
intros_all. generalize dependent u.
generalize dependent x. induction H0.
- introv Hterm. simpl. constructor.
- introv Hterm. simpl. constructor.
apply subst_term; assumption.
- introv Hterm. simpl. constructor.
- introv Hterm. simpl.
apply term_to_term' in Hterm.
unfold bswap. rewrite subst_bswap_rec.
constructor. assumption.
- introv Hterm. simpl.
unfold bswap. rewrite subst_bswap_rec.
constructor. change ([x ~> u0]t [ [x ~> u0 ] u ] ) with ([x ~> u0 ] (t[u])). Admitted.
(* apply body_to_body' in H. apply body'_to_body. unfold body' in *. *)
(* apply lc_at_subst. assumption. *)
(* apply term_to_term' in Hterm. *)
(* apply lc_at_weaken_ind with 0; auto. *)
(* intro H2. apply H0. apply subst_term' in H2; assumption. *)
(* apply subst_term; assumption. *)
(* apply term_to_term' in Hterm. assumption. *)
(* Qed. *)
Lemma sys_Bx_red_out : red_out sys_Bx.
Proof.
intros_all. destruct H0. induction H0.
simpl. apply B_lx. apply reg_rule_b. apply body'_to_body;
apply lc_at_subst; apply body_to_body'; trivial.
apply term_is_a_body; trivial.
apply term'_to_term; apply lc_at_subst; apply term_to_term';
trivial. apply sys_x_lx. apply sys_x_red_out; trivial.
Qed.
Lemma ctx_sys_x_red_out : red_out (ES_contextual_closure sys_x).
Proof.
apply red_out_ctx.
apply sys_x_red_out.
Qed.
Lemma ctx_sys_Bx_red_out : red_out (ES_contextual_closure sys_Bx).
Proof.
apply red_out_ctx.
apply sys_Bx_red_out.
Qed.
Lemma ctx_sys_ex_red_out : red_out ex.
Proof.
apply red_out_mod_eqC.
apply sys_x_wregular.
apply sys_x_red_out.
Qed.
Lemma ctx_sys_lex_red_out : red_out lex.
Proof.
apply red_out_mod_eqC.
apply sys_Bx_wregular.
apply sys_Bx_red_out.
Qed.
Lemma ctx_sys_x_red_rename : red_rename (ES_contextual_closure sys_x).
Proof.
apply red_out_to_rename.
apply ctx_sys_x_red_out.
Qed.
Lemma ctx_sys_Bx_red_rename : red_rename (ES_contextual_closure sys_Bx).
Proof.
apply red_out_to_rename.
apply ctx_sys_Bx_red_out.
Qed.
Lemma ctx_sys_ex_red_rename : red_rename ex.
Proof.
apply red_out_to_rename.
apply ctx_sys_ex_red_out.
Qed.
Lemma ctx_sys_lex_red_rename : red_rename lex.
Proof.
apply red_out_to_rename.
apply ctx_sys_lex_red_out.
Qed.
Lemma trs_ex_red_rename: red_rename (trans_closure ex).
Proof.
apply red_out_to_rename.
apply red_out_trs.
apply ctx_sys_ex_red_out.
Qed.
Lemma trs_lex_red_rename: red_rename (trans_closure lex).
Proof.
apply red_out_to_rename.
apply red_out_trs.
apply ctx_sys_lex_red_out.
Qed.
Lemma sys_x_not_fv : red_not_fv sys_x.
Proof.
unfold red_not_fv. intros x t t' H.
induction H; simpl; intro H';
apply notin_union in H'; try apply notin_union;
try apply H'; try split; try apply notin_union; try apply H'.
case H'; clear H'; intros H2 H3. apply notin_union in H2.
split. apply H2. apply H3. split.
case H'; clear H'; intros H2 H3. apply notin_union in H2.
apply H2. apply H'. unfold bswap. rewrite fv_bswap_rec. apply H'.
case H'; clear H'; intros H2 H3. apply notin_union in H2.
split. unfold bswap. rewrite fv_bswap_rec. apply H2. apply H3.
case H'; clear H'; intros H2 H3. apply notin_union in H2.
split. apply H2. apply H3.
Qed.
Lemma sys_Bx_not_fv : red_not_fv sys_Bx.
Proof.
unfold red_not_fv. intros x t t' H.
induction H; simpl. destruct H; simpl.
intro H'. apply notin_union in H'. apply notin_union.
assumption. apply sys_x_not_fv; trivial.
Qed.
Lemma sys_x_fv : red_fv sys_x.
Proof.
unfold red_fv. intros x t t' H.
induction H; simpl.
intro H'. apply in_union; right; trivial.
intro H'. apply in_union; left; trivial.
intro H'; apply in_union in H'; case H'; clear H';
intro H'; apply in_union in H'; case H'; clear H';
intro H'; apply in_union.
left; apply in_union; left; trivial. right; trivial.
left; apply in_union; right; trivial. right; trivial.
intro H'; apply in_union in H'; case H'; clear H';
intro H'; apply in_union. left. unfold bswap in H'.
rewrite fv_bswap_rec in H'; trivial. right; trivial.
intro H'; apply in_union in H'; case H'; clear H';
intro H'; apply in_union in H'; case H'; clear H';
intro H'; apply in_union. unfold bswap in H'.
rewrite fv_bswap_rec in H'. left; apply in_union.
left; trivial. right; trivial. left; apply in_union.
right; trivial. right; trivial.
Qed.
Lemma sys_Bx_fv : red_fv sys_Bx.
Proof.
unfold red_fv. intros x t t' H.
destruct H. destruct H; simpl; trivial.
apply sys_x_fv; trivial.
Qed.
Lemma ctx_sys_x_red_swap : red_swap (ES_contextual_closure sys_x).
Proof.
apply red_out_to_swap.
apply ctx_sys_x_red_out.
Qed.
Lemma ctx_sys_Bx_red_swap : red_swap (ES_contextual_closure sys_Bx).
Proof.
apply red_out_to_swap.
apply ctx_sys_Bx_red_out.
Qed.
Lemma ctx_sys_ex_red_swap : red_swap ex.
Proof.
apply red_out_to_swap.
apply ctx_sys_ex_red_out.
Qed.
Lemma ctx_sys_lex_red_swap : red_swap lex.
Proof.
apply red_out_to_swap.
apply ctx_sys_lex_red_out.
Qed.
Lemma trs_ex_red_swap: red_swap (trans_closure ex).
Proof.
apply red_out_to_swap.
apply red_out_trs.
apply ctx_sys_ex_red_out.
Qed.
Lemma trs_lex_red_swap: red_swap (trans_closure lex).
Proof.
apply red_out_to_swap.
apply red_out_trs.
apply ctx_sys_lex_red_out.
Qed.
(***************************************************)
Lemma left_app_ex: forall t u v, term t ->
u -->ex v -> pterm_app u t -->ex pterm_app v t.
Proof.
intros; apply mod_eqC_app_left; trivial.
Qed.
Lemma left_trans_app_ex: forall t u v, term t ->
u -->ex+ v -> pterm_app u t -->ex+ pterm_app v t.
Proof.
intros; apply trs_mod_eqC_app_left; trivial.
Qed.
Lemma left_star_app_ex: forall t u v, term t ->
u -->ex* v -> pterm_app u t -->ex* pterm_app v t.
Proof.
intros; apply str_mod_eqC_app_left; trivial.
Qed.
Lemma right_app_ex: forall t u v, term t ->
u -->ex v -> pterm_app t u -->ex pterm_app t v.
Proof.
intros; apply mod_eqC_app_right; trivial.
Qed.
Lemma right_trans_app_ex: forall t u v, term t ->
u -->ex+ v -> pterm_app t u -->ex+ pterm_app t v.
Proof.
intros; apply trs_mod_eqC_app_right; trivial.
Qed.
Lemma right_star_app_ex: forall t u v, term t ->
u -->ex* v -> pterm_app t u -->ex* pterm_app t v.
Proof.
intros; apply str_mod_eqC_app_right; trivial.
Qed.
(*
Lemma in_abs_ex: forall L u v, (forall x, x \notin L -> (u ^ x) -->ex (v ^ x)) ->
((pterm_abs u) -->ex (pterm_abs v)).
Proof.
intros; apply mod_eqC_abs_in with (L := L); trivial.
apply sys_x_wregular.
apply sys_x_red_out.
Qed.
Lemma in_trans_abs_ex: forall L u v, (forall x, x \notin L -> (u ^ x) -->ex+ (v ^ x)) ->
((pterm_abs u) -->ex+ (pterm_abs v)).
Proof.
intros; apply trs_mod_eqC_abs_in with (L := L); trivial.
apply sys_x_regular.
apply sys_x_red_out.
Qed.
*)
Lemma in_star_abs_ex: forall L u v, (forall x, x \notin L -> (u ^ x) -->ex* (v ^ x)) ->
((pterm_abs u) -->ex* (pterm_abs v)).
Proof.
(* intros; apply str_mod_eqC_abs_in with (L := L); trivial. *)
(* apply sys_x_regular. *)
(* apply sys_x_red_out. *)
(* Qed. *)
Admitted.
(*
Lemma left_subst_ex: forall L t u v, term t -> (forall x, x \notin L -> (u ^ x) -->ex (v ^ x)) ->
(u[t]) -->ex (v[t]).
Proof.
intros; apply mod_eqC_subst_left with (L := L); trivial.
apply sys_x_regular.
apply sys_x_red_out.
Qed.
Lemma left_trans_subst_ex: forall L t u v, term t -> (forall x, x \notin L -> (u ^ x) -->ex+ (v ^ x)) ->
(u[t]) -->ex+ (v[t]).
Proof.
intros; apply trs_mod_eqC_subst_left with (L := L); trivial.
apply sys_x_regular.
apply sys_x_red_out.
Qed.
Lemma left_star_subst_ex: forall L t u v, term t -> (forall x, x \notin L -> (u ^ x) -->ex* (v ^ x)) ->
(u[t]) -->ex* (v[t]).
Proof.
intros; apply str_mod_eqC_subst_left with (L := L); trivial.
apply sys_x_regular.
apply sys_x_red_out.
Qed.
Lemma right_subst_ex: forall t u v, body t ->
u -->ex v -> (t[u]) -->ex (t[v]).
Proof.
intros; apply mod_eqC_subst_right; trivial.
Qed.
Lemma right_trans_subst_ex: forall t u v, body t ->
u -->ex+ v -> (t[u]) -->ex+ (t[v]).
Proof.
intros; apply trs_mod_eqC_subst_right; trivial.
Qed.
Lemma right_star_subst_ex: forall t u v, body t ->
u -->ex* v -> (t[u]) -->ex* (t[v]).
Proof.
intros; apply str_mod_eqC_subst_right; trivial.
Qed.
Lemma left_app_lex: forall t u v, term t ->
u -->lex v -> pterm_app u t -->lex pterm_app v t.
Proof.
intros; apply mod_eqC_app_left; trivial.
Qed.
Lemma left_trans_app_lex: forall t u v, term t ->
u -->lex+ v -> pterm_app u t -->lex+ pterm_app v t.
Proof.
intros; apply trs_mod_eqC_app_left; trivial.
Qed.
Lemma left_star_app_lex: forall t u v, term t ->
u -->lex* v -> pterm_app u t -->lex* pterm_app v t.
Proof.
intros; apply str_mod_eqC_app_left; trivial.
Qed.
Lemma right_app_lex: forall t u v, term t ->
u -->lex v -> pterm_app t u -->lex pterm_app t v.
Proof.
intros; apply mod_eqC_app_right; trivial.
Qed.
Lemma right_trans_app_lex: forall t u v, term t ->
u -->lex+ v -> pterm_app t u -->lex+ pterm_app t v.
Proof.
intros; apply trs_mod_eqC_app_right; trivial.
Qed.
Lemma right_star_app_lex: forall t u v, term t ->
u -->lex* v -> pterm_app t u -->lex* pterm_app t v.
Proof.
intros; apply str_mod_eqC_app_right; trivial.
Qed.
Lemma in_abs_lex: forall L u v, (forall x, x \notin L -> (u ^ x) -->lex (v ^ x)) ->
((pterm_abs u) -->lex (pterm_abs v)).
Proof.
intros; apply mod_eqC_abs_in with (L := L); trivial.
apply sys_Bx_regular.
apply sys_Bx_red_out.
Qed.
Lemma in_trans_abs_lex: forall L u v, (forall x, x \notin L -> (u ^ x) -->lex+ (v ^ x)) ->
((pterm_abs u) -->lex+ (pterm_abs v)).
Proof.
intros; apply trs_mod_eqC_abs_in with (L := L); trivial.
apply sys_Bx_regular.
apply sys_Bx_red_out.
Qed.
Lemma in_star_abs_lex: forall L u v, (forall x, x \notin L -> (u ^ x) -->lex* (v ^ x)) ->
((pterm_abs u) -->lex* (pterm_abs v)).
Proof.
intros; apply str_mod_eqC_abs_in with (L := L); trivial.
apply sys_Bx_regular.
apply sys_Bx_red_out.
Qed.
Lemma left_subst_lex: forall L t u v, term t -> (forall x, x \notin L -> (u ^ x) -->lex (v ^ x)) ->
(u[t]) -->lex (v[t]).
Proof.
intros; apply mod_eqC_subst_left with (L := L); trivial.
apply sys_Bx_regular.
apply sys_Bx_red_out.
Qed.
Lemma left_trans_subst_lex: forall L t u v, term t -> (forall x, x \notin L -> (u ^ x) -->lex+ (v ^ x)) ->
(u[t]) -->lex+ (v[t]).
Proof.
intros; apply trs_mod_eqC_subst_left with (L := L); trivial.
apply sys_Bx_regular.
apply sys_Bx_red_out.
Qed.
Lemma left_star_subst_lex: forall L t u v, term t -> (forall x, x \notin L -> (u ^ x) -->lex* (v ^ x)) ->
(u[t]) -->lex* (v[t]).
Proof.
intros; apply str_mod_eqC_subst_left with (L := L); trivial.
apply sys_Bx_regular.
apply sys_Bx_red_out.
Qed.
Lemma right_subst_lex: forall t u v, body t ->
u -->lex v -> (t[u]) -->lex (t[v]).
Proof.
intros; apply mod_eqC_subst_right; trivial.
Qed.
Lemma right_trans_subst_lex: forall t u v, body t ->
u -->lex+ v -> (t[u]) -->lex+ (t[v]).
Proof.
intros; apply trs_mod_eqC_subst_right; trivial.
Qed.
Lemma right_star_subst_lex: forall t u v, body t ->
u -->lex* v -> (t[u]) -->lex* (t[v]).
Proof.
intros; apply str_mod_eqC_subst_right; trivial.
Qed.
Lemma ex_to_lex : forall t t', t -->ex t' -> t -->lex t'.
Proof.
intros t t' H.
case H; clear H. intros t0 H.
case H; clear H. intros u0 H.
destruct H. case H0; clear H0. intros H0 H1.
exists t0 u0. split; trivial. split; trivial.
apply contextual_R1_R2 with (R1 := sys_x); trivial.
intros t1 t2 H'. apply sys_x_lx; trivial.
Qed.
Lemma trs_ex_to_lex : forall t t', t -->ex+ t' -> t -->lex+ t'.
Proof.
apply trans_R1_R2. apply ex_to_lex.
Qed.
Lemma str_ex_to_lex : forall t t', t -->ex* t' -> t -->lex* t'.
Proof.
apply star_R1_R2. apply ex_to_lex.
Qed.
(*** About NF Lex and SN lex ****)
Lemma left_m_app_lex : forall t t' lu, (term %% lu) ->
t -->lex t' -> (t // lu) -->lex (t' // lu).
Proof.
intros t t' lu T H. induction lu; simpl; trivial.
simpl in T. destruct T. apply left_app_lex; trivial.
apply IHlu; trivial.
Qed.
Lemma left_trans_m_app_lex : forall t t' lu, (term %% lu) ->
t -->lex+ t' -> (t // lu) -->lex+ (t' // lu).
Proof.
intros t t' lu T H. induction lu; simpl; trivial.
simpl in T. destruct T. apply left_trans_app_lex; trivial.
apply IHlu; trivial.
Qed.
Lemma lex_app : forall t u v, pterm_app u v -->lex t ->
(exists t', u =e pterm_abs t' /\ t =e (t'[v])) \/
(exists u', t =e pterm_app u' v /\ u -->lex u') \/
(exists v', t =e pterm_app u v' /\ v -->lex v').
Proof.
intros t u v H. case H; clear H; intros t0 H; case H; clear H; intros t1 H.
destruct H; destruct H0. apply eqC_app_term in H.
case H; clear H; intros u0 H; case H; clear H; intros v0 H.
destruct H; destruct H2. rewrite <- H in H0. clear H t0.
inversion H0. inversion H. inversion H6.
left. exists t3. split. rewrite H9. rewrite H2. reflexivity.
rewrite <- H3. rewrite H12. rewrite H1. reflexivity.
inversion H6. right. left. exists t'. split. rewrite <- H3. rewrite H6. rewrite H1. reflexivity.
rewrite <- H2. apply ctx_to_mod_eqC; trivial.
right. right. exists u'. split. rewrite <- H2. rewrite H6. rewrite H1. reflexivity.
rewrite <- H3. apply ctx_to_mod_eqC; trivial.
Qed.
Lemma lex_abs : forall t u, pterm_abs t -->lex u ->
(exists L t', u =e pterm_abs t' /\ (forall x, x \notin L -> (t ^ x) -->lex (t' ^ x))).
Proof.
intros t u H. case H; clear H; intros t0 H; case H; clear H; intros t1 H.
destruct H; destruct H0. apply eqC_abs_term in H.
case H; clear H; intros u0 H; case H; clear H; intros L H.
destruct H. rewrite <- H in H0. clear H t0.
inversion H0. inversion H. inversion H5. inversion H5.
exists (L0 \u L). exists t'. split. rewrite <- H1. rewrite H4. reflexivity.
intros x H5. apply notin_union in H5. destruct H5. rewrite <- H2; trivial.
apply ctx_to_mod_eqC. apply H3; trivial.
Qed.
Lemma lex_R_list_regular : forall lt lt', R_list lex lt lt' -> (term %% lt <-> term %% lt').
Proof.
intros lt lt' H. unfold R_list in H.
case H; clear H; intros t H.
case H; clear H; intros t' H.
case H; clear H; intros l0 H.
case H; clear H; intros l1 H.
destruct H. destruct H0.
rewrite H. rewrite H0. clear H H0.
induction l0; simpl. apply ctx_sys_Bex_regular in H1. split.
intro H2. split. apply H1. apply H2.
intro H2. split. apply H1. apply H2. split.
intro H2. split. apply H2. apply IHl0. apply H2.
intro H2. split. apply H2. apply IHl0. apply H2.
Qed.
(** NF lex Properties **)
Lemma NF_eqC : forall t t', t =e t' -> NF lex t -> NF lex t'.
Proof.
intros t t'. intros. unfold NF in *|-*.
intros t1 H1. rewrite <- H in H1.
apply (H0 t1); trivial.
Qed.
Lemma NF_fvar : forall x, NF lex (pterm_fvar x).
Proof.
intros x t H'.
case H'; clear H'.
intros t0 H0. case H0; clear H0.
intros t1 H1. destruct H1. destruct H0.
assert (Q : pterm_fvar x = t0).
clear H0 H1 t1. gen_eq t1 : (pterm_fvar x).
intro H1. induction H. rewrite H1. rewrite H1 in H.
inversion H; trivial. clear H H1 H2 H3 s t0. inversion H0; trivial.
rewrite IHtrans_closure in H. rewrite H1. rewrite H1 in H. inversion H.
inversion H2; trivial. rewrite H1 in H. symmetry. inversion H. inversion H2; trivial.
rewrite <- Q in H0. inversion H0. inversion H2. inversion H5. inversion H5.
Qed.
Lemma NF_app_lex : forall t u v, NF lex u -> NF lex v -> (pterm_app u v -->lex t) ->
exists t', u =e pterm_abs t' /\ t =e (t'[v]).
Proof.
intros t u v NFu NFv H. apply lex_app in H. case H; clear H; intro H.
case H; clear H; intros t' H. exists t'; trivial.
case H; clear H; intro H; case H; clear H; intros t' H; destruct H.
assert (Q : ~ u -->lex t'). apply (NFu t'). contradiction.
assert (Q : ~ v -->lex t'). apply (NFv t'). contradiction.
Qed.
Lemma NF_app_lex_eq : forall t u v, NF lex u -> NF lex v -> (pterm_app u v -->lex t) ->
exists t' t'' v', u = pterm_abs t' /\ t = (t''[v']).
Proof.
intros t u v NFu NFv H. apply NF_app_lex in H; trivial.
case H; clear H. intros t' H. destruct H.
apply eqC_sym in H. apply eqC_abs_term in H.
apply eqC_sym in H0. apply eqC_sub_term in H0.
case H; clear H. intros t1 H. case H; clear H. intros L H. destruct H.
case H0; clear H0. intros t1' H0. case H0; clear H0. intros u' H0.
exists t1 t1' u'. split. rewrite H. reflexivity. rewrite H0. reflexivity.
Qed.
Lemma NF_mult_app_var : forall x lt, NF lex %% lt -> NF lex ((pterm_fvar x) // lt).
Proof.
intros x lt H.
induction lt; simpl in *|-*. apply NF_fvar.
destruct H. assert (Q : NF lex (pterm_fvar x // lt)). apply IHlt; trivial.
clear IHlt. unfold NF. intros t' H'. case eqdec_nil with (l := lt). intro H''.
rewrite H'' in H'. simpl in H'.
apply NF_app_lex_eq in H'; trivial. case H'; clear H'. intros t0 H'.
case H'; clear H'. intros t0' H'. case H'; clear H'. intros v' H'.
destruct H'. inversion H1.
apply NF_fvar. intro H''.
assert (Q' : exists t' u', (pterm_fvar x) // lt = pterm_app t' u').
apply m_app_eq_app; trivial.
case Q'; clear Q'. intros u H1. case H1; clear H1. intros v H1.
rewrite H1 in H'. apply NF_app_lex_eq in H'; trivial.
case H'; clear H'. intros t0 H'. case H'; clear H'. intros t0' H'.
case H'; clear H'. intros v' H'.
destruct H'. inversion H2; trivial.
rewrite <- H1; trivial.
Qed.
Lemma lex_abs_not_NF : forall l t, l <> nil -> term (pterm_abs t // l) -> ~ NF lex (pterm_abs t // l).
Proof.
intros. induction l. intro H'. apply H; trivial.
simpl in *|-*. case eqdec_nil with (l := l). intro H'.
rewrite H' in *|-*. simpl in *|-*. intro H1.
apply (H1 (t[a])). apply ctx_to_mod_eqC. apply redex.
apply B_lx. apply term_distribute_over_application in H0.
destruct H0. apply term_abs_to_body in H0. apply reg_rule_b; trivial.
intro H'. apply term_distribute_over_application in H0. destruct H0.
assert (Q : ~ NF lex (pterm_abs t // l)).
apply IHl; trivial.
clear IHl H'. intro H'. apply Q. intros t' H2.
apply (H' (pterm_app t' a)). apply left_app_lex; trivial.
Qed.
Lemma lex_sub_not_NF : forall x t u, body t -> term u -> x \notin (fv t) ->
~ NF lex (t ^ x) -> ~ NF lex (t[u]).
Proof.
intros. intro H3. apply H2. clear H2.
intros t0 H2. gen_eq t1 : (close t0 x). intro H4.
replace t0 with (t1 ^ x) in H2. apply (H3 (t1 [u])).
apply left_subst_lex with (L:= (fv t) \u (fv t1)); trivial.
intros z Fr. apply notin_union in Fr. destruct Fr.
apply ctx_sys_lex_red_rename with (x := x); trivial.
rewrite H4. apply fv_close'. rewrite H4.
rewrite open_close_var with (x := x); trivial.
apply ctx_sys_Bex_regular in H2. apply H2.
Qed.
Lemma lex_sub_not_NF' : forall t u, body t -> term u -> ~ NF lex (t[u]).
Proof.
intros. apply body_size_induction with (t := t); trivial; intros; intro H'.
apply (H' u). apply ctx_to_mod_eqC. apply redex. apply sys_x_lx. apply reg_rule_var; trivial.
apply (H' (pterm_fvar x)). apply ctx_to_mod_eqC. apply redex. apply sys_x_lx. apply reg_rule_gc; trivial.
apply (H' (pterm_abs ((& t1)[u]))). apply ctx_to_mod_eqC. apply redex. apply sys_x_lx. apply reg_rule_lamb; trivial.
rewrite body_eq_body'; unfold body'. simpl; trivial.
apply (H' (pterm_app (t1[u]) (t2[u]))). apply ctx_to_mod_eqC. apply redex. apply sys_x_lx. apply reg_rule_app; trivial;
rewrite body_eq_body' in *|-*; unfold body' in *|-*; simpl in *|-*; apply H2.
case var_fresh with (L := fv t3).
intros x Hx. case fv_in_or_notin with (t := t3 ^ x) (x := x); intros.
apply (H' ((& t1)[u][ t3[ u ] ])). apply ctx_to_mod_eqC. apply redex. apply sys_x_lx. apply reg_rule_comp; trivial.
rewrite body_eq_body' in *|-*; unfold body' in *|-*; simpl in *|-*; split; trivial.
rewrite term_eq_term'. unfold term'. apply not_body_term_fvar with (x := x); trivial.
rewrite body_eq_body' in H2. unfold body' in H2. trivial.
assert (T : term t3).
rewrite term_eq_term'; simpl. unfold term'.
rewrite body_eq_body' in *|-; unfold body' in *|-.
apply body_term_fvar with (x := x); trivial.
clear x Hx H2 H5. rewrite eqC_redex in H'; trivial.
generalize H'. case var_fresh with (L := fv ((& t1)[u])).
intros x Fr. apply lex_sub_not_NF with (x := x); trivial.
rewrite body_eq_body'. unfold body'. simpl.
split. apply lc_at_bswap; try omega; trivial.
rewrite <- body_eq_body'. apply term_is_a_body; trivial.
unfold open. unfold bswap. simpl.
replace (open_rec 0 (pterm_fvar x) u) with u.
apply H4.
simpl in Fr. apply notin_union in Fr. apply Fr.
rewrite size_bswap_rec; trivial.
rewrite body_eq_body'. unfold body'.
rewrite <- lc_at_open with (u := pterm_fvar x); trivial.
apply lc_at_bswap; try omega; trivial.
rewrite open_lc_at; trivial.
rewrite <- term_eq_term'; trivial.
Qed.
(** Inversion of the lex relation **)
Lemma lex_app_var : forall x t u, pterm_app (pterm_fvar x) t -->lex u ->
exists t', u =e pterm_app (pterm_fvar x) t' /\ t -->lex t'.
Proof.
intros x t u H. apply lex_app in H.
case H; clear H; intro H; case H; clear H.
intros t' H. destruct H. apply eqC_fvar_term in H. apply False_ind.
generalize H. discriminate.
intro H; case H; clear H. intros t' H. destruct H. apply False_ind.
generalize H0. apply NF_fvar.
intro H; case H; clear H. intros t' H. exists t'; trivial.
Qed.
Lemma lex_mult_app_var : forall x lt u, ((pterm_fvar x) // lt) -->lex u ->
exists lt', u =e ((pterm_fvar x) // lt') /\ R_list lex lt lt'.
Proof.
intros x lt. induction lt; simpl.
intros u H. apply False_ind. generalize H. apply NF_fvar.
intros u H. apply lex_app in H. case H; clear H; intro H.
case H; clear H; intros t' H. destruct H. gen_eq t0 : (pterm_abs t').
intro H'. case eqdec_nil with (l := lt). intro H''. rewrite H'' in H. simpl in H.
apply eqC_fvar_term in H. rewrite H' in H. apply False_ind. generalize H. discriminate.
intro H''. case m_app_eq_app with (t := (pterm_fvar x)) (lu := lt); trivial. intros u0 H1.
case H1; clear H1; intros v0 H1. rewrite H1 in H. apply eqC_app_term in H.
case H; clear H; intros u' H. case H; clear H; intros v' H. destruct H. destruct H2.
rewrite H' in H. apply False_ind. generalize H. discriminate.
case H; clear H; intro H; case H; clear H. intros t' H. destruct H.
case eqdec_nil with (l := lt). intro H1. rewrite H1 in H0. simpl in H0. apply False_ind.
generalize H0. apply NF_fvar. intro H1. case (IHlt t'); trivial. intros lt' Hlt'.
destruct Hlt'. exists (a :: lt'). split. simpl. rewrite H. rewrite H2. reflexivity.
unfold R_list. unfold R_list in H3. case H3; clear H3; intros t0 H3.
case H3; clear H3; intros t1 H3. case H3; clear H3; intros l0 H3.
case H3; clear H3; intros l1 H3. destruct H3. destruct H4.
exists t0 t1. exists (a :: l0) l1. split. rewrite H3. simpl. reflexivity.
split. rewrite H4. simpl. reflexivity. trivial.
intros a' H. destruct H. exists (a' :: lt). simpl. split; trivial.
unfold R_list. exists a a'. exists (nil (A:=pterm)) lt. simpl. split.
reflexivity. split; trivial.
Qed.
Lemma lex_mult_app_B : forall t t0 u lv, ((pterm_app (pterm_abs t) u) // lv) -->lex t0 ->
(t0 =e ((t[u]) // lv)) \/
(exists L t', t0 =e ((pterm_app (pterm_abs t') u) // lv) /\
(forall x, x \notin L -> (t ^ x) -->lex (t' ^ x))) \/
(exists u', t0 =e ((pterm_app (pterm_abs t) u') // lv) /\
(u -->lex u')) \/
(exists lv', t0 =e ((pterm_app (pterm_abs t) u) // lv') /\
(R_list lex lv lv')).
Proof.
intros t t0 u lv H. generalize t t0 u H. clear t t0 u H. induction lv.
simpl. intros. generalize H. intro H'. apply lex_app in H.
case H; clear H; intro H; case H; clear H.
intros t' H. destruct H. left.
apply eqC_abs_term in H.
case H; clear H; intros t1 H; case H; clear H; intros L H.
destruct H. assert (Q : t1 = t'). inversion H. reflexivity.
apply ctx_sys_Bex_regular in H'. destruct H'. rewrite H0 in H3.
rewrite <- Q in H3. apply subs_to_body in H3. destruct H3.
rewrite H0. rewrite <- Q. apply eqC_subst_left with (L := L); trivial.
intro H. case H; clear H; intros t1 H. destruct H.
right. left. apply lex_abs in H0.
case H0; clear H0; intros L H0; case H0; clear H0; intros t2 H0.
destruct H0. rewrite H0 in H. exists L t2. split; trivial.
intro H. case H; clear H; intros v H. destruct H.
right. right. left. exists v. split; trivial.
simpl. intros. generalize H. intro H'. apply lex_app in H.
case H; clear H; intro H; case H; clear H.
intros t1 H1. destruct H1. case eqdec_nil with (l := lv).
intro H1. rewrite H1 in H. simpl in H. apply eqC_app_term in H.
case H; clear H; intros u' H. case H; clear H; intros v' H.
destruct H. apply False_ind. generalize H. discriminate.
intro H1. case m_app_eq_app with (t := pterm_app (pterm_abs t) u) (lu := lv); trivial.
intros u0 H2. case H2; clear H2. intros v0 H2. rewrite H2 in H.
apply eqC_app_term in H.
case H; clear H; intros u' H. case H; clear H; intros v' H.
destruct H. apply False_ind. generalize H. discriminate.
intro H. case H; clear H; intros u' H. destruct H.
case (IHlv t u' u); clear IHlv; trivial. intro H1.
left. rewrite H. rewrite H1. reflexivity. intro H1.
case H1; clear H1; intro H1.
case H1; clear H1; intros L H1; case H1; clear H1; intros t' H1.
destruct H1. right. left. exists L t'. split; trivial.
rewrite H. rewrite H1. reflexivity. case H1; clear H1; intro H1.
case H1; clear H1; intros u0 H1. destruct H1.
right. right. left. exists u0. split; trivial.
rewrite H. rewrite H1. reflexivity.
case H1; clear H1; intros lv' H1. destruct H1.
right. right. right. exists (a :: lv'). split. simpl.
rewrite H. rewrite H1. reflexivity. unfold R_list in H2.
case H2; clear H2; intros t1 H2. case H2; clear H2; intros t2 H2.
case H2; clear H2; intros l0 H2. case H2; clear H2; intros l1 H2.
destruct H2. destruct H3. unfold R_list. exists t1 t2.
rewrite H2. rewrite H3. exists (a :: l0) l1. split; trivial. split; trivial.
intro H. case H; clear H; intros a' H. destruct H.
right. right. right. exists (a' :: lv). simpl. split.
rewrite H. reflexivity. unfold R_list. exists a a'.
exists (nil (A:=pterm)) lv; simpl.
split; trivial. split; trivial.
Qed.
(** SN lex Properties **)
Lemma SN_app_var : forall x t, SN lex t -> SN lex (pterm_app (pterm_fvar x) t).
Proof.
intros x t H. case H; clear H. intros n H. exists n. generalize t H; clear t H.
induction n. intros t H. rewrite <- NF_eq_SN0 in *|-*.
replace (pterm_app (pterm_fvar x) t) with ((pterm_fvar x) // (t :: nil)).
apply NF_mult_app_var. simpl; split; trivial. simpl; trivial.
intros t H. inversion H. apply SN_intro. intros u H'.
apply lex_app_var in H'. case H'; clear H'; intros t' H'.
destruct H'. case (H0 t'); clear H0; trivial. intros k H0.
destruct H0. exists n; split; try omega. rewrite H1. apply IHn.
apply WSN with (k := k); try omega; trivial.
Qed.
Lemma SN_mult_app_var : forall x lt, term %% lt -> SN lex %% lt -> SN lex ((pterm_fvar x) // lt).
Proof.
intros x lt T H. induction lt; simpl. exists 0. rewrite <- NF_eq_SN0. apply NF_fvar.
simpl in *|-*. destruct T. destruct H. assert (H': SN lex (pterm_fvar x // lt)). apply IHlt; trivial. clear H2 IHlt.
case H; clear H. intros n H. case H'; clear H'. intros n' H'.
gen_eq k : (n + n'). intro Hk. exists k. generalize a lt n n' H0 H1 H H' Hk. clear a lt n n' H0 H1 H H' Hk.
induction k. intros.
assert (Qn : n = 0). symmetry in Hk. omega.
assert (Qn': n' = 0). symmetry in Hk. omega. clear Hk.
rewrite Qn in H. rewrite Qn' in H'. clear Qn Qn'.
rewrite <- NF_eq_SN0 in *|-*.
replace (pterm_app (pterm_fvar x // lt) a) with ((pterm_fvar x) // (a :: lt)).
apply NF_mult_app_var. simpl. split; trivial. clear a n n' H0 H.
induction lt; simpl in *|-*; trivial. split. intros a' Ha'.
apply (H' (pterm_app (pterm_fvar x // lt) a')).
apply right_app_lex; trivial. rewrite term_mult_app. destruct H1. split; trivial.
apply IHlt. apply H1. intros t' Ht'. apply (H' (pterm_app t' a)).
apply left_app_lex; trivial. apply H1. simpl; trivial.
intros. apply SN_intro. intros t' Ht'. inversion H. inversion H'.
apply lex_app in Ht'. case Ht'; clear Ht'. intro Ht'. case Ht'; clear Ht'. intros u Ht'. destruct Ht'.
case eqdec_nil with (l := lt). intro H6. rewrite H6 in H4. simpl in H4. apply eqC_fvar_term in H4. apply False_ind.
generalize H4. discriminate. intro H6. case m_app_eq_app with (t := (pterm_fvar x)) (lu := lt); trivial.
intros u0 H7. case H7; clear H7. intros v0 H7. rewrite H7 in H4. apply eqC_app_term in H4.
case H4; clear H4. intros u' H4. case H4; clear H4. intros v' H4. destruct H4. apply False_ind.
generalize H4. discriminate.
intro H4. case H4; clear H4. intro H4. case H4; clear H4; intros u H4. destruct H4.
case (H3 u); trivial; clear H3. intros k' H3. destruct H3. exists k. split; try omega.
rewrite H4. apply lex_mult_app_var in H5. case H5; clear H5. intros lt' H5. destruct H5. rewrite H5.
apply IHk with (n := n) (n' := n' - 1); trivial. apply lex_R_list_regular in H7. apply H7; trivial.
apply WSN with (k := k'); try omega. rewrite <- H5; trivial. omega.
intro H4. case H4; clear H4. intros a' H4. destruct H4. exists k; split; try omega.
case (H2 a'); clear H2; trivial. intros k' H2. destruct H2. rewrite H4.
apply IHk with (n := n - 1) (n' := n'); trivial. apply ctx_sys_Bex_regular in H5. apply H5.
apply WSN with (k := k'); try omega; trivial. omega.
Qed.
Lemma lex_SN_abs : forall n L t, (forall x, x \notin L -> SN_ind n lex (t ^ x)) ->
(SN_ind n lex (pterm_abs t)).
Proof.
intros n L t. generalize t; clear t. induction n.
intros. rewrite <- NF_eq_SN0. setoid_rewrite <- NF_eq_SN0 in H.
intros t' H'. apply lex_abs in H'. case H'; clear H'; intros L0 H'. case H'; clear H'; intros t0 H'.
destruct H'. pick_fresh x. apply notin_union in Fr. destruct Fr. apply notin_union in H2. destruct H2.
apply notin_union in H2. destruct H2. apply notin_union in H2. destruct H2.
case H with (x := x) (t' := (t0 ^ x)); trivial. apply H1; trivial.
intros t H. apply SN_intro. intros t' H'. exists n; split; try omega.
apply lex_abs in H'. case H'; clear H'; intros L0 H'. case H'; clear H'; intros t0 H'.
destruct H'. pick_fresh x. apply notin_union in Fr. destruct Fr. apply notin_union in H2. destruct H2.
apply notin_union in H2. destruct H2. apply notin_union in H2. destruct H2. apply notin_union in H2. destruct H2.
rewrite H0. apply IHn. intros x' H8. destruct (H x'); trivial. case (H9 (t0 ^ x')).
apply ctx_sys_lex_red_rename with (x := x); trivial. apply H1; trivial.
intros k H10. destruct H10. apply WSN with (k := k); try omega; trivial.
Qed.
Lemma lex_SN_ind_rename : forall n x x' t, body t -> x' \notin ({{x}} \u (fv t)) -> SN_ind n lex (t ^ x) -> SN_ind n lex (t ^ x').
Proof.
intros n x x' t B Fr H. apply notin_union in Fr; destruct Fr. apply notin_singleton in H0.
generalize t B H0 H1 H. clear t B H0 H1 H. induction n.
intros t B H0 H1 H. rewrite <- NF_eq_SN0 in *|-*.
intros t' H'. gen_eq t0 : (close t' x'). intro H2.
replace t' with (t0 ^ x') in H'. apply (H (t0 ^x)). apply ctx_sys_lex_red_rename with (x := x'); trivial.
rewrite H2. apply fv_close'. rewrite H2. rewrite open_close_var with (x := x'). reflexivity.
apply ctx_sys_Bex_regular in H'. apply H'. intros t B H0 H1 H. destruct H.
apply SN_intro. intros t' H'. exists n; split; try omega. gen_eq t0 : (close t' x'). intro H2.
generalize H'. intro T. apply ctx_sys_Bex_regular in T. destruct T.
replace t' with (t0 ^ x') in H'. case (H (t0 ^ x)); clear H. apply ctx_sys_lex_red_rename with (x := x'); trivial.
rewrite H2. apply fv_close'. intros k H. destruct H. replace t' with (t0 ^ x'). apply (IHn t0); trivial.
apply ctx_sys_Bex_regular in H'. destruct H'. rewrite term_eq_term' in H7. unfold term' in H7. unfold open in H7.
rewrite body_eq_body'. unfold body'. rewrite lc_at_open with (u := pterm_fvar x'); trivial.
rewrite H2. apply fv_close'. apply WSN with (k := k); try omega; trivial.
rewrite H2; rewrite open_close_var with (x := x'); try reflexivity; trivial.
rewrite H2; rewrite open_close_var with (x := x'); try reflexivity; trivial.
Qed.
Lemma lex_SN_rename : forall x x' t, body t -> x' \notin ({{x}} \u (fv t)) -> SN lex (t ^ x) -> SN lex (t ^ x').
Proof.
intros. case H1; clear H1; intros n H1; exists n; apply lex_SN_ind_rename with (x := x); trivial.
Qed.
Lemma lex_SN_ind_swap : forall n x y t, SN_ind n lex t -> SN_ind n lex ([(x,y)]t).
Proof.
intros. generalize t H. clear t H. induction n.
intros. rewrite <- NF_eq_SN0 in *|-*. intros t' H'.
apply (H ([(x,y)]t')). rewrite <- swap_inv with (t := t) (x := x) (y := y).
apply ctx_sys_lex_red_swap; trivial.
intros. inversion H. clear H. apply SN_intro. intros t' H'.
rewrite <- swap_inv with (t := t') (x := x) (y := y).
case (H0 ([(x, y)]t')). rewrite <- swap_inv with (t := t) (x := x) (y := y).
apply ctx_sys_lex_red_swap; trivial.
intros k H. destruct H. exists n; split; try omega. apply IHn; trivial.
apply WSN with (k := k); try omega; trivial.
Qed.
Lemma lex_SN_swap : forall x y t, SN lex t -> SN lex ([(x,y)]t).
Proof. intros; case H; clear H; intros n H; exists n; apply lex_SN_ind_swap; trivial. Qed.
*)