-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
51 lines (41 loc) · 1.58 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import model
import dataloader
import util
import torch
from torch.autograd import Variable
import torchvision
import argparse
import os
import datetime
def main(args):
if torch.cuda.is_available():
dtype = torch.cuda.FloatTensor
else:
dtype = torch.FloatTensor
print('Loading the model...')
trans_net = model.ImageTransformNet().type(dtype)
trans_net = util.load_weight(model=trans_net, path=args.weight_path)
print('Loading the model is done!')
# content_img = (1, 3, 256, 256)
content_img = util.load_img(path=args.content_path)
content_img = Variable(content_img.type(dtype))
content_img = util.vgg_norm(content_img)
# result_img = (1, 3, 256, 256)
result_img = trans_net(content_img)
# content_img = (1, 3, 256, 256)
content_img = util.vgg_denorm(content_img)
out_dir, _ = os.path.split(args.output_path)
if os.path.exists(out_dir) is not True:
os.makedirs(out_dir)
torchvision.utils.save_image(result_img.data, args.output_path, nrow=1)
print('Saved image : ' + args.output_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weight_path', type=str, default='weight/abstract_1.weight',
help='Model weight path')
parser.add_argument('--content_path', type=str, default='content/city.png',
help='Content img path')
parser.add_argument('--output_path', type=str, default='result/abstract_1.png',
help='Output img path')
args = parser.parse_args()
main(args)