-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathALBCprecisionlikeSLIM2.m
139 lines (109 loc) · 3.82 KB
/
ALBCprecisionlikeSLIM2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
function [llf, CC, QQ, RR1, arows, acols, asortndx, brows, bcols, bsortndx] = ...
ALBCprecisionlikeSLIM2(aaa,invbbb,ccc,y,x0,invsqrtsig0,CC,QQ,RR1,arows, acols, asortndx, brows, bcols, bsortndx)
% ALAGBCPRECISIONSAMPLER ...
%
% allows for lags of A; important: aaa should be ordered from p to 1 in 3rd dimension
% ...
%% VERSION INFO
% AUTHOR : Elmar Mertens
% get dimensions
[Ny, T] = size(y);
p = size(aaa,3);
Nx = size(aaa,1);
Nw = size(invbbb,2);
if Nx ~= Nw
error('dimension mismatch: Nx not equal to Nw')
end
if nargin < 7
CC = [];
QQ = [];
RR1 = [];
[arows, acols, asortndx, brows, bcols, bsortndx] = deal([]);
end
if ndims(aaa) <= 3
aaa = repmat(aaa, [1 1 1 T]);
end
if ismatrix(invbbb)
invbbb = repmat(invbbb, [1 1 T]);
end
if ismatrix(ccc)
ccc = repmat(ccc, [1 1 T]);
end
Nx0 = Nx * p;
NyT = Ny * T;
NxT = Nx * T;
NxTp = Nx * (T + p);
%% construct vectorized state space
Y = reshape(y, NyT, 1);
XX0 = sparse(1:Nx0, 1, x0, NxTp, 1);
%% vectorize input matrices
NxNx = Nx * Nx;
NxNxT = NxNx * T;
invsqrtsig0 = reshape(invsqrtsig0, Nx0 * Nx0, 1);
invbbb = reshape(invbbb, NxNxT, 1);
ccc = reshape(ccc, Ny * NxT, 1);
%% CC and prepare Arows and Brows
if isempty(CC)
% AA
arows1 = transpose(1 : NxTp);
acols1 = transpose(1 : NxTp);
arows2 = repmat((1 : Nx)', 1, Nx * p);
arows2 = Nx0 + arows2 + permute(Nx * (0 : T - 1), [1 3 2]);
acols2 = repmat(1 : Nx * p, Nx,1) + permute(Nx * (0 : T - 1), [1 3 2]);
arows = [arows1; reshape(arows2, NxNx * p * T, 1)];
acols = [acols1; reshape(acols2, NxNx * p * T, 1)];
[acols, asortndx] = sort(acols);
arows = arows(asortndx);
% BB
brows0 = repmat((1 : Nx0)', 1 , Nx0);
brows1 = Nx0 + repmat((1 : Nx)', 1 , Nx) + permute(Nx * (0 : T-1), [1 3 2]);
brows = [reshape(brows0, Nx0 * Nx0, 1); reshape(brows1, NxNx * T, 1)];
bcols0 = repmat((1 : Nx0), Nx0, 1);
bcols1 = Nx0 + repmat((1 : Nx), Nx, 1) + permute(Nx * (0 : T-1), [1 3 2]);
bcols = [reshape(bcols0, Nx0 * Nx0, 1); reshape(bcols1, NxNx * T, 1)];
[bcols, bsortndx] = sort(bcols);
brows = brows(bsortndx);
% C
crows = repmat((1 : Ny)', 1 , Nx, T) + permute(Ny * (0 : T-1), [1 3 2]);
ccols = Nx0 + repmat(1 : NxT, Ny, 1);
CC = sparse(reshape(crows, Ny * Nx * T, 1), reshape(ccols, Ny * Nx * T, 1), ccc, NyT, NxTp);
% perform QR
[QQ,RR] = qr(CC');
[N1, NN] = size(CC);
% N2 = NN - N1;
RR1 = RR(1:N1,1:N1)';
else
N1 = size(RR1,1);
NN = size(QQ,1);
% N2 = NN - N1;
end
% QQ1 = QQ(:,1:N1)';
% QQ2 = QQ(:,N1+1:end)';
%% sparse builds for BB and AA
values = [invsqrtsig0; invbbb];
values = values(bsortndx);
invBB = sparse(brows, bcols, values, NxTp, NxTp);
values1 = ones(NxTp,1);
values2 = reshape(-aaa, NxNx * p * T, 1); % (:,:,p:-1:1,:);
values = [values1; values2];
values = values(asortndx);
AA = sparse(arows, acols, values, NxTp, NxTp);
%% means and innovations
EX = AA \ XX0;
EY = CC * EX;
%% likelihood calculations
AAtilde = invBB * AA;
AAtildeQQ = AAtilde * QQ;
Ptilde = AAtildeQQ' * AAtildeQQ;
Ptilde11 = Ptilde(1:N1,1:N1);
Ptilde12 = Ptilde(1:N1,N1+1:NN);
Ptilde22 = Ptilde(N1+1:NN,N1+1:NN);
% Ptilde21 = Ptilde(N1+1:NN,1:N1);
x1tilde = RR1 \ (Y - EY);
logdetR11 = 2 * sum(log(abs(diag(RR1)))); % abs since RR1 is output from QR
%% alt
Phat12 = Ptilde12 / chol(Ptilde22);
sqrtinvvarX1tilde = chol(Ptilde11 - Phat12 * Phat12', 'upper');
x1dev = sqrtinvvarX1tilde * x1tilde;
logdetX11 = 2 * sum(log(diag(sqrtinvvarX1tilde)));
llf = -.5 * (N1 * log(2 * pi) + logdetR11 - logdetX11 + sum(x1dev.^2));