- Python3 (tested with 3.5.4)
- GDAL (tested with 2.2.2)
- Numpy (tested with 1.14.2)
- Pillow (tested with 5.0.0)
- OpenCV (tested with 3.3.1)
- MulticoreTSNE (tested with 0.0.1.1)
- colorcorrect (tested with 0.7)
- tqdm (tested with 4.15.0)
- PyTorch (tested with 0.4.1)
- TorchVision (tested with 0.2.1)
crop_rgb-nir.py
separates RGB-NIR GeoTIFF data into RGB and NIR data and crops the each data except for blackout part.
If filename option is specified, it is processed for the specified file with single core cpu.
If not, it is processed for files in the specified input directory with multicore cpu.
If you specified --colorcorrect (-cc)
option, cropped images are colorcorrected using colorcorrect
module.
python crop_rgb-nir.py -i <path_to_input_dir> -o <path_to_output_dir> --filename <filename> -s <crop_size> -cc
or
python crop_rgb-nir.py -i <path_to_input_dir> -o <path_to_output_dir> -s <crop_size> -cc
make_training_datalist.py
makes a list of training data train_files.pkl
from cropped RGB images.
make_training_datalist.py
saves feature vectors of fc7
layer of pretrained AlexNet as an intermediate result into filename_feature.pkl
.
For details, refer to Sec. 3.2 of our paper.
python make_training_datalist.py -i <path_to_input_dir_or_filename_feature.pkl> -o <path_to_output_dir> -n_d <num_of_training_data> -n_g <square_of_num_of_grids>
make_clouds.py
makes synthesized cloud images using perlin noise.
The size of the cloud can be adjusted by changing NoiseOffset
in the PythonCloud/Config.py
.
python make_clouds.py -n <num_of_cloud_images> -o <path_to_output_dir>
feature_space_visualizer.py
make an image visualized 2-D feature space from filename_feature.pkl
.
python feature_space_visualizer.py -i <path_to_filename_feature.pkl> -o <path_to_output_file> -g_n <square_of_num_of_grids>
PythonCloud/
is referedPython-Cloud
repository. We modified the code of this repository for Python3.