-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_array_laser.py
178 lines (154 loc) · 5.15 KB
/
run_array_laser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""
See /~https://github.com/facebookresearch/LASER/issues/211
"""
import argparse
import logging
import os
import numpy as np
import subprocess
logging.basicConfig(level=logging.INFO)
os.environ["HF_DATASETS_OFFLINE"]="1" # 1 for offline
os.environ["TRANSFORMERS_OFFLINE"]="1" # 1 for offline
os.environ["TRANSFORMERS_CACHE"]="/gpfswork/rech/six/commun/models"
os.environ["HF_DATASETS_CACHE"]="/gpfswork/rech/six/commun/datasets"
os.environ["HF_MODULES_CACHE"]="/gpfswork/rech/six/commun/modules"
os.environ["HF_METRICS_CACHE"]="/gpfswork/rech/six/commun/metrics"
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from mteb import MTEB
TASK_LIST_CLASSIFICATION = [
"AmazonCounterfactualClassification",
"AmazonPolarityClassification",
"AmazonReviewsClassification",
"Banking77Classification",
"EmotionClassification",
"ImdbClassification",
"MassiveIntentClassification",
"MassiveScenarioClassification",
"MTOPDomainClassification",
"MTOPIntentClassification",
"ToxicConversationsClassification",
"TweetSentimentExtractionClassification",
]
TASK_LIST_CLUSTERING = [
"ArxivClusteringP2P",
"ArxivClusteringS2S",
"BiorxivClusteringP2P",
"BiorxivClusteringS2S",
"MedrxivClusteringP2P",
"MedrxivClusteringS2S",
"RedditClustering",
"RedditClusteringP2P",
"StackExchangeClustering",
"StackExchangeClusteringP2P",
"TwentyNewsgroupsClustering",
]
TASK_LIST_PAIR_CLASSIFICATION = [
"SprintDuplicateQuestions",
"TwitterSemEval2015",
"TwitterURLCorpus",
]
TASK_LIST_RERANKING = [
"AskUbuntuDupQuestions",
"MindSmallReranking",
"SciDocsRR",
"StackOverflowDupQuestions",
]
TASK_LIST_RETRIEVAL = [
"ArguAna",
"ClimateFEVER",
"CQADupstackAndroidRetrieval",
"CQADupstackEnglishRetrieval",
"CQADupstackGamingRetrieval",
"CQADupstackGisRetrieval",
"CQADupstackMathematicaRetrieval",
"CQADupstackPhysicsRetrieval",
"CQADupstackProgrammersRetrieval",
"CQADupstackStatsRetrieval",
"CQADupstackTexRetrieval",
"CQADupstackUnixRetrieval",
"CQADupstackWebmastersRetrieval",
"CQADupstackWordpressRetrieval",
"DBPedia",
"FEVER",
"FiQA2018",
"HotpotQA",
"MSMARCO",
"NFCorpus",
"NQ",
"QuoraRetrieval",
"SCIDOCS",
"SciFact",
"Touche2020",
"TRECCOVID",
]
TASK_LIST_STS = [
"BIOSSES",
"SICK-R",
"STS12",
"STS13",
"STS14",
"STS15",
"STS16",
"STS17",
"STS22",
"STSBenchmark",
"SummEval",
]
TASK_LIST = TASK_LIST_CLASSIFICATION + TASK_LIST_CLUSTERING + TASK_LIST_PAIR_CLASSIFICATION + TASK_LIST_RERANKING + TASK_LIST_RETRIEVAL + TASK_LIST_STS
### Setup prior to running ###
#with open("LASER_script.sh", "w") as f:
# f.write("LASER=/content/LASER ./LASER/tasks/embed/embed.sh tmp.txt tmp.bin")
# Run `chmod u+rx LASER_script.sh` to give permissions
# !chmod u+rx LASER_script.sh
class LASER():
def encode(self, sentences, batch_size=32, **kwargs):
"""
Returns a list of embeddings for the given sentences.
Args:
sentences (`List[str]`): List of sentences to encode
batch_size (`int`): Batch size for the encoding
Returns:
`List[np.ndarray]` or `List[tensor]`: List of embeddings for the given sentences
"""
if os.path.exists("tmp.txt"):
os.remove("tmp.txt")
if os.path.exists("tmp.bin"):
os.remove("tmp.bin")
# LASER expects one text per line, so we need to replace newlines
sentences = [s.replace("\n", " ") for s in sentences]
with open("tmp.txt", "w") as f:
f.write("\n".join(sentences))
print(len(sentences))
rc = subprocess.call("./LASER_script.sh", shell=True)
dim = 1024
X = np.fromfile("tmp.bin", dtype=np.float32, count=-1)
X.resize(X.shape[0] // dim, dim)
print(X.shape)
return X
def parse_args():
# Parse command line arguments
parser = argparse.ArgumentParser()
parser.add_argument("--startid", type=int)
parser.add_argument("--endid", type=int)
parser.add_argument("--lang", type=str, default="en")
parser.add_argument("--taskname", type=str, default=None)
parser.add_argument("--batchsize", type=int, default=128)
args = parser.parse_args()
return args
def main(args):
model = LASER()
model_name = "LASER2"
if args.taskname is not None:
task = args.taskname
eval_splits = ["validation"] if task == "MSMARCO" else ["test"]
evaluation = MTEB(tasks=[task], task_langs=[args.lang])
evaluation.run(model, output_folder=f"results/{model_name}", batch_size=args.batchsize, eval_splits=eval_splits)
exit()
for task in TASK_LIST[args.startid:args.endid]:
print("Running task: ", task)
eval_splits = ["validation"] if task == "MSMARCO" else ["test"]
evaluation = MTEB(tasks=[task], task_langs=[args.lang])
evaluation.run(model, output_folder=f"results/{model_name}", batch_size=args.batchsize, eval_splits=eval_splits)
if __name__ == "__main__":
args = parse_args()
main(args)