forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlayout_trainer.py
132 lines (113 loc) · 5.37 KB
/
layout_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# encoding=utf-8
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
from typing import Dict, List, Optional, Union, Any, Tuple
from paddlenlp.trainer import Trainer
class LayoutTrainer(Trainer):
def __init__(self, *args, eval_examples=None, post_process_function=None, convert_fn=None, **kwargs):
super().__init__(*args, **kwargs)
self.eval_examples = eval_examples
self.post_process_function = post_process_function
self.convert_fn = convert_fn
def save_predictions(self, split, preds, labels):
"""
Save metrics into a json file for that split, e.g. `train_results.json`.
Under distributed environment this is done only for a process with rank 0.
Args:
split (`str`):
Mode/split name: one of `train`, `eval`, `test`, `all`
To understand the metrics please read the docstring of [`~Trainer.log_metrics`]. The only difference is that raw
unformatted numbers are saved in the current method.
"""
path = os.path.join(self.args.output_dir, f"{split}_predictions.json")
with open(path, "w") as f:
json.dump(preds, f, ensure_ascii=False, indent=4, sort_keys=True)
path = os.path.join(self.args.output_dir, f"{split}_golden_labels.json")
with open(path, "w") as f:
json.dump(labels, f, ensure_ascii=False, indent=4, sort_keys=True)
def evaluate(
self,
eval_dataset=None,
eval_examples=None,
ignore_keys=None,
metric_key_prefix="eval",
) -> Dict[str, float]:
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
eval_examples = self.eval_examples if eval_examples is None else eval_examples
eval_dataloader = self.get_eval_dataloader(eval_dataset)
compute_metrics = self.compute_metrics
self.compute_metrics = None
eval_loop = self.evaluation_loop
try:
output = eval_loop(
eval_dataloader,
description="Evaluation",
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
metric_key_prefix=metric_key_prefix,
)
finally:
self.compute_metrics = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
pred_rst, gt_rst, eval_preds = self.post_process_function(
eval_examples, eval_dataset, output.predictions, output.label_ids
)
self.save_predictions("eval", pred_rst, gt_rst)
metrics = self.compute_metrics(eval_preds)
if self.convert_fn is not None:
processed_metrics = self.convert_fn(pred_rst, self.args.output_dir)
if processed_metrics is not None:
metrics.update(processed_metrics)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
self.log(metrics)
else:
metrics = {}
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
return metrics
def predict(self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test"):
predict_dataloader = self.get_test_dataloader(predict_dataset)
compute_metrics = self.compute_metrics
self.compute_metrics = None
eval_loop = self.evaluation_loop
try:
output = eval_loop(
predict_dataloader,
description="Prediction",
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
)
finally:
self.compute_metrics = compute_metrics
if self.post_process_function is not None and self.compute_metrics is not None:
pred_rst, gt_rst, eval_preds = self.post_process_function(
predict_examples, predict_dataset, output.predictions, output.label_ids
)
self.save_predictions("test", pred_rst, gt_rst)
metrics = self.compute_metrics(eval_preds)
if self.convert_fn is not None:
processed_metrics = self.convert_fn(pred_rst, self.args.output_dir)
if processed_metrics is not None:
metrics.update(processed_metrics)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
else:
metrics = {}
return metrics