-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathEconmetModels.py
279 lines (209 loc) · 12.3 KB
/
EconmetModels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
"""
Разработанный Адриелу Ванг от ДанСтат Консульти́рования
"""
import torch
# Single Layer Perceptron ARIMA
class ArimaSlp(PerceptronMain):
def __init__(self, p, d, q, optimizer_function = Optimizers.sgd_optimizer, weight_decay = 0.0, add_bias = True):
self.p = p
self.d = d
self.q = q
super().__init__(
layer_sizes=[p + q, 1],
activation_function="linear",
optimizer_function=optimizer_function,
weight_decay=weight_decay,
add_bias=add_bias
)
def fit(self, y, epochs, batch_size, learning_rate, momentum = 0, epoch_step=100):
if not isinstance(y, torch.Tensor):
y = torch.tensor(y, dtype=torch.float64)
y_d = torch.diff(y, n=self.d) if self.d > 0 else y
X_ar = torch.zeros((len(y_d) - self.p, self.p), dtype=torch.float64)
for t in range(self.p, len(y_d)):
X_ar[t - self.p] = y_d[t - self.p:t]
ar_coeffs = WorkhorseFunctions.ols_estimator_torch(X_ar, y_d[self.p:].view(-1, 1)).view(-1, 1)
residuals = y_d[self.p:] - X_ar.mm(ar_coeffs).view(-1)
X_ma = torch.zeros((len(residuals) - self.q + 1, self.q), dtype=torch.float64)
for t in range(self.q - 1, len(residuals)):
X_ma[t - self.q + 1] = residuals[t - self.q + 1:t + 1]
ma_coeffs = WorkhorseFunctions.ols_estimator_torch(X_ma, residuals[self.q - 1:].view(-1, 1)).view(-1, 1) # Added .view(-1, 1)
X = torch.cat((X_ar[:len(X_ma)], X_ma), dim=1)
# Initialize AR and MA weights
initial_weights = torch.cat((ar_coeffs, ma_coeffs), dim=0).t()
self.weights[0] = initial_weights
super().fit(X, y_d[self.p + self.q - 1:], epochs = epochs, batch_size = batch_size, learning_rate = learning_rate, momentum = momentum, epoch_step = epoch_step)
def predict_next_period(self, y, horizon):
if not isinstance(y, torch.Tensor):
y = torch.tensor(y, dtype=torch.float64)
y_d = torch.diff(y, n=self.d) if self.d > 0 else y
predictions = []
for _ in range(horizon):
X_ar = y_d[-self.p:].view(1, -1)
X_ma = y_d[-self.q:].view(1, -1)
X = torch.cat((X_ar, X_ma), dim=1)
y_next_d = super().predict(X).item()
y_next = y_next_d + y[-1] if self.d > 0 else y_next_d
predictions.append(y_next)
y_d = torch.cat((y_d, torch.tensor([y_next_d], dtype=torch.float64).unsqueeze(0)), dim=0)
y = torch.cat((y, torch.tensor([y_next], dtype=torch.float64).unsqueeze(0)), dim=0)
return torch.tensor(predictions)
# Deep Instrumental Variable
class DeepIv:
def __init__(self, first_stage_layer_sizes, second_stage_layer_sizes, first_activation, second_activation, optimizer_function, add_bias = True):
self.first_stage_network = PerceptronMain(layer_sizes=first_stage_layer_sizes, activation_function=first_activation, optimizer_function=optimizer_function, add_bias = add_bias)
self.second_stage_network = PerceptronMain(layer_sizes=second_stage_layer_sizes, activation_function=second_activation, optimizer_function=optimizer_function, add_bias = add_bias)
def fit(self, X, Z, y, epochs, batch_size, learning_rate, first_momentum = 0, second_momentum = 0, epoch_step = 100):
# Fit the first-stage network using Z as input and X as output
self.first_stage_network.fit(Z, X, epochs, batch_size, learning_rate, first_momentum, epoch_step = epoch_step)
# Estimate the instrument variable
estimated_IV = self.first_stage_network.predict(Z)
# Fit the second-stage network using the estimated instrument variable and y
self.second_stage_network.fit(estimated_IV, y, epochs, batch_size, learning_rate, second_momentum, epoch_step=epoch_step)
def predict(self, X):
# Estimate the instrument variable
#estimated_IV = self.first_stage_network.predict(Z)
# Predict the outcome using the estimated instrument variable
return self.second_stage_network.predict(X)
# Vector Autoencoding Nonlinear Autoregression
class Vanar:
def __init__(self, n_lags, n_variables, hidden_layer_sizes, n_components, autoencoder_wd = 0.0, forecast_wd = 0.0, add_bias = True, autoencoder_activ="linear", forecaster_activ="linear",
autoen_optim=Optimizers.sgd_optimizer, fore_optim=Optimizers.sgd_optimizer):
self.n_lags = n_lags
self.n_variables = n_variables
self.autoencoder = PerceptronMain(
layer_sizes=[n_variables * n_lags, n_components, n_variables * n_lags],
activation_function=autoencoder_activ,
optimizer_function=autoen_optim,
weight_decay=autoencoder_wd,
add_bias = add_bias
)
self.forecaster = PerceptronMain(
layer_sizes=[n_lags] + hidden_layer_sizes + [1],
activation_function=forecaster_activ,
optimizer_function=fore_optim,
weight_decay=forecast_wd,
add_bias = add_bias
)
def initialize_forecaster_weights(self, X, y):
beta_hat = WorkhorseFunctions.ols_estimator_torch(X, y)
self.forecaster.weights[0].data = beta_hat.t()
def fit(self, data, auto_epochs, fore_epochs, batch_size, learning_rate, first_momentum = 0, second_momentum=0, validation_split=0.2, epoch_step=None):
# Prepare the input-output pairs
X, y = WorkhorseFunctions.create_input_output_pairs(data, self.n_lags)
# Split the data into training and validation sets
n_validation = int(validation_split * X.shape[0])
X_train, y_train = X[:-n_validation], y[:-n_validation]
X_val, y_val = X[-n_validation:], y[-n_validation:]
# Train the autoencoder
self.autoencoder.fit(X_train, X_train, epochs=auto_epochs, batch_size=batch_size, learning_rate=learning_rate,
momentum = first_momentum,
epoch_step=epoch_step)
# Encode the input data
X_train_encoded = self.autoencoder.predict(X_train)[:, :self.n_lags]
X_val_encoded = self.autoencoder.predict(X_val)[:, :self.n_lags]
# Change y_train shape
y_train = y_train.view(-1, self.n_variables)
# Initialize VANAR weights
self.initialize_forecaster_weights(X_train_encoded, y_train)
# Train the forecaster
self.forecaster.fit(X_train_encoded, y_train, epochs=fore_epochs, batch_size=batch_size, learning_rate=learning_rate,
momentum = second_momentum,
epoch_step=epoch_step)
self.X_encoded, self.y = torch.cat((X_train_encoded, X_val_encoded), dim=0), y
# Compute validation MSE
y_val_pred = self.forecaster.predict(X_val_encoded)
mse_val = torch.mean((y_val_pred - y_val) ** 2)
print("Validation MSE:", mse_val.item())
def predict_next_period(self, data, horizon):
predictions = []
for _ in range(horizon):
X, _ = WorkhorseFunctions.create_input_output_pairs(data, self.n_lags)
X_encoded = self.autoencoder.predict(X)[:, :self.n_lags]
y_next = self.forecaster.predict(X_encoded[-1].unsqueeze(0)).item()
predictions.append(y_next)
data = torch.cat((data, torch.tensor([y_next])), dim=0)
return torch.tensor(predictions)
def nonlinear_granger_causality(self, epochs, batch_size, learning_rate, momentum = 0, weight_decay = 0.0, activation_function="linear", exclude_variable=None):
error_variance_full = self.compute_forecast_error_variance(self.X_encoded, self.y)
gc_indices = []
for i in range(self.n_lags):
if i == exclude_variable:
continue
X_reduced_encoded = torch.cat((self.X_encoded[:, :i], self.X_encoded[:, i+1:]), dim=1)
reduced_forecaster = PerceptronMain(
layer_sizes=[self.n_lags - 1] + self.forecaster.layer_sizes[1:-1] + [1],
activation_function=activation_function,
optimizer_function=self.forecaster.optimizer_function,
weight_decay=weight_decay,
add_bias=self.forecaster.add_bias
)
# Fit the reduced forecaster
reduced_forecaster.fit(X_reduced_encoded,
self.y, epochs=epochs,
batch_size=batch_size,
learning_rate=learning_rate,
momentum = momentum)
error_variance_reduced = self.compute_forecast_error_variance(X_reduced_encoded, self.y, reduced_forecaster)
gc_index = 1 - error_variance_reduced / error_variance_full
gc_indices.append(gc_index.item())
return gc_indices
def compute_forecast_error_variance(self, X_encoded, y, forecaster=None):
if forecaster is None:
forecaster = self.forecaster
y_pred = forecaster.predict(X_encoded)
return torch.mean((y_pred - y) ** 2)
def granger_causality_p_values(self, gc_indices):
p_values = []
dof = self.n_lags * self.n_variables
for gc_index in gc_indices:
LR = -2 * torch.log(torch.tensor(gc_index))
p_value = 1 - self.chi2_cdf(LR, dof)
p_values.append(p_value.item())
return p_values
# Temporary solution until PyTorchDistributionsExtended is finished
def chi2_cdf(self, x, k):
k = torch.tensor(k, dtype=torch.float64) # Convert k to a tensor
return torch.igamma(k / 2, x / 2)
class DeepGmm:
def __init__(self, first_stage_layer_sizes, second_stage_layer_sizes, first_activation, second_activation, optimizer_function, add_bias=True):
self.first_stage_network = PerceptronMain(layer_sizes=first_stage_layer_sizes, activation_function=first_activation, optimizer_function=optimizer_function, add_bias=add_bias)
self.second_stage_network = PerceptronMain(layer_sizes=second_stage_layer_sizes, activation_function=second_activation, optimizer_function=optimizer_function, add_bias=add_bias)
def gmm_loss(self, y_pred, y_true, weights):
moment_conditions = y_true - y_pred
# Compute the GMM loss
gmm_loss = (moment_conditions.T * weights) @ moment_conditions
return gmm_loss
def fit(self, X, Z, y, epochs, batch_size, learning_rate, first_momentum = 0, second_momentum = 0, gmm_steps=1, regularize=False, regularization_param=1e-6, epoch_step=100):
# Fit the first-stage network using Z as input and X as output
self.first_stage_network.fit(Z, X, epochs, batch_size, learning_rate, first_momentum, epoch_step=epoch_step)
# Estimate the instrument variable
estimated_IV = self.first_stage_network.predict(Z)
# Initialize GMM weights
gmm_weights = torch.eye(y.shape[1]) / y.shape[1]
for step in range(gmm_steps):
# Fit the second-stage network using the estimated instrument variable and y
self.second_stage_network.fit(estimated_IV, y, epochs, batch_size, learning_rate, second_momentum, epoch_step=epoch_step)
# Predict the outcome using the estimated instrument variable
y_pred = self.second_stage_network.predict(estimated_IV)
# Calculate the moment conditions
moment_conditions = y - y_pred
# Update the GMM weights
gmm_weights = self.update_gmm_weights(moment_conditions, regularize=regularize, regularization_param=regularization_param)
# Calculate the GMM loss
loss = self.gmm_loss(y_pred, y, gmm_weights)
print(f"GMM step {step + 1}, loss: {loss.item()}")
def update_gmm_weights(self, moment_conditions, regularize=False, regularization_param=1e-6):
# Calculate the moment matrix
moment_matrix = moment_conditions.T @ moment_conditions
# Regularize the moment matrix if needed
if regularize:
moment_matrix += regularization_param * torch.eye(moment_matrix.shape[0])
# Compute the inverse of the moment matrix
inverse_moment_matrix = torch.inverse(moment_matrix)
# Update the GMM weights
new_weights = inverse_moment_matrix / torch.trace(inverse_moment_matrix)
return new_weights
def predict(self, X):
# Predict the outcome using the estimated instrument variable
return self.second_stage_network.predict(X)