-
Notifications
You must be signed in to change notification settings - Fork 4.1k
/
Copy pathinfogan.py
294 lines (229 loc) · 10.5 KB
/
infogan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import argparse
import os
import numpy as np
import math
import itertools
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
os.makedirs("images/static/", exist_ok=True)
os.makedirs("images/varying_c1/", exist_ok=True)
os.makedirs("images/varying_c2/", exist_ok=True)
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=62, help="dimensionality of the latent space")
parser.add_argument("--code_dim", type=int, default=2, help="latent code")
parser.add_argument("--n_classes", type=int, default=10, help="number of classes for dataset")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=1, help="number of image channels")
parser.add_argument("--sample_interval", type=int, default=400, help="interval between image sampling")
opt = parser.parse_args()
print(opt)
cuda = True if torch.cuda.is_available() else False
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
def to_categorical(y, num_columns):
"""Returns one-hot encoded Variable"""
y_cat = np.zeros((y.shape[0], num_columns))
y_cat[range(y.shape[0]), y] = 1.0
return Variable(FloatTensor(y_cat))
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
input_dim = opt.latent_dim + opt.n_classes + opt.code_dim
self.init_size = opt.img_size // 4 # Initial size before upsampling
self.l1 = nn.Sequential(nn.Linear(input_dim, 128 * self.init_size ** 2))
self.conv_blocks = nn.Sequential(
nn.BatchNorm2d(128),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 128, 3, stride=1, padding=1),
nn.BatchNorm2d(128, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
nn.Tanh(),
)
def forward(self, noise, labels, code):
gen_input = torch.cat((noise, labels, code), -1)
out = self.l1(gen_input)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img = self.conv_blocks(out)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
"""Returns layers of each discriminator block"""
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8))
return block
self.conv_blocks = nn.Sequential(
*discriminator_block(opt.channels, 16, bn=False),
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# The height and width of downsampled image
ds_size = opt.img_size // 2 ** 4
# Output layers
self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1))
self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.n_classes), nn.Softmax())
self.latent_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.code_dim))
def forward(self, img):
out = self.conv_blocks(img)
out = out.view(out.shape[0], -1)
validity = self.adv_layer(out)
label = self.aux_layer(out)
latent_code = self.latent_layer(out)
return validity, label, latent_code
# Loss functions
adversarial_loss = torch.nn.MSELoss()
categorical_loss = torch.nn.CrossEntropyLoss()
continuous_loss = torch.nn.MSELoss()
# Loss weights
lambda_cat = 1
lambda_con = 0.1
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
categorical_loss.cuda()
continuous_loss.cuda()
# Initialize weights
generator.apply(weights_init_normal)
discriminator.apply(weights_init_normal)
# Configure data loader
os.makedirs("../../data/mnist", exist_ok=True)
dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"../../data/mnist",
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=opt.batch_size,
shuffle=True,
)
# Optimizers
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2))
optimizer_info = torch.optim.Adam(
itertools.chain(generator.parameters(), discriminator.parameters()), lr=opt.lr, betas=(opt.b1, opt.b2)
)
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
# Static generator inputs for sampling
static_z = Variable(FloatTensor(np.zeros((opt.n_classes ** 2, opt.latent_dim))))
static_label = to_categorical(
np.array([num for _ in range(opt.n_classes) for num in range(opt.n_classes)]), num_columns=opt.n_classes
)
static_code = Variable(FloatTensor(np.zeros((opt.n_classes ** 2, opt.code_dim))))
def sample_image(n_row, batches_done):
"""Saves a grid of generated digits ranging from 0 to n_classes"""
# Static sample
z = Variable(FloatTensor(np.random.normal(0, 1, (n_row ** 2, opt.latent_dim))))
static_sample = generator(z, static_label, static_code)
save_image(static_sample.data, "images/static/%d.png" % batches_done, nrow=n_row, normalize=True)
# Get varied c1 and c2
zeros = np.zeros((n_row ** 2, 1))
c_varied = np.repeat(np.linspace(-1, 1, n_row)[:, np.newaxis], n_row, 0)
c1 = Variable(FloatTensor(np.concatenate((c_varied, zeros), -1)))
c2 = Variable(FloatTensor(np.concatenate((zeros, c_varied), -1)))
sample1 = generator(static_z, static_label, c1)
sample2 = generator(static_z, static_label, c2)
save_image(sample1.data, "images/varying_c1/%d.png" % batches_done, nrow=n_row, normalize=True)
save_image(sample2.data, "images/varying_c2/%d.png" % batches_done, nrow=n_row, normalize=True)
# ----------
# Training
# ----------
for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# Adversarial ground truths
valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False)
fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False)
# Configure input
real_imgs = Variable(imgs.type(FloatTensor))
labels = to_categorical(labels.numpy(), num_columns=opt.n_classes)
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Sample noise and labels as generator input
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
label_input = to_categorical(np.random.randint(0, opt.n_classes, batch_size), num_columns=opt.n_classes)
code_input = Variable(FloatTensor(np.random.uniform(-1, 1, (batch_size, opt.code_dim))))
# Generate a batch of images
gen_imgs = generator(z, label_input, code_input)
# Loss measures generator's ability to fool the discriminator
validity, _, _ = discriminator(gen_imgs)
g_loss = adversarial_loss(validity, valid)
g_loss.backward()
optimizer_G.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Loss for real images
real_pred, _, _ = discriminator(real_imgs)
d_real_loss = adversarial_loss(real_pred, valid)
# Loss for fake images
fake_pred, _, _ = discriminator(gen_imgs.detach())
d_fake_loss = adversarial_loss(fake_pred, fake)
# Total discriminator loss
d_loss = (d_real_loss + d_fake_loss) / 2
d_loss.backward()
optimizer_D.step()
# ------------------
# Information Loss
# ------------------
optimizer_info.zero_grad()
# Sample labels
sampled_labels = np.random.randint(0, opt.n_classes, batch_size)
# Ground truth labels
gt_labels = Variable(LongTensor(sampled_labels), requires_grad=False)
# Sample noise, labels and code as generator input
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
label_input = to_categorical(sampled_labels, num_columns=opt.n_classes)
code_input = Variable(FloatTensor(np.random.uniform(-1, 1, (batch_size, opt.code_dim))))
gen_imgs = generator(z, label_input, code_input)
_, pred_label, pred_code = discriminator(gen_imgs)
info_loss = lambda_cat * categorical_loss(pred_label, gt_labels) + lambda_con * continuous_loss(
pred_code, code_input
)
info_loss.backward()
optimizer_info.step()
# --------------
# Log Progress
# --------------
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f] [info loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), g_loss.item(), info_loss.item())
)
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
sample_image(n_row=10, batches_done=batches_done)