-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfact_opinion.py
158 lines (120 loc) · 7.14 KB
/
fact_opinion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
# config.gpu_options.per_process_gpu_memory_fraction = 0.95
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = '0'
set_session(tf.Session(config=config))
import pandas as pd
import numpy as np
import fasttext
from sklearn.model_selection import train_test_split
from metrics import fmeasure
from intent_models import cnn_word_model_sigmoid
from intent_recognizer_class import IntentRecognizer
import sys
sys.path.append('/home/dilyara/Documents/GitHub/general_scripts')
from random_search_class import param_gen
from save_load_model import init_from_scratch, init_from_saved, save
from fasttext_embeddings import text2embeddings
from save_predictions import save_predictions
SEED = 23
np.random.seed(SEED)
tf.set_random_seed(SEED)
FIND_BEST_PARAMS = False
AVERAGE_FOR_PARAMS = True
NUM_OF_CALCS = 1
VERSION = '_cnn_word_1'
train_data = []
test_data = []
data = pd.read_csv("/home/dilyara/data/data_files/fact_opinion/data.csv", sep='\t')
train, test = train_test_split(data, test_size=0.2)
train_data.append(train.set_index(np.arange(train.shape[0])))
test_data.append(test.set_index(np.arange(test.shape[0])))
fasttext_model_file = '/home/dilyara/data/data_files/embeddings/fasttext_model_twitter.bin'
fasttext_model = fasttext.load_model(fasttext_model_file)
print('Train data', train_data[0].head())
print('Test data: ', test_data[0].head())
#-------------PARAMETERS----------------
text_size = 25
embedding_size = 100
n_splits = 1
kernel_sizes=[1,2,3]
intents = ['is_fact', 'is_opinion', 'ignore']
train_requests = [train_data[i].loc[:,'sentence'].values for i in range(n_splits)]
train_classes = [train_data[i].loc[:, intents].values for i in range(n_splits)]
test_requests = [test_data[i].loc[:, 'sentence'].values for i in range(n_splits)]
test_classes = [test_data[i].loc[:, intents].values for i in range(n_splits)]
if FIND_BEST_PARAMS:
print("___TO FIND APPROPRIATE PARAMETERS____")
FindBestRecognizer = IntentRecognizer(intents, fasttext_embedding_model=fasttext_model, n_splits=n_splits)
best_mean_f1 = 0.
best_network_params = dict()
best_learning_params = dict()
params_f1 = []
for p in range(100):
FindBestRecognizer.gener_network_parameters(coef_reg_cnn={'range': [0.001,0.1], 'scale': 'log'},
coef_reg_den={'range': [0.001,0.1], 'scale': 'log'},
filters_cnn={'range': [100,300], 'discrete': True},
dense_size={'range': [50,150], 'discrete': True},
dropout_rate={'range': [0.4,0.6]})
FindBestRecognizer.gener_learning_parameters(batch_size={'range': [16,64], 'discrete': True},
lear_rate={'range': [0.01,0.1], 'scale': 'log'},
lear_rate_decay={'range': [0.01,0.1], 'scale': 'log'},
epochs={'range': [100,500], 'discrete': True, 'scale': 'log'})
FindBestRecognizer.init_model(cnn_word_model_sigmoid, text_size, embedding_size, kernel_sizes,
add_network_params=None)
FindBestRecognizer.fit_model(train_requests, train_classes, verbose=True, to_use_kfold=False)
train_predictions = FindBestRecognizer.predict(train_requests)
FindBestRecognizer.report(np.vstack([train_classes[i] for i in range(n_splits)]),
np.vstack([train_predictions[i] for i in range(n_splits)]),
mode='TRAIN')
test_predictions = FindBestRecognizer.predict(test_requests)
f1_test, f1_macro, f1_weighted = FindBestRecognizer.report(np.vstack([test_classes[i] for i in range(n_splits)]),
np.vstack([test_predictions[i] for i in range(n_splits)]),
mode='TEST')
mean_f1 = np.mean(f1_test)
params_dict = FindBestRecognizer.all_params_to_dict()
params_dict['mean_f1'] = mean_f1
params_f1.append(params_dict)
params_f1_dataframe = pd.DataFrame(params_f1)
params_f1_dataframe.to_csv("/home/dilyara/data/outputs/fact_opinion/depend_" + VERSION + '.txt')
if mean_f1 > best_mean_f1:
FindBestRecognizer.save_models(fname='/home/dilyara/data/models/fact_opinion/best_model_' + VERSION)
print('___BETTER PARAMETERS FOUND!___\n')
print('___THESE PARAMETERS ARE:___', params_dict)
best_mean_f1 = mean_f1
if AVERAGE_FOR_PARAMS:
print("___TO CALCULATE AVERAGE ACCURACY FOR PARAMETERS____")
AverageRecognizer = IntentRecognizer(intents, fasttext_embedding_model=fasttext_model, n_splits=n_splits)
f1_scores_for_intents = []
for p in range(NUM_OF_CALCS):
AverageRecognizer.init_network_parameters([{'coef_reg_cnn': 0.0031654815682148874,
'coef_reg_den': 0.0092195561612545517,
'filters_cnn': 256,
'dense_size': 144,
'dropout_rate': 0.47129140290180205}])
AverageRecognizer.init_learning_parameters([{'batch_size': 40,
'lear_rate': 0.042842998743792313,
'lear_rate_decay': 0.094851995579758624,
'epochs': 101}])
AverageRecognizer.init_model(cnn_word_model_sigmoid, text_size, embedding_size, kernel_sizes,
add_network_params=None)
AverageRecognizer.fit_model(train_requests, train_classes, to_use_kfold=False, verbose=True)
train_predictions = AverageRecognizer.predict(train_requests)
AverageRecognizer.report(np.vstack([train_classes[i] for i in range(n_splits)]),
np.vstack([train_predictions[i] for i in range(n_splits)]),
mode='TRAIN')
test_predictions = AverageRecognizer.predict(test_requests)
f1_test = AverageRecognizer.report(np.vstack([test_classes[i] for i in range(n_splits)]),
np.vstack([test_predictions[i] for i in range(n_splits)]),
mode='TEST')[0]
f1_scores_for_intents.append(f1_test)
save_predictions(test_data[0], test_predictions[0].reshape(-1,3),
columns_for_predictions=[intent + '_pred' for intent in intents],
filename='/home/dilyara/data/outputs/fact_opinion/test_predicts.csv')
f1_scores_for_intents = np.asarray(f1_scores_for_intents)
for intent_id in range(len(intents)):
f1_mean = np.mean(f1_scores_for_intents[:,intent_id])
f1_std = np.std(f1_scores_for_intents[:,intent_id])
print("Intent: %s \t F1: %f +- %f" % (intents[intent_id], f1_mean, f1_std))