-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackupMain.py
113 lines (86 loc) · 3.44 KB
/
backupMain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
from RiotAPI import RiotAPI
from RiotParser import RiotParser
import constants as Consts
import pandas as pd
import time
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sb
# This file is treated as a back up for Main on jupyter Notebook
# create_csv() generates a csv file with parsed data for 686 games of the user indicated by
# summonerName.
def create_csv(api, summonerName):
count = 0
matchDataList = []
# represents number of 98 list of game data requests for this player (7*98 = 686 games will be parsed)
num = 7
for i in range(num):
matchDataList.append(api.get_matchDataList_by_account(
summonerName, count * 98, (count + 1) * 98))
count += 1
if i != num - 1:
time.sleep(121)
parser = RiotParser(summonerName)
parsedDf = parser.parseData(matchDataList[0])
for i in range(1, num):
parser = RiotParser(summonerName)
newParsedDf = parser.parseData(matchDataList[i],)
result = parsedDf.append(newParsedDf)
parsedDf = result
print(parsedDf)
parsedDf.to_csv(summonerName + '.csv', mode='w')
print('File Successfully Created: ' + summonerName + '.csv')
time.sleep(121)
def get_winRate_list(df, parser):
# The list is represented as follows:
# winRates[0] : 0 - 10 mins
# winRates[1] : 10 - 20 mins
# winRates[2] : 20 - 30 mins
# winRates[3] : 30 - 40 mins
# winRates[4] : 40+ mins
winRates = []
for i in range(2, 8):
# winrate calculated by wins/total games within a certain timeframe
wins = df.loc[(df[parser.GAME_DURATION] >= 60 * (i * 5)) &
(df[parser.GAME_DURATION] < 60 * ((i + 1) * 5)) &
(df[parser.MATCH_RESULT] == 'Victory')].shape[0]
totalGames = df.loc[(df[parser.GAME_DURATION] >= 60 * (i * 5)) &
(df[parser.GAME_DURATION] < 60 * ((i + 1) * 5))].shape[0]
winrate = int(wins / totalGames * 100)
winRates.append(winrate)
# This is for winrate 40+ mins
wins = df.loc[(df[parser.GAME_DURATION] >= 60 * 40) &
(df[parser.MATCH_RESULT] == 'Victory')].shape[0]
totalGames = df.loc[(df[parser.GAME_DURATION] >= 60 * 40)].shape[0]
winrate = int(wins / totalGames * 100)
winRates.append(winrate)
return winRates
def main():
apikey = Consts.API_KEY['apikey']
api = RiotAPI(apikey)
df1 = pd.read_csv('Controleed Freak.csv')
df2 = pd.read_csv('Ender Dragon 3.csv')
df3 = pd.read_csv('cyrs7.csv')
df4 = pd.read_csv('Belox.csv')
# Axis Labels:
# x-axis: matchtime
# y-axis: players
matchtime = ['10 - 15', '15 - 20', '20 - 25',
'25 - 30', '30 - 35', '35 - 40',
'40+']
players = ['Controleed Freak', 'Ender Dragon 3', 'cyrs7', 'Belox']
parser = RiotParser('Controleed Freak')
winrateArray = np.array([get_winRate_list(df1, parser),
get_winRate_list(df2, parser),
get_winRate_list(df3, parser),
get_winRate_list(df4, parser)])
# Heat map Specifics:
fig, ax = plt.subplots(figsize=(12,4))
sb.heatmap(winrateArray, xticklabels=matchtime, yticklabels=players, annot=True, ax=ax)
plt.xlabel("Game Duration (mins)")
plt.ylabel("Players")
ax.set_title("% Winrate by Game Duration (300+ Games)")
fig.tight_layout()
plt.show()
if __name__ == "__main__":
main()