-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmove_ART.py
42 lines (31 loc) · 1.22 KB
/
move_ART.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# -*- coding: utf-8 -*-
"""
Created on Sat Nov 28 14:52:59 2020
@author: emadg
"""
import numpy as np
from Log_Likelihood import Log_Likelihood
from cauchy_dist import cauchy_dist
def move_ART(XnZn,AR_bounds,LogLc,xc,zc,rhoc,ARgc,ARTc,T,Kernel_Grv,Kernel_Mag,dg_obs,dT_obs):
NAR = int(np.size(ARTc))
# AR_min = globals_par[4,0]
# AR_max = globals_par[4,1]
for iar in np.arange(NAR):
AR_min = AR_bounds[iar+1, 0]
AR_max = AR_bounds[iar+1, 1]
std_cauchy = abs(AR_max-AR_min)/40
ARTp = ARTc.copy()
ARTp[iar] = cauchy_dist(ARTc[iar],std_cauchy,AR_min,AR_max,ARTc[iar])
if np.isclose(ARTc[iar] , ARTp[iar])==1: continue
# Check if AR model is stationary
# coeff = np.flipud(-ARTp).copy()
# coeff = np.append(coeff,1).copy()
# zroots=np.roots(coeff)
# TF = all(abs(zroots)>1) # True means it is stationary
# if TF == True:
LogLp = Log_Likelihood(Kernel_Grv,Kernel_Mag,dg_obs,dT_obs,xc,zc,rhoc,ARgc,ARTp,XnZn)[0]
MHP = np.exp((LogLp - LogLc)/T)
if np.random.rand()<=MHP:
LogLc = LogLp
ARTc = ARTp.copy()
return [LogLc,ARTc]