-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstraighten_rectangle.py
189 lines (157 loc) · 7.81 KB
/
straighten_rectangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
import glob
import math
import os
import re
import sys
import warnings
import numpy as np
from PIL import Image
import skimage.io
from skimage.transform import warp, ProjectiveTransform
def find_edges(raw):
"""
Return the desired width & height of the result
"""
shape = raw.shape
# round up to the nearest 16, as the unet goes through 4 rounds of contraction
width = math.ceil(shape[1] / 16) * 16
height = math.ceil(shape[0] / 16) * 16
return (width, height)
def output_shape(width, height):
return np.asarray([[0, 0], [width, 0],
[width, height], [0, height]])
def parse_args():
parser = argparse.ArgumentParser(description='Transform a training/test example.')
parser.add_argument('--base_file', default=None,
help='Which file to process')
parser.add_argument('--shape', default=None,
help='Shape to preserve from original file')
parser.add_argument('--output_suffix', default='_trans',
help='Suffix for outputting the transformed file(s)')
parser.add_argument('--transform_all', dest='transform_all',
default=False, action='store_true',
help='Transform all of 8 channel, cera, etc')
parser.add_argument('--overwrite', dest='overwrite',
default=False, action='store_true',
help='Force overwrite of existing files... be careful')
parser.add_argument('--subdirs', default='8_bands,cera_mask,emergent_mask,land_mask,RGB,water_mask')
args = parser.parse_args()
return args
def parse_shape(shape):
"""
Parse text that looks like this:
"((64, 0), (511, 0), (511, 511), (60, 511))"
Returns a numpy array representing this quadrilateral
"""
# shape will be stretched in the order UL, UR, LR, LL
pattern = re.compile("^[(), 0-9]+$")
if not pattern.match(shape):
raise RuntimeError("Illegal characters in the shape description")
original = eval(shape)
original = np.asarray(original)
return original
def check_mask(mask):
"""
Verify that the mask is either black or white
"""
values = {}
for i in range(mask.shape[0]):
for j in range(mask.shape[1]):
values[mask[i, j]] = values.get(mask[i, j], 0) + 1
for k in values.keys():
if k != 0 and k != 255:
raise RuntimeError("Mask was not entirely 0 or 255")
def get_sibling_files(base_file, subdirs):
"""
Look for files with similar names to base_file in parallel dirs
"""
# we put base_file first so that we can save a read later
base_file = os.path.abspath(base_file)
base_files = [base_file]
parent_dir = os.path.split(os.path.split(base_file)[0])[0]
base_name = os.path.splitext(os.path.split(base_file)[1])[0]
print("Processing all files in directory %s with base_name %s" %
(parent_dir, base_name))
subdirs = subdirs.split(",")
for subdir in subdirs:
path = os.path.join(parent_dir, subdir, base_name)
images = glob.glob(path + ".*")
if len(images) > 1:
raise RuntimeError("Found multiple files: %s" % str(images))
if len(images) == 0:
raise RuntimeError("Warning: found no file like %s" % path)
next_file = os.path.normpath(images[0])
if next_file != base_file:
base_files.append(next_file)
return base_files
if __name__ == '__main__':
"""
Takes an image file and a shape as arguments. Stretches the
inside of the shape to fill the entire image. For example, the
original 35.TIF was slightly cut off on the left, and this script
can fix that and simultaneously stretch all the masks.
Example for running this program:
python -u straighten_rectangle.py --base_file ../training_set/8_bands/35.TIF --shape "((64, 0), (511, 0), (511, 511), (60, 511))" --transform_all
To run on the extra set:
python straighten_rectangle.py --base_file ../extra_set/8_bands/DG_2016_DT_2m.tif --shape "((6, 1), (308, 3), (305, 493), (1, 492))" --transform_all --overwrite
python straighten_rectangle.py --base_file ../extra_set/8_bands/DG_2016_FS_2m.tif --shape "((2, 137), (589, 1), (696, 457), (108, 592))" --transform_all --overwrite
python straighten_rectangle.py --base_file ../extra_set/8_bands/DG_2016_GK_2m.tif --shape "((85, 1), (367, 45), (295, 509), (2, 493))" --transform_all --overwrite
python straighten_rectangle.py --base_file ../extra_set/8_bands/DG_2016_MA_2m.tif --shape "((2, 2), (586, 76), (391, 509), (19, 434))" --transform_all --overwrite
python straighten_rectangle.py --base_file ../extra_set/8_bands/DG_2016_ME_2m.tif --shape "((362, 2), (517, 408), (332, 674), (2, 504))" --transform_all --overwrite
python straighten_rectangle.py --base_file ../extra_set/8_bands/DG_2016_MT_2m.tif --shape "((2, 302), (312, 3), (554, 182), (260, 501))" --transform_all --overwrite
python straighten_rectangle.py --base_file ../extra_set/8_bands/DG_2016_ST_2m.tif --shape "((2, 322), (223, 2), (653, 298), (606, 628))" --transform_all --overwrite
python straighten_rectangle.py --base_file ../extra_set/8_bands/DG_2016_ST_2m.tif --shape "((2, 322), (223, 2), (653, 298), (606, 628))" --transform_all --overwrite
python straighten_rectangle.py --base_file ../extra_set/8_bands/DG_2016_ST_2m.tif --shape "((2, 322), (606, 628), (321, 923), (102, 775))" --transform_all --overwrite --output_suffix _trans_B
"""
args = parse_args()
base_file = os.path.normpath(args.base_file)
# TODO: use image_utils and check that this is a real .tif file
raw = skimage.io.imread(base_file)
original = parse_shape(args.shape)
width, height = find_edges(raw)
desired = output_shape(width, height)
print("Original shape: %s" % original)
print("Desired shape: %s" % desired)
transform = ProjectiveTransform()
transform.estimate(desired, original)
if args.transform_all:
base_files = get_sibling_files(base_file, args.subdirs)
else:
base_files = [base_file]
files = []
for infile in base_files:
base, ext = os.path.splitext(infile)
outfile = base + args.output_suffix + ext
if os.path.exists(outfile) and not args.overwrite:
raise RuntimeError("Cowardly refusing to overwrite %s" % outfile)
files.append((infile, outfile))
for infile, outfile in files:
print("Transforming %s into %s" % (infile, outfile))
if infile != base_file:
raw = skimage.io.imread(infile)
# order=0 means nearest neighbor rather than interpolation
if len(raw.shape) == 2:
# found a mask
t_image = warp(raw, transform, output_shape=(height, width), order=0)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
t_image = skimage.img_as_ubyte(t_image)
check_mask(t_image)
skimage.io.imsave(outfile, t_image)
elif len(raw.shape) == 3 and raw.shape[2] == 3:
# RGB image, presumably converted from satellite
t_image = warp(raw, transform, output_shape=(height, width), order=0)
rgb = np.array(t_image * 255, dtype=np.int8)
im = Image.fromarray(rgb, "RGB")
im.show()
im.save(outfile)
elif len(raw.shape) == 3 and raw.shape[2] == 8:
# Satellite image
t_image = warp(raw, transform, output_shape=(height, width), order=0, preserve_range=True)
t_image = np.asarray(t_image, dtype=raw.dtype)
with warnings.catch_warnings():
warnings.simplefilter("ignore")
skimage.io.imsave(outfile, t_image)
else:
raise RuntimeError("Don't know how to handle %s" % infile)