forked from bcaffo/MathematicsBiostatisticsBootCamp2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlecture2.tex
198 lines (171 loc) · 6.35 KB
/
lecture2.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
\documentclass[aspectratio=169]{beamer}
\mode<presentation>
%\usetheme{Warsaw}
%\usetheme{Goettingen}
\usetheme{Hannover}
%\useoutertheme{default}
%\useoutertheme{infolines}
\useoutertheme{sidebar}
\usecolortheme{dolphin}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{enumerate}
%some bold math symbols
\newcommand{\Cov}{\mathrm{Cov}}
\newcommand{\Var}{\mathrm{Var}}
\newcommand{\brho}{\boldsymbol{\rho}}
\newcommand{\bSigma}{\boldsymbol{\Sigma}}
\newcommand{\btheta}{\boldsymbol{\theta}}
\newcommand{\bbeta}{\boldsymbol{\beta}}
\newcommand{\bmu}{\boldsymbol{\mu}}
\newcommand{\bW}{\mathbf{W}}
\newcommand{\one}{\mathbf{1}}
\newcommand{\bH}{\mathbf{H}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bolde}{\mathbf{e}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\cpp}[1]{\texttt{#1}}
\title{Mathematical Biostatistics Boot Camp 2: Lecture 2, Power}
\author{Brian Caffo}
\date{\today}
\institute[Department of Biostatistics]{
Department of Biostatistics \\
Johns Hopkins Bloomberg School of Public Health\\
Johns Hopkins University
}
%\logo{\includegraphics[height=0.5cm]{Logo_PPT.pdf}}
\begin{document}
\frame{\titlepage}
%\section{Table of contents}
\frame{
\frametitle{Table of contents}
\tableofcontents
}
\section{Power}
\begin{frame}\frametitle{Power}
\begin{itemize}
\item Power is the probability of rejecting the null hypothesis when it is false
\item Ergo, power (as it's name would suggest) is a good thing; you want more power
\item A type II error (a bad thing, as its name would suggest) is failing to reject the null hypothesis when it's false; the probability of a type II error is usually called $\beta$
\item Note Power $= 1 - \beta$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Notes}
\begin{itemize}
\item Consider our previous example involving RDI
\item $H_0: \mu = 30$ versus $H_a: \mu > 30$
\item Then power is
$$P\left(\frac{\bar X - 30}{s /\sqrt{n}} > t_{1-\alpha,n-1} ~|~ \mu = \mu_a \right)$$
\item Note that this is a function that depends on the specific value of $\mu_a$!
\item Notice as $\mu_a$ approaches $30$ the power approaches $\alpha$
\end{itemize}
\end{frame}
\section{Calculating power}
\begin{frame}\frametitle{Calculating power}
Assume that $n$ is large and that we know $\sigma$
\begin{eqnarray*}
1 -\beta & = &
P\left(\frac{\bar X - 30}{\sigma /\sqrt{n}} > z_{1-\alpha} ~|~ \mu = \mu_a \right)\\ \\
& = & P\left(\frac{\bar X - \mu_a + \mu_a - 30}{\sigma /\sqrt{n}} > z_{1-\alpha} ~|~ \mu = \mu_a \right)\\ \\
& = & P\left(\frac{\bar X - \mu_a}{\sigma /\sqrt{n}} > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma /\sqrt{n}} ~|~ \mu = \mu_a \right)\\ \\
& = & P\left(Z > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma /\sqrt{n}} ~|~ \mu = \mu_a \right)\\ \\
\end{eqnarray*}
\end{frame}
\begin{frame}\frametitle{Example continued}
\begin{itemize}
\item Suppose that we wanted to detect a increase in mean RDI
of at least 2 events / hour (above 30). Assume normality and
that the sample in question will have a standard deviation of $4$;
what would be the power if we took a sample size of $16$? \\
\item $Z_{1-\alpha} = 1.645$ and $\frac{\mu_a - 30}{\sigma /\sqrt{n}} = 2 / (4 /\sqrt{16}) = 2$ \\
\item $P(Z > 1.645 - 2) = P(Z > -0.355) = 64\%$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Example continued}
\begin{itemize}
\item What $n$ would be required to get a power of 80\%
\item I.e. we want
$$0.80 = P\left(Z > z_{1-\alpha} - \frac{\mu_a - 30}{\sigma /\sqrt{n}} ~|~ \mu = \mu_a \right)$$
\item Set $z_{1-\alpha} - \frac{\mu_a - 30}{\sigma /\sqrt{n}} = z_{0.20}$ and solve for $n$
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Notes}
\begin{itemize}
\item The calculation for $H_a:\mu < \mu_0$ is similar
\item For $H_a: \mu \neq \mu_0$ calculate the one sided power using
$\alpha / 2$ (this is only approximately right, it excludes the probability of
getting a large TS in the opposite direction of the truth)
\item Power goes up as $\alpha$ gets larger
\item Power of a one sided test is greater than the power of the
associated two sided test
\item Power goes up as $\mu_1$ gets further away from $\mu_0$
\item Power goes up as $n$ goes up
\end{itemize}
\end{frame}
\section{T-tests}
\begin{frame}\frametitle{Power for the T test}
\begin{itemize}
\item Consider calculating power for a Gossett's $T$ test for our example
\item The power is
$$
P\left(\frac{\bar X - 30}{S /\sqrt{n}} > t_{1-\alpha, n-1} ~|~ \mu = \mu_a \right)
$$
\item Notice that this is equal to
\begin{eqnarray*}
& = &
P\left(\sqrt{n}(\bar X - 30) > t_{1 - \alpha, n-1} S ~|~ \mu = \mu_a \right)\\ \\
& = &
P\left(\frac{\sqrt{n}(\bar X - 30)}{\sigma} > t_{1-\alpha, n-1} \frac{S}{\sigma} ~|~ \mu = \mu_a \right)
\end{eqnarray*}
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Continued}
\begin{itemize}
\item Continued
$$
P\left(\frac{\sqrt{n}(\bar X - \mu_a)}{\sigma} + \frac{\sqrt{n}(\mu_a - 30)}{\sigma} > \frac{t_{1-\alpha, n-1}}{\sqrt{n-1}}\times \sqrt{\frac{(n-1) S^2}{\sigma^2}} \right)$$
(where we omitted the conditional on $\mu_a$ part for space)
\item This is now equal to
$$
P\left(Z + \frac{\sqrt{n}(\mu_a - 30)}{\sigma} > \frac{t_{1 - \alpha, n-1}}{\sqrt{n-1}} \sqrt{\chi^2_{n-1}}\right)
$$
where $Z$ and $\chi^2_{n-1}$ are independent standard normal and chi-squared random variables
\item While computing this probability is outside the scope of the class, it would be easy to approximate with Monte Carlo
\end{itemize}
\end{frame}
\begin{frame}[fragile]\frametitle{Example}
Let's recalculate power for the previous example using the $T$ distribution
instead of the normal; here's the easy way to do it. Let $\sigma = 4$
and $\mu_a - \mu_0 = 2$
\begin{verbatim}
##the easy way
power.t.test(n = 16, delta = 2 / 4,
type = "one.sample",
alt = "one.sided")
##result is 60%
\end{verbatim}
\end{frame}
\section{Monte Carlo}
\begin{frame}[fragile]\frametitle{Example}
Using Monte Carlo
\begin{verbatim}
nosim <- 100000
n <- 16
sigma <- 4
mu0 <- 30
mua <- 32
z <- rnorm(nosim)
xsq <- rchisq(nosim, df = 15)
t <- qt(.95, 15)
mean(z + sqrt(n) * (mua - mu0) / sigma >
t / sqrt(n - 1) * sqrt(xsq))
##result is 60%
\end{verbatim}
\end{frame}
\begin{frame}\frametitle{Comments}
\begin{itemize}
\item Notice that in both cases, power required a true mean and a true standard deviation
\item However in this (and most linear models) the power depends only on the mean (or change in means) divided by the standard deviation
\end{itemize}
\end{frame}
\end{document}