-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPerceptronMain.py
150 lines (117 loc) · 6.51 KB
/
PerceptronMain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
"""
Разработанный Адриелу Ванг от ДанСтат Консульти́рования
"""
import torch
class PerceptronMain:
def __init__(self, layer_sizes, activation_function, optimizer_function, weight_decay= 0.0, add_bias = True):
self.layer_sizes = layer_sizes
self.activation_function = TorchActivations.activation(activation_function)
self.activation_derivative = TorchActivations.derivative(activation_function)
self.optimizer_function = optimizer_function
self.add_bias = add_bias
self.weight_decay = weight_decay
#self.optimizer_params = {}
self.initialize_weights()
if self.add_bias:
self.layer_sizes[0] += 1
def initialize_weights(self, dtype=torch.float64):
self.weights = [torch.randn(n, m, dtype=dtype) for n, m in zip(self.layer_sizes[:-1], self.layer_sizes[1:])]
self.velocity = None
self.squared_gradients = [torch.zeros_like(w) for w in self.weights]
def forward(self, X):
self.a_values = [X]
for w in self.weights:
self.a_values.append(self.activation_function(self.a_values[-1] @ w))
return self.a_values[-1]
def backward(self, X, y, learning_rate):
m = X.shape[0]
gradients = [torch.zeros_like(w) for w in self.weights]
if y.dim() == 1:
y = y.view(-1, 1)
delta = (self.a_values[-1] - y) * self.activation_derivative(self.a_values[-2] @ self.weights[-1])
gradients[-1] = self.a_values[-2].t() @ delta + self.weight_decay * self.weights[-1]
for i in range(len(self.weights) - 2, -1, -1):
delta = (delta @ self.weights[i + 1].t()) * self.activation_derivative(self.a_values[i] @ self.weights[i])
gradients[i] = self.a_values[i].t() @ delta + self.weight_decay * self.weights[i]
return gradients
def optimize(self, gradients, learning_rate, momentum):
self.weights, self.velocity = self.optimizer_function(self.weights, gradients, learning_rate, self.weight_decay, momentum = momentum, velocity=self.velocity, squared_gradients=self.squared_gradients)
def fit(self, X, y, epochs, batch_size, learning_rate, momentum = 0, epoch_step=100):
step = epoch_step
current_epochs = epochs
if not isinstance(X, torch.Tensor):
X = torch.tensor(X)
self.initialize_weights(dtype=X.dtype)
if self.add_bias:
# Add a column of 1s to the input data
X = torch.cat((X, torch.ones((X.shape[0], 1))), dim=1)
while current_epochs > 0:
print(f"Trying {current_epochs} epochs.")
try:
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always")
for epoch in range(current_epochs):
for i in range(0, X.shape[0], batch_size):
X_batch = X[i:min(i + batch_size, X.shape[0])]
y_batch = y[i:min(i + batch_size, y.shape[0])]
self.forward(X_batch)
gradients = self.backward(X_batch, y_batch, learning_rate)
self.optimize(gradients = gradients, learning_rate = learning_rate, momentum = momentum)
if w:
raise RuntimeWarning("Overflow encountered during training.")
print(f"Training successful with {current_epochs} epochs.")
break
except RuntimeWarning:
print(f"Warning encountered with {current_epochs} epochs. Reducing the number of epochs.")
current_epochs -= step
def predict(self, X):
X = X.to(self.weights[0].dtype)
if self.add_bias:
X = torch.cat((X, torch.ones((X.shape[0], 1), dtype=X.dtype)), dim=1)
for w in self.weights[:-1]:
X = self.activation_function(X @ w)
return X @ self.weights[-1]
class Optimizers:
@staticmethod
def sgd_optimizer(weights, gradients, learning_rate, weight_decay, momentum=0.0, velocity=None, **kwargs):
if velocity is None:
velocity = [torch.zeros_like(w) for w in weights]
# update the velocity
velocity = [momentum * v + (1 - momentum) * g for v, g in zip(velocity, gradients)]
# update the weights
new_weights = [w - learning_rate * v for w, v in zip(weights, velocity)]
return new_weights, velocity
@staticmethod
def adagrad_optimizer(weights, gradients, learning_rate, weight_decay, squared_gradients=None, eps=1e-8, **kwargs):
if squared_gradients is None:
squared_gradients = [torch.zeros_like(w) for w in weights]
# update the squared gradients
new_squared_gradients = [sg + g ** 2 for sg, g in zip(squared_gradients, gradients)]
# update the weights
new_weights = [w - learning_rate / (torch.sqrt(sg) + eps) * (g + weight_decay * w) for w, sg, g in zip(weights, new_squared_gradients, gradients)]
return new_weights, new_squared_gradients
class TorchActivations:
activations = {
'sigmoid': lambda x: 1 / (1 + torch.exp(-x)),
'tanh': lambda x: torch.tanh(x),
'relu': lambda x: torch.max(torch.zeros_like(x), x),
'relu_squared': lambda x: torch.pow(torch.max(torch.zeros_like(x), x), 2),
'linear': lambda x: x,
'softmax': lambda x: torch.exp(x) / torch.sum(torch.exp(x), axis=0),
'logistic': lambda x: 1 / (1 + torch.exp(-x)) # Logistic is the same as sigmoid
}
derivatives = {
'sigmoid': lambda x: TorchActivations.activations['sigmoid'](x) * (1 - TorchActivations.activations['sigmoid'](x)),
'tanh': lambda x: 1 - torch.pow(TorchActivations.activations['tanh'](x), 2),
'relu': lambda x: (x > 0).float(),
'relu_squared': lambda x: 2 * torch.max(torch.zeros_like(x), x),
'linear': lambda x: torch.ones_like(x),
'softmax': lambda x: TorchActivations.activations['softmax'](x) * (1 - TorchActivations.activations['softmax'](x)),
'logistic': lambda x: TorchActivations.activations['logistic'](x) * (1 - TorchActivations.activations['logistic'](x)) # Logistic is the same as sigmoid
}
@staticmethod
def activation(activation_name):
return TorchActivations.activations.get(activation_name, None)
@staticmethod
def derivative(activation_name):
return TorchActivations.derivatives.get(activation_name, None)