-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgain_utils.py
242 lines (196 loc) · 8.25 KB
/
gain_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import numpy as np
import pylab as plt
import lmfit
from cxid9114 import fit_utils, utils
from cxid9114.mask import mask_utils
def get_gain_dists(panel_data, gain_data, mask_data=None, plot=False, norm=False,
bins_low=None, bins_high=None):
"""
this processes the panel data and applies common mode to the panels
different gain sections individually.
"""
if mask_data is None:
mask_data = np.ones_like( gain_data)
panel_data2 = np.zeros_like( panel_data)
# intensity bins for LD91 (specific)
if bins_low is None:
bins_low = np.linspace(-10,20, 300) # in ADU
bc_low = .5*(bins_low[1:] + bins_low[:-1]) # bin centers
if bins_high is None:
bins_high = np.linspace(-20,50, 200) # in ADUs
bc_high = .5*(bins_high[1:] + bins_high[:-1]) # bin centers
i1_low = np.argmin( np.abs(bc_low+10))
i2_low = np.argmin( np.abs(bc_low-10))
i1_high = np.argmin( np.abs(bc_low+20))
i2_high = np.argmin( np.abs(bc_low-15))
xdata_low = bc_low[ i1_low:i2_low]
xdata_high = bc_high[ i1_high:i2_high]
# these are the panel indices to use to form the dists
low_gain_idx = [0,1,7,8,9,15,16,17,23,24,25,31]
high_gain_idx =[0,2,3,4,5,6,7,8,10,11,12,14,15,16,
18,19,20,22,23,24,26,27,28,30,31]
low_gain_dists = []
high_gain_dists = []
low_gain_fits = {}
high_gain_fits ={}
gauss_params_low = lmfit.Parameters()
gauss_params_low.add('amp', value=0.25, min=0)
gauss_params_low.add('wid', value=3, min=1)
gauss_params_low.add('mu', value=0, min=-5, max=5)
gauss_params_high = lmfit.Parameters()
gauss_params_high.add('amp', value=0.12, min=0)
gauss_params_high.add('wid', value=3, min=1)
gauss_params_high.add('mu', value=0, min=-3, max=3)
for i_pan in range(len(panel_data)):
g = panel_data[i_pan].copy()
is_low = gain_data[i_pan]*mask_data[i_pan]
is_high = (~gain_data[i_pan])*mask_data[i_pan]
Nlow = is_low.sum()
if Nlow > 0:
sig_low_gain = np.histogram(g[is_low].ravel(),
bins=bins_low,density=True)[0]
ydata_low = sig_low_gain[i1_low:i2_low]
result_low_gain = lmfit.minimize(fit_utils.gauss_standard,
gauss_params_low,
args=(xdata_low, ydata_low ))
low_fit = fit_utils.gauss_standard(result_low_gain.params,
xdata_low, np.zeros_like( xdata_low))
low_gain_fits[i_pan] = result_low_gain
mu_low = result_low_gain.params['mu'].value
mu_low = xdata_low[ np.argmax(utils.smooth(ydata_low, window_size=30))]
if plot:
plt.figure()
ax=plt.gca()
ax.plot( xdata_low, ydata_low)
ax.plot( xdata_low, low_fit)
plt.show()
panel_data2[i_pan][is_low] = panel_data[i_pan][is_low]-mu_low
Nhigh = is_high.sum()
if Nhigh > 0:
sig_high_gain = np.histogram(g[is_high].ravel(),
bins=bins_high,density=True)[0]
ydata_high = sig_high_gain[i1_high:i2_high]
result_high_gain = lmfit.minimize(fit_utils.gauss_standard,
gauss_params_high,
args=(xdata_high, ydata_high ))
high_fit = fit_utils.gauss_standard(result_high_gain.params,
xdata_high, np.zeros_like( xdata_high))
high_gain_fits[i_pan] = result_high_gain
mu_high = result_high_gain.params['mu'].value
mu_high = xdata_high[np.argmax(utils.smooth(ydata_high, window_size=30))]
if plot:
plt.figure()
ax=plt.gca()
ax.plot( xdata_high, ydata_high)
ax.plot( xdata_high, high_fit)
plt.show()
panel_data2[i_pan][is_high] = panel_data[i_pan][is_high]-mu_high
if i_pan in low_gain_idx:
sig_low_gain2 = np.histogram( g[is_low].ravel()-mu_low,
bins=bins_low,density=True)[0]
low_gain_dists.append(sig_low_gain2)
if i_pan in high_gain_idx:
sig_high_gain2 = np.histogram( g[is_high].ravel()-mu_high,
bins=bins_high,density=True)[0]
high_gain_dists.append(sig_high_gain2)
return bc_low, np.mean(low_gain_dists,0), bc_high, np.mean(high_gain_dists,0), panel_data2
def correct_panels(data, gain_map, mask,plot=False):
xlow,ylow,xhigh,yhigh,new_data = get_gain_dists( data, gain_map, mask)
low_g0,low_g1,fit_low = fit_utils.fit_low_gain_dist(xlow,ylow,plot=plot)
high_g0,high_g1,fit_high = fit_utils.fit_high_gain_dist(xhigh,yhigh,plot=plot)
low_1phot = xlow[low_g1.argmax()]
#high_1phot = xhigh[high_g1.argmax()]
high_1phot = xhigh[np.argmax(utils.smooth(yhigh, window_size=30)[220:300]) + 220]
print "Low gain 1 photon peak: %.4f ADU"%low_1phot
print "High gain 1 photon peak: %.4f ADU"%high_1phot
gain = high_1phot / low_1phot
print "Estimated gain: %.4f"%gain
low_0phot_wid = fit_low.params['wid0']
high_0phot_wid = fit_high.params['wid0']
bg_gain = high_0phot_wid / low_0phot_wid
print "Estimated dark-current gain: %.4f"%bg_gain
cutoff = low_1phot - 1*fit_low.params['wid1'].value/np.sqrt(2.)
print "Estimated low-gain dark-current cutoff ADU: %.4f"%cutoff
#cutoff = 1.85
#gain = 6.85
#bg_gain = 1.95
lowgain_photons = np.logical_and(new_data > cutoff, gain_map)
new_data[gain_map] = new_data[gain_map] * bg_gain
new_data[lowgain_photons] = new_data[lowgain_photons] * gain/bg_gain
return new_data
def main():
data =np.load("raw_peaks_img.npy")
gain_map = np.load("gain2.npy")==2.
mask = mask_utils.mask_small_regions(gain_map)
new_data = correct_panels( data, gain_map, mask)
plt.figure()
plt.imshow( new_data[0], vmin=-10,vmax=50,cmap='gnuplot')
plt.show()
def main2():
import psana
ds = psana.DataSource("exp=cxid9114:run=62")
events = ds.events()
det = psana.Detector('CxiDs2.0:Cspad.0')
dark = det.pedestals(62)
gain_map = det.gain_mask(62) == 1
mask = mask_utils.mask_small_regions(gain_map)
mask2 = np.load("mask/details_mask.npy")
mask *= mask2
start = 0
all_ylow = []
all_yhigh = []
for i in range(1200):
if i < 1000:
continue
ev = events.next()
if ev is None:
continue
if i < start:
continue
raw = det.raw( ev)
if raw is None:
continue
data = raw - dark
# new_data = correct_panels( data, gain_map, mask, plot=True)
xlow, ylow, xhigh, yhigh, new_data = get_gain_dists(data, gain_map, mask)
all_ylow.append( ylow)
all_yhigh.append( yhigh)
#plt.figure()
#plt.imshow( new_data[0], vmin=-10,vmax=50,cmap='gnuplot')
#plt.show()
print i
np.savez("all_shot_hists",
ylow=all_ylow, yhigh=all_yhigh, xlow=xlow, xhigh=xhigh)
def main3():
import psana
ds = psana.DataSource("exp=cxid9114:run=62")
events = ds.events()
det = psana.Detector('CxiDs2.0:Cspad.0')
dark = det.pedestals(62)
gain_map = det.gain_mask(62) == 1
plt.imshow(gain_map[0])
plt.show()
mask = mask_utils.mask_small_regions(gain_map)
mask2 = np.load("details_mask.npy")
mask *= mask2
start = 0
for i in range(100):
ev = events.next()
if ev is None:
continue
if i < start:
continue
data = det.calib(ev, cmpars=(5,0,0,0,0))
#data = det.calib(ev, cmpars=(1,25,25,100,1))
if data is None:
continue
plt.imshow( gain_map[0] )
plt.show()
xlow,ylow,xhigh,yhigh,new_data = get_gain_dists( data, gain_map, mask)
low_g0,low_g1,fit_low = fit_utils.fit_low_gain_dist(xlow,ylow,plot=1)
high_g0,high_g1,fit_high = fit_utils.fit_high_gain_dist(xhigh,yhigh,plot=1)
plt.figure()
plt.imshow( data[0], vmin=-10,vmax=50,cmap='gnuplot')
plt.show()
if __name__=="__main__":
main2()