-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_benchmark.py
201 lines (172 loc) · 9.33 KB
/
run_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import argparse
import logging
import json
import os
import subprocess
import time
logging.basicConfig(level=logging.INFO)
os.environ["HF_DATASETS_OFFLINE"]="1" # 1 for offline
os.environ["TRANSFORMERS_OFFLINE"]="1" # 1 for offline
os.environ["TRANSFORMERS_CACHE"]="/gpfswork/rech/six/commun/models"
os.environ["HF_DATASETS_CACHE"]="/gpfswork/rech/six/commun/datasets"
os.environ["HF_MODULES_CACHE"]="/gpfswork/rech/six/commun/modules"
os.environ["HF_METRICS_CACHE"]="/gpfswork/rech/six/commun/metrics"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import numpy as np
from mteb import MTEB
from sentence_transformers import SentenceTransformer
import torch
from transformers import AutoModel, AutoTokenizer
MODELS = [
"LASER2",
"/gpfswork/rech/six/commun/models/sentence-transformers_average_word_embeddings_komninos",
"/gpfswork/rech/six/commun/models/sentence-transformers_average_word_embeddings_glove.6B.300d",
"/gpfswork/rech/six/commun/models/Muennighoff_SGPT-125M-weightedmean-nli-bitfit",
"/gpfswork/rech/six/commun/models/Muennighoff_SGPT-125M-weightedmean-msmarco-specb-bitfit",
"/gpfswork/rech/six/commun/models/Muennighoff_SGPT-5.8B-weightedmean-nli-bitfit",
"/gpfswork/rech/six/commun/models/Muennighoff_SGPT-5.8B-weightedmean-msmarco-specb-bitfit",
"/gpfswork/rech/six/commun/models/bigscience_sgpt-bloom-7b1-msmarco",
"/gpfswork/rech/six/commun/models/bigscience-catalogue-lm-data_sgpt-bloom-1b3-nli",
"/gpfswork/rech/six/commun/models/sentence-transformers_all-MiniLM-L6-v2",
"/gpfswork/rech/six/commun/models/sentence-transformers_all-mpnet-base-v2",
"/gpfswork/rech/six/commun/models/sentence-transformers_paraphrase-multilingual-mpnet-base-v2",
"/gpfswork/rech/six/commun/models/sentence-transformers_sentence-t5-base",
"/gpfswork/rech/six/commun/models/sentence-transformers_sentence-t5-xxl",
"/gpfswork/rech/six/commun/models/sentence-transformers_gtr-t5-base",
"/gpfswork/rech/six/commun/models/sentence-transformers_gtr-t5-xxl",
"/gpfswork/rech/six/commun/models/nthakur_contriever-base-msmarco",
"/gpfswork/rech/six/commun/models/sentence-transformers_msmarco-bert-co-condensor",
"/gpfswork/rech/six/commun/models/bert-base-uncased",
"/gpfswork/rech/six/commun/models/princeton-nlp_sup-simcse-bert-base-uncased",
"/gpfswork/rech/six/commun/models/princeton-nlp_unsup-simcse-bert-base-uncased",
"/gpfswork/rech/six/commun/models/sentence-transformers_LaBSE",
]
MODELS = [
"/gpfswork/rech/six/commun/models/sentence-transformers_all-MiniLM-L12-v2",
"/gpfswork/rech/six/commun/models/sentence-transformers_allenai-specter",
]
TASKS = [
"STS15",
]
class SentenceTransformerSpecb(SentenceTransformer):
# Requires:
# /~https://github.com/Muennighoff/sentence-transformers/tree/sgpt_poolings_specb
# pip install git+/~https://github.com/Muennighoff/sentence-transformers.git@sgpt_poolings_specb
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
tokens = ["[SOS]", "{SOS}"]
self._first_module().tokenizer.add_tokens(tokens, special_tokens=True)
self._first_module().auto_model.resize_token_embeddings(len(self._first_module().tokenizer))
# Will be replaced with the rep tokens in the model ones
# The problem is we don't know if a text is query or document when tokenizing in the Transformer.py module,
# so we use the SOS tokens as an identifier if we have a query or document at hand & then replace them
# If we would directly use the brackets here, they may become part of another token
self._first_module().bos_spec_token_q = self._first_module().tokenizer.encode("[SOS]", add_special_tokens=False)[0]
self._first_module().bos_spec_token_d = self._first_module().tokenizer.encode("{SOS}", add_special_tokens=False)[0]
self._first_module().bos_spec_token_q_rep = self._first_module().tokenizer.encode("[", add_special_tokens=False)[0]
self._first_module().eos_spec_token_q = self._first_module().tokenizer.encode("]", add_special_tokens=False)[0]
self._first_module().bos_spec_token_d_rep = self._first_module().tokenizer.encode("{", add_special_tokens=False)[0]
self._first_module().eos_spec_token_d = self._first_module().tokenizer.encode("}", add_special_tokens=False)[0]
self._first_module().replace_bos = True
def encode(self, sentences, **kwargs):
"""Returns a list of embeddings for the given sentences.
Args:
sentences (`List[str]`): List of sentences to encode
batch_size (`int`): Batch size for the encoding
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
"""
# Add specb query token
sentences = ["[SOS]" + sent for sent in sentences]
return super().encode(sentences, **kwargs)
class SimCSEWrapper:
def __init__(self, modelpath="princeton-nlp/sup-simcse-bert-base-uncased"):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tokenizer = AutoTokenizer.from_pretrained(modelpath)
self.model = AutoModel.from_pretrained(modelpath).to(self.device)
self.model.eval()
def encode(self, sentences, batch_size=32, **kwargs):
""" Returns a list of embeddings for the given sentences.
Args:
sentences (`List[str]`): List of sentences to encode
batch_size (`int`): Batch size for the encoding
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
"""
all_embeddings = []
length_sorted_idx = np.argsort([len(sen) for sen in sentences])
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
for start_index in range(0, len(sentences), batch_size):
sentences_batch = sentences_sorted[start_index:start_index+batch_size]
inputs = self.tokenizer(sentences_batch, padding=True, truncation=True, return_tensors="pt")
inputs = {k: v.to(self.device) for k,v in inputs.items()}
# Get the embeddings
with torch.no_grad():
embeddings = self.model(**inputs, output_hidden_states=True, return_dict=True).pooler_output
all_embeddings.extend(embeddings.cpu().numpy())
all_embeddings = [all_embeddings[idx] for idx in np.argsort(length_sorted_idx)]
return all_embeddings
class LASER():
def encode(self, sentences, batch_size=32, **kwargs):
"""
Returns a list of embeddings for the given sentences.
Args:
sentences (`List[str]`): List of sentences to encode
batch_size (`int`): Batch size for the encoding
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
"""
if os.path.exists("tmp.txt"):
os.remove("tmp.txt")
if os.path.exists("tmp.bin"):
os.remove("tmp.bin")
# LASER expects one text per line, so we need to replace newlines
sentences = [s.replace("\n", " ") for s in sentences]
with open("tmp.txt", "w") as f:
f.write("\n".join(sentences))
rc = subprocess.call("/gpfsscratch/rech/six/commun/commun/experiments/muennighoff/mteb/LASER/LASER_script.sh", shell=True)
dim = 1024
X = np.fromfile("tmp.bin", dtype=np.float32, count=-1)
X.resize(X.shape[0] // dim, dim)
print(X.shape)
return X
def parse_args():
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--lang", type=str, default="en")
parser.add_argument("--batchsize", type=int, default=32)
args = parser.parse_args()
return args
def main(args):
out = {}
for model_name in MODELS:
if ("sgpt" in model_name.lower()) and ("msmarco" in model_name.lower()):
model = SentenceTransformerSpecb(model_name) # Only used for SGPT-msmarco models
elif "simcse" in model_name.lower():
model = SimCSEWrapper(model_name)
elif "LASER2" == model_name:
model = LASER()
else:
model = SentenceTransformer(model_name)
evaluation = MTEB(tasks=TASKS, task_langs=[args.lang])
model_name = model_name.split("/")[-1].split("_")[-1]
for task, task_name in zip(evaluation.tasks, TASKS):
task.load_data()
# Encode all with the same batch size for a fair comparison of speed / sentence
data = task.dataset["test"]["sentence1"] + task.dataset["test"]["sentence2"]
data_len = len(data)
# Warmup run to build py caches etc
embeddings = np.asarray(model.encode(data, batch_size=args.batchsize))
tick = time.time()
embeddings = np.asarray(model.encode(data, batch_size=args.batchsize))
tock = time.time()
out.setdefault(model_name, {})
out[model_name].setdefault(task_name, {})
out[model_name][task_name]["speed_ms"] = ((tock - tick) / data_len) * 1000
out[model_name][task_name]["embedding_size_kb"] = embeddings.nbytes / data_len / 1000
# Overwrite every iteration for intermed results
with open("benchmark.json", "w") as f:
json.dump(out, f)
if __name__ == "__main__":
args = parse_args()
main(args)