-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevo.py
162 lines (136 loc) · 5.26 KB
/
evo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Based on /~https://github.com/Garve/Evolutionary-Algorithm
from abc import ABC, abstractmethod
from datetime import datetime
class Individual(ABC):
def __init__(self, value: dict = None, init_params: dict = None):
if value is not None:
self.value = value
else:
self.value = self._random_init(init_params)
@abstractmethod
def pair(self, other, pair_params):
pass
@abstractmethod
def mutate(self, mutate_params):
pass
@abstractmethod
def _random_init(self, init_params):
pass
class Population:
def __init__(self, size, fitness, individual_class, init_params):
self.fitness = fitness
self.individuals = [individual_class(init_params=init_params) for _ in range(size)]
self.sort()
self.replace_count = 0
self.unimproved_count = 0 # Number of times replace() didn't improve.
@property
def best_fitness(self):
return self.fitness(self.individuals[-1])
@property
def is_stale(self):
return (10 < self.replace_count and
(self.replace_count // 2) < self.unimproved_count)
def sort(self):
self.individuals.sort(key=lambda x: self.fitness(x))
def replace(self, new_individuals):
start_best = self.best_fitness
size = len(self.individuals)
self.individuals.extend(new_individuals)
self.sort()
self.individuals = self.individuals[-size:]
end_best = self.best_fitness
self.replace_count += 1
if start_best < end_best:
self.unimproved_count = 0
else:
self.unimproved_count += 1
def get_parents(self, n_offsprings):
mothers = self.individuals[-2 * n_offsprings::2]
fathers = self.individuals[-2 * n_offsprings + 1::2]
return mothers, fathers
class Evolution:
def __init__(self,
pool_size,
fitness,
individual_class,
n_offsprings,
pair_params,
mutate_params,
init_params,
pool_count: int = 1):
self.pair_params = pair_params
self.mutate_params = mutate_params
self.pool_size = pool_size
self.fitness = fitness
self.individual_class = individual_class
self.init_params = init_params
self.pool_count = pool_count
self.pools = []
self.add_pools()
self.n_offsprings = n_offsprings
self.history = []
@property
def pool(self):
return self.pools[0]
def add_pools(self):
while len(self.pools) < self.pool_count:
self.pools.append(Population(self.pool_size,
self.fitness,
self.individual_class,
self.init_params))
def step(self):
is_stale = False
for pool in self.pools:
mothers, fathers = pool.get_parents(self.n_offsprings)
offsprings = []
for mother, father in zip(mothers, fathers):
offspring = mother.pair(father, self.pair_params)
offspring.mutate(self.mutate_params)
offsprings.append(offspring)
pool.replace(offsprings)
is_stale = is_stale or pool.is_stale
if 1 < self.pool_count and is_stale:
self.pools.sort(key=lambda p: (-p.best_fitness, p.unimproved_count))
while 1 < len(self.pools) and self.pools[-1].is_stale:
self.pools.pop()
self.add_pools()
@staticmethod
def is_finished():
""" Called after each epoch of evolution. Return true to stop. """
return False
def run(self, max_epochs: int):
start_time = datetime.now()
self.history.clear()
for epoch_count in range(max_epochs):
top_individual = self.pool.individuals[-1]
top_fitness = self.pool.fitness(top_individual)
mid_fitness = self.pool.fitness(
self.pool.individuals[-len(self.pool.individuals) // 5])
summaries = []
for pool in self.pools:
pool_fitness = pool.fitness(pool.individuals[-1])
total = pool_fitness
summaries.append(f'{total}')
self.history.append(top_fitness)
self.print_step_summaries(top_individual,
top_fitness,
mid_fitness,
summaries)
self.step()
if self.is_finished():
break
duration = datetime.now() - start_time
self.print_final_summary(duration)
def print_final_summary(self, duration):
best = self.pool.individuals[-1]
for problem in self.pool.individuals:
print(self.pool.fitness(problem))
solution = best.value['start']
print(solution)
print(f'Finished {len(self.history)} epochs in {duration}.')
def print_step_summaries(self, top_individual, top_fitness, mid_fitness, summaries):
print(len(self.history),
top_fitness,
mid_fitness,
repr(top_individual.value['start']),
', '.join(summaries))